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Objective: Accurate identification of testicular tumors through better lesion 
characterization can optimize the radical surgical procedures. Here, we compared 
the performance of different machine learning approaches for discriminating 
benign testicular lesions from malignant ones, using a radiomics score derived 
from magnetic resonance imaging (MRI).

Methods: One hundred fifteen lesions from 108 patients who underwent MRI 
between February 2014 and July 2022 were enrolled in this study. Based on 
regions-of-interest, radiomics features extraction can be  realized through 
PyRadiomics. For measuring feature reproducibility, we  considered both 
intraclass and interclass correlation coefficients. We  calculated the correlation 
between each feature and the predicted target, removing redundant features. In 
our radiomics-based analysis, we  trained classifiers on 70% of the lesions and 
compared different models, including linear discrimination, gradient boosting, 
and decision trees. We applied each classification algorithm to the training set 
using different random seeds, repeating this process 10 times and recording 
performance. The highest-performing model was then tested on the remaining 
30% of the lesions. We used widely accepted metrics, such as the area under the 
curve (AUC), to evaluate model performance.

Results: We acquired 1,781 radiomic features from the T2-weighted maps of each 
lesion. Subsequently, we constructed classification models using the top 10 most 
significant features. The 10 machine-learning algorithms we utilized were capable 
of diagnosing testicular lesions. Of these, the XGBoost classification emerged as 
the most superior, achieving the highest AUC value of 0.905 (95% confidence 
interval: 0.886–0.925) on the testing set and outstripping the other models that 
typically scored AUC values between 0.697–0.898.

Conclusion: Preoperative MRI radiomics offers potential for distinguishing 
between benign and malignant testicular lesions. An ensemble model like the 
boosting algorithm embodied by XGBoost may outperform other models.
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1 Introduction

Testicular cancer, which is the most common solid tumor in males 
aged 15–34 years, is anticipated to result in approximately 470 fatalities 
and usher in an estimated 9,190 new cases in the United States by 2023 
(1). Based on a 2020 statistical report, testicular cancer ranks among 
the top five causes of cancer-related fatalities in males aged 20–39 years 
in the United  States (2). The standard treatment for malignant 
testicular lesions is inguinal orchiectomy (3, 4). For patients with 
benign testicular lesions, a more sensible treatment approach often 
involves conservative care, complemented by regular follow-ups and 
testicular preservation surgery. This is primarily because orchiectomy 
can adversely impact the patient’s reproductive abilities and mental 
health, an effect particularly profound among young adult males (4, 
5). Accurate identification of testicular tumors through better lesion 
characterization can help to reduce unnecessary radical surgical 
procedures (6).

Ultrasonography (US) is often used to confirm the presence of 
tumors in patients with testicular lesions (7). However, US has limited 
ability to distinguish benign and malignant testicular lesions 
effectively or to predict tumor size accurately (8). The advanced multi-
directional and multi-sequence scanning capabilities of magnetic 
resonance imaging (MRI) can effectively depict testicular lesions and 
their relationship to surrounding tissues. Furthermore, it can infer 
possible tissue compositions, thereby providing valuable aid in both 
the diagnosis and differential diagnoses of these lesions (9). Therefore, 
MRI can afford us more adequate information and help to clarify 
some uncertainties or ambiguities in the results of the US, thereby 
reducing unnecessary surgical treatment (10).

Machine learning (ML), a multidisciplinary facet of artificial 
intelligence, endows computers with the capability to learn, enabling 
them to perform complex tasks similarly to humans. It is applied to 
both scientific research and industrial production to make accurate 
predictions using diverse data sources (11). Since it has achieved 
excellent prediction results in a wide range of applications, machine 
learning technology has attracted significant interest from medical 
researchers and clinicians (12).

In the past decade, the rapid development of medical image 
analysis has promoted the development of radiomics, which acquires 
massive quantitative information from image (13–15). It has a great 
application prospect in diagnosis, grading, staging, and prognosis of 
many tumors (16–18). Our previous studies established machine 
learning using radiomic signatures based on histogram analysis of 
apparent diffusion coefficient (ADC) (19). A previous study combined 
features and clinical indicators extracted from MRI to create predictive 
models to diagnose benign and malignant testicular lesions (20). 
However, to the best of our knowledge, no study to date has compared 
different modeling methods for the diagnosis of testicular diseases.

Therefore, we intend to utilize MRI imaging data for a comparative 
analysis of various machine learning algorithms deployed in 
differentiating between benign and malignant testicular diseases.

2 Materials and methods

2.1 Patients

A total of 394 patients, who underwent routine testicular MRI 
examinations, were recruited from February 2014 to July 2022. Of 
these, 286 patients were excluded based on the following criteria: (1) 
patients with no significant testicular lesions on MRI (n = 185); (2) 
patients who underwent biopsies, surgery, or treatment prior to MRI 
examination (n = 77); (3) patients with no testicular lesions confirmed 
by pathology (n = 16); and (4) patients who lacked MRI data or had 
MRI data of poor image quality (n = 8). Finally, 115 lesions were 
identified from 108 patients screened, including 44 benign and 71 
malignant tumors. In this study, all lesions were diagnosed from 
testicular tissue sections after surgery or biopsy specimens. A 
flowchart of the case identification process is shown in Figure 1.

2.2 MRI protocol

We use the advanced type superconducting magnetic resonance 
system MAGNETOM Skyra, to scan patients with follow specification 
3.0 T technology parameters, and set up an 18-element matrix and a 
32-channel coil. The MRI protocol was listed in 
Supplementary Table S1. Due to the limited sample size, diffusion-
weighted imaging and dynamic contrast-enhanced MRI were not 
included in this study.

2.3 Image segmentation

All transverse T2-weighted images (T2WI) were input into 
ITK-SNAP software (version 3.4.0) to realize the 3D segmentation of 
the target region manually. The lesions of all patients were manually 
segmented by radiologists with extensive experience in abdominal 
imaging. The two readers had 4 years and 5 years of experience, 
respectively. Segmentation was independently conducted to assess the 
reproducibility of inter-observer segmentation. Both two readers were 
blinded to the histopathological results. A radiologist with 4 years of 
experience (Reader 1) visualized the testicular lesions 1 month later to 
assess intra-observer segmentation reproducibility.

2.4 Radiomics feature extraction

The PyRadiomics package (version 2.1.2) was adopted to extract 
features from MRI. All MRI data were resampled with the same 
resolution (1.0 × 1.0 × 1.0 mm), and the built-in standardization 
function of PyRadiomics with a scale of 1 was used to normalize the 
intensity of MRI data. Nineteen filters were applied to each MRI scan 
of a lesion, as listed in Supplementary Table S2. All classes of features 
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(Supplementary Table S3), with the exception of shape, were computed 
for both the original and derived images.

2.5 Inter- and intra-correlation analysis of 
features

The robustness of the features was evaluated using ICCs. 
Randomly selected 34 lesions and the segmentation was operated by 
Reader 1 (4 years’ experience in abdominal imaging). Secondary 
segmentation of these cases was performed by Reader 1 month later 
to evaluate the reproducibility within the observer. These images were 
also assessed by Reader 2 (5 years’ experience in abdominal imaging) 
to assess consistency between observers. Features with ICC ≥0.8 were 
considered to be robust and were included in the follow-up study. 
Feature selection was performed with the maximum relevance and 
minimum redundancy (mRMR) approach (21), and the classification 
model based on radiomics was established. Figure  2 shows the 
workflow of radiomics signature development.

2.6 Model construction and evaluation

The included cases were divided into the training and testing set 
according to the ratio of 7:3. The following machine-learning models 

were considered: logistic regression (LR), quadratic discriminant 
analysis (QDA), k-nearest neighbor classifier (KNN), decision tree 
(DT), support vector machine (SVM), Gaussian naive Bayes 
(GaussianNB), random forest (RF), adaptive boosting (AdaBoost), 
gradient boosting (GB), and extreme gradient boosting (XGBoost). In 
the training set used to evaluate prediction performance and stability, 
different random seeds were set to train each classifier for 10 times. 
The average performance on the training set was recorded 
(Supplementary Table S4). The optimal model in the training cohort 
was subsequently tested in testing set.

When using the XGBoost algorithm, the following parameters 
are considered for adjustment: The learning_rate refers to the 
learning rate or step size, which controls the adjustment of model 
weights in each iteration. A small learning rate may require more 
training rounds, but it can potentially result in better prediction 
performance. The n_estimators refers to the number of trees, i.e., 
the number of sub-models or subtrees in the generated model. 
Insufficient trees may cause underfitting, while an excess of trees 
may cause overfitting. The max_depth indicates the maximum 
distance between the root node and the furthest leaf node in each 
tree. It affects the complexity of the model, as deeper trees result in 
a more complex model. Excessively large depths can lead to 
overfitting. The min_child_weight is used to determine the 
minimum weight sum of child sub-trees. If the weight of instances 
in a newly partitioned sub-tree is below this value, further 

FIGURE 1

Inclusion and exclusion criteria.
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partitioning will not occur. This parameter helps avoid overfitting. 
The gamma parameter adjusts the degree of instance importance. A 
node will only split if the reduction in the loss function value after 
the split exceeds the specified gamma threshold. The colsample_
bytree refers to the subsample ratio of columns, which is feature 
sampling used to construct each tree. The colsample_bytree is the 
subsample ratio considered during tree building. The subsample 
represents the subsample ratio of observed samples, which helps 
prevent overfitting. Typically, the value is between 0.5 and 1. In the 
experimental phase of this study, grid search was used to find 
appropriate parameters that ensured the model maintained 
optimal performance.

2.7 Statistical analysis

The Python (version 3.7) package was used for statistical analysis. 
For continuous variables, data are presented as means ± standard 
deviation. ICCs were computed to evaluate the agreement between 
features. Indicators covered the area under the receiver operating 
characteristic curve (AUC), average precision of the curve and five 
confusion matrix related indicators. These were computed by the 
bootstrap method (1,000 subsamples, 100 times). To evaluate the 
efficient of models and clinical practicability, calibration curve and 
decision curve analysis (DCA) analyses were employed. p-values less 
than 0.05 were considered to be statistically significant.

3 Results

3.1 Patients

After inclusion and exclusion and characteristic analysis, the study 
included108 patients with 115 testicular lesions (44 benign and 71 
malignant). Patients had a wide age range (from 5 to 74 years), and the 
mean age was 36.25 years. Besides, the mean ages of the patients with 
benign and malignant lesion were 33.93 years and 46.40 years, 

respectively. Pathological analysis was performed in each case, and the 
statistical distribution is presented in Table 1. No significant difference 
in age was observed between the benign and malignant groups 
(p = 0.217).

3.2 Radiomics feature extraction and 
selection

T2WI contrast-enhanced sequence was used for radiomics 
features extraction. For each image space, 356 non-texture and 1,425 
texture features were obtained from both the original and filtered 
images. ICCs were calculated for the inter-observer agreement, and 
1,277 and 1,242 features were thought to be highly reproducible in 
terms of ICC values (ICC ≥0.8). A total of 1,182 features were 
considered to be robust and were included in the subsequent analysis. 
Finally, the mRMR method was used to eliminate redundant features 
and to select a subset of 10 features that were most relevant to the 
target to build the classification models. The radiomics features ranked 
by the mRMR method were mostly filter-based (7/10), which played 
an important role in the establishment of models.

3.3 Performance of models

On the training set, the prediction performance of 10 machine 
learning models was evaluated. All models performed well on the 
training set (AUC scores were greater than 0.8), and their 
performances are listed in Table 2. Among all the models, XGBoost 
exhibited the best diagnostic performance, which has a highest AUC 
(0.905, 95% CI, 0.886–0.925), sensitivity (0.895, 95% CI, 0.867–0.928), 
accuracy (0.886, 95% CI, 0.864–0.908), and NPV (0.875, 95% CI, 
0.844–0.901) on the testing set. Other indicators of performance are 
showed in Table 3.

The prediction probabilities of each model for all lesions are 
shown in Figure 3A. The positive cases are mainly concentrated at the 
top, whereas the negative samples are mainly at the bottom, and the 

FIGURE 2

Illustration of the study design.
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predicted results are more consistent with the reality. However, cases 
with a prediction probability of about 0.5 are relatively difficult to 
estimate, and the predicted values of each model are scattered. The 
correlation coefficients of the probabilities for each model are showed 
in Figure 3B. The coefficients of the RF, GB, AdaBoost and XGBoost 
models were 0.82 or higher (range: 0.82–0.93), indicating strong 
correlations. In addition, the LR, DT, GaussianNB, and RF models had 
high correlations, with coefficients >0.82, particularly RF and LR 
(coefficient = 0.94), while the correlation coefficient of SVM and KNN 
was 0.83.

In all cases, the AUC of XGBoost was 0.965 (95% CI, 0.955–
0.973), as shown in Figure 4A. The Brier score of calibration curve is 
0.091 (Figure 4B), which means the predicted probability and the 
actual malignant testicular lesions are approximated. In the decision 
curve, compared to assuming that all testicular tumors are malignant, 
the net profit of the prediction using XGBoost will be higher between 
the prediction probability of 10 to 95 percent (Figure 4C).

4 Discussion

In the present study, we  used MRI as the object of feature 
extraction for predicting benign and malignant testicular lesions. 
Among all methods, the XGBoost classifier achieved best predictive 
performance, and the results revealed that machine learning models 
established based on radiomics features were able to differentiate 
benign from malignant testicular lesions.

Currently, MRIs serve as powerful tools that offer valuable 
insights into the characterization of various pathologies. The 
differentiation of testicular lesions, particularly between benign and 
malignant lesions, presents significant challenges for clinical 
experts. For radiologists, the visual differentiation of testicular 
lesions in MRI often requires a high level of expertise and 
experience. In terms of visual differential diagnosis, experts 
typically rely on certain key characteristics observed in MRI. The 
integration of machine learning models, particularly those 

TABLE 2 Performance of the models in the training cohort.

Model AUC Sensitivity Specificity Accuracy Average 
precision

NPV PPV

QDA 0.905 0.654 1.000 0.775 0.952 0.609 1.000

LR 0.826 0.654 0.893 0.738 0.908 0.581 0.919

DT 0.796 0.923 0.643 0.825 0.822 0.818 0.828

SVM 0.897 0.904 0.786 0.863 0.937 0.815 0.887

KNN 0.852 0.538 1.000 0.700 0.894 0.538 1.000

Gaussian NB 0.828 0.731 0.821 0.763 0.903 0.622 0.884

RF 0.911 0.865 0.821 0.850 0.954 0.767 0.900

GB 0.936 0.788 0.964 0.850 0.964 0.711 0.976

AdaBoost 0.923 0.712 1.000 0.813 0.954 0.651 1.000

XGBoost 0.987 0.942 0.964 0.950 0.994 0.900 0.980

The bold values indicate the highest values for specific indicators across different models. AUC, area under the curve; CI, confidence interval; NPV, negative predictive value; PPV, positive 
predictive value.

TABLE 1 Distribution of pathological findings in the included cases.

Benign Malignant

Mean age (years) 33.90 ± 17.00 Mean age (years) 46.40 ± 11.73

Pathology Patient number Lesion number Pathology Patient number Lesion number

Epidermoid cyst 12 12 Seminoma 25 25

Sex cord-mesenchymal 

tumor
8 8 Embryonal carcinoma 9 9

Infection 13 15 Mixed germinoma 10 10

Cyst 1 1 Lymphoma 11 14

Infarction 1 1 Teratoma 6 6

Contusion 3 3 Testicular metastases 3 4

Prepubertal teratoma 1 1 Neuroendocrine carcinoma 1 1

Prepubertal teratoma and 

epidermoid cyst
1 1 Yolk sac tumor 1 1

Testicular adrenal rest 

tumor
1 2 Borderline serous tumor 1 1

Summation 41 44 67 71
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employing radiomic analysis, aims to overcome these challenges by 
quantitatively analyzing a wider range of features than what the 
human eye can discern. These advanced techniques offer promising 
avenues for improving diagnostic accuracy; they are intended to 
complement the expert judgment of clinical professionals. 
MRI-based radiomics models are emerging as an innovative 
approach to aid clinical decision-making. Several previous studies 
illustrate the efficacy and superior performance of these models. For 
instance, Zhang et  al. (22) carried out a comparative analysis 
between traditional models and MRI-based radiomics models for 
diagnosing divergent carotid plaques. The outcomes indisputably 
denoted enhanced diagnostic performance by the radiomics model. 
Furthermore, the contribution of the AdaBoost classifier was 
substantial in differentiating low-grade gliomas from glioblastoma 
peritumoral regions relying on MRI radiomics (23). In this study, 
we observed a strong association and impressive correlation among 
the predicted probabilities of the boosting algorithms, such as 
gradient boosting (GB), AdaBoost, and extreme gradient boosting 
(XGBoost), across all examined cases. This signifies their potential 
for effectively distinguishing between benign and malignant lesions 
based on multidimensional radiomic data. Furthermore, 
we unveiled a noteworthy finding: the random forest (RF) model 
and these boosting algorithms yielded correlation coefficients equal 
to or higher than 0.88. This talent of the integrated algorithm to 
capture complex relationships between various features is well 
reflected in its superior performance. Interestingly, the logistic 

regression (LR) model was found to have a high correlation 
coefficient with the RF model. This emphasizes that classical models 
can powerfully differentiate between benign and malignant tumors. 
Hence, we should not undermine their potential while exploiting 
the power of advanced algorithms. Overall, the robust performance 
of the MRI-based radiomics models in our study, alongside findings 
from prior research, proposes a promising paradigm for future 
clinical applications. Particularly for the classification and diagnosis 
of diverse pathologies, these models could influence a shift from 
conventional diagnostic methods towards a more integrated and 
personalized approach.

In this study, the superior performance of XGBoost may 
be attributed to its gradient boosting framework, which inherently 
minimizes exponentially the discrepancy between predicted and true 
outcomes at each iteration. It’s this boosting feature that makes it a 
robust and reliable algorithm for modeling complex patterns and 
predicting outcomes in healthcare data. Moreover, the significant 
findings of our study showcase the potential of employing machine 
learning models built on the basis of radiomic features in clinical 
radiology. Unlike conventional assessment methods, which rely 
heavily on subjective impressions or labor-intensive quantitative 
volumetric analysis, machine learning offers an objective and 
systematic approach to medical imaging evaluation. By leveraging 
robust algorithms, it allows for high-throughput detection and 
quantification of pertinent images’ features, offering reproducible and 
unbiased results. At its core, our findings highlight a paradigm shift in 

TABLE 3 Performance of XGBoost in the testing cohort.

Group AUC (95% 
CI)

Sensitivity 
(95% CI)

Specificity 
(95% CI)

Accuracy 
(95% CI)

Average 
precision 
(95% CI)

NPV (95% 
CI)

PPV (95% 
CI)

Training set 0.987 (0.982, 

0.991)

0.942 (0.928, 0.958) 0.964 (0.941, 0.981) 0.950 (0.938, 0.962) 0.994 (0.992, 0.996) 0.900 (0.877, 

0.926)

0.980 (0.968, 

0.990)

Testing set 0.905 (0.886, 

0.925)

0.895 (0.867, 0.928) 0.875 (0.848, 0.904) 0.886 (0.864, 0.908) 0.934 (0.922, 0.946) 0.875 (0.844, 

0.911)

0.895 (0.874, 

0.917)

AUC, area under the curve; CI, confidence interval; NPV, negative predictive value; PPV, positive predictive value.

FIGURE 3

Prediction probabilities and correlation coefficients for each model. (A) Swarm plot of predicted probability of each model for all cases. Each dot 
represents a single sample. The orange and blue dots indicate malignant and benign lesions, respectively. (B) Correlation coefficients of the predicted 
probability for each model.
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the evaluation of testicular lesions. The coupling of radiomics, 
machine learning, and, specifically, the use of the XGBoost algorithm 
underscores the emergence of a new era in clinical diagnostics. 
Interestingly, our study not only documents an improved method for 
predicting benign and malignant lesions but also sets a benchmark for 
future research to further optimize these prediction models, thereby 
enhancing our understanding and management of testicular diseases.

Correct noninvasive preoperative diagnosis is critically important 
for proper clinical decision-making and devising appropriate surgical 
plans, as it seeks to prevent unnecessary orchiectomy and enhance the 
quality of patient care. MRI has emerged as a promising imaging 
modality, exhibiting valuable radiomic features particularly relevant 
to testicular germ cell tumors (24, 25). As the body of literature in this 
area advances, a greater understanding of these radiomic 
characteristics can refine diagnostic accuracy and impact clinical 
practice. Zhang et al. (26) demonstrate the potential of T2-weighted 
imaging (T2WI)-based radiomics for differentiating seminomas from 
non-seminomas, yielding an impressive area under the curve (AUC) 
score of 0.979. In comparison to Zhang’s study, our investigation 
benefits from a larger sample size and demonstrates substantial 
diagnostic performance by leveraging sophisticated machine learning 
algorithms. This improved methodology adds validity to our results 
and bolsters the case for the incorporation of MRI-based machine 
learning models in disease diagnosis. Similarly, He et al. (27) explore 
the application of MRI-based radiomic models for distinguishing 
benign and malignant prostate lesions. The study reports AUCs of 
0.775 (T2WI) and 0.863 (apparent diffusion coefficient, ADC) for 
models based on single sequences. More notably, the integration of 
clinical characteristics enhances lesion discrimination capabilities, 
indicating the potential for combining radiomic data with patient 
profiling to further optimize diagnostic performance. The convergence 
of MRI and machine learning in these studies represents a paradigm 
shift in diagnostic approaches, signifying the growing importance of 
noninvasive and accurate methods in clinical practice. By transcending 
traditional, subjective assessments, machine-learning-assisted MRI 
has the potential to provide robust, reproducible, and data-driven 
insights with the added advantage of efficient, high-
throughput analysis.

Notably, other imaging domains, such as ultrasound, may also 
contribute to distinguishing benign and malignant testicular tumors. 
Ultrasound imaging is a first-line, non-invasive diagnostic tool used 

in the evaluation of testicular tumors. It allows us to observe variations 
in size, shape, and location and to detect any discrete lesions, which 
can help guide clinical management. Typically, benign testicular 
tumors are well-defined, have homogeneous consistency, and may 
exhibit a halo of hypervascularity if there is inflammation or cystic 
changes. Various benign tumors, such as Leydig cell tumors, Sertoli 
cell tumors, and granulosa cell tumors, can be identified based on 
these characteristics. Conversely, malignant testicular tumors often 
present with a heterogeneous echo texture due to areas of necrosis, 
hemorrhage, or calcification. Growth patterns, vascularization, and 
the presence of metastatic tumors in the abdomen or pelvis seen on 
ultrasound can help identify malignant conditions such as seminomas 
and non-seminomatous germ cell tumors. Isidori et  al. (28) 
investigated the accuracy of non-enhanced ultrasound combined with 
enhanced ultrasound in distinguishing benign and malignant lesions 
of ≤1.5 cm in the testes. Their results demonstrated that the 
combination of unenhanced and contrast-enhanced US achieved high 
accuracy in the diagnosis of small testicular malignancies (area under 
the ROC curve performance: 0.927; 95% confidence interval: 0.872, 
0.981). This study suggests that the combination of enhanced and 
non-enhanced ultrasound effectively distinguishes benign and 
malignant testicular lesions of ≤1.5 cm, compensating for the inferior 
differentiating ability of non-enhanced ultrasound. However, it should 
be  noted that ultrasound findings alone may not definitively 
distinguish benign from malignant tumors. Correlation with patient 
history, physical examination, and tumoral markers can further 
substantiate the diagnosis.

The current study emphasizes the paramount need for an accurate 
prognosis of testicular lesions in the pursuit of limiting false-negative 
results, as wrongful identification can pose a significant risk for 
patients. Orchiectomy stands as the conventional method of treatment 
for presumptive malignant testicular masses; however, the potential 
for error underscores the importance of discerning between benign 
and malignant testicular lesions. Misdiagnosis can result in 
unnecessary surgical intervention or postpone necessary treatment, 
thereby influencing patient outcomes and quality of life. Each patient 
presents a unique probability of predicting malignant testicular 
lesions, thereby underscoring individual-based therapeutic planning. 
In our quest to strike a risk-benefit balance, decision curve analysis 
(DCA) holds immense promise as a means to offer quantitative 
reference values that can inform the treatment strategy. This study 

FIGURE 4

The XGBoost classifier for all cases. (A) Receiver operating characteristic (ROC) curve for XGBoost for discrimination of testicular lesions. (B) Calibration 
curve shows that the possibility of malignant testicular tumors is consistent with the true incidence. (C) Decision curve analysis (DCA) plot of the 
testicular lesions.
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incorporated DCA as a key component in our evaluation methodology 
for the listed model’s prediction results. By presenting a graphical 
representation of the model’s applicability at varying threshold 
probabilities, DCA aids in the comprehension of potential benefits 
against potential harms in decision-making processes. Moreover, it 
augments the traditional measures of test performance by integrating 
patient preferences into the analysis. Our model’s performance 
demonstrated significant consistency with the actual rate of testicular 
cancer across all cases, as revealed by the calibration plot. In essence, 
the calibration plot offers a visual demonstration of the model’s 
predictive qualities in comparison to the ideal prediction. A curve that 
aligns closely with the 45-degree line infers perfect calibration, 
whereas deviation from the line implicates over- or underestimation. 
Thus, the proximity of the presented calibration curve to the real 
cancer rate supports the robustness of our model in predicting 
malignant testicular lesions. Moreover, the results of DCA 
computations signal that our model is generally applicable for a broad 
scope of threshold probabilities. It accentuates the rigor of the model 
predictions and manifests its potential adaptability across a spectrum 
of clinical settings.

This study focused on T2WI for the diagnosis of testicular 
diseases, as it is a routine and pivotal sequence in testicular MRI 
protocols. T2WI offers exceptional tissue contrast resolution, which is 
crucial for accurately delineating testicular lesions and differentiating 
between various disease types. This technique highlights differences 
in tissue composition and internal lesion structure, aiding in the 
identification of features like cystic components and solid areas. While 
diffusion-weighted imaging (DWI) and dynamic contrast-enhanced 
(DCE) sequences have diagnostic value, their limited use in clinical 
practice restricted their inclusion in our analysis.

Our study had several limitations. First and foremost, this study’s 
reliance on data from a single center limits the scope of its findings. 
Given the wide spectrum of global health contexts and population 
dynamics, it should be noted that results derived from a single-center 
study may not be universally applicable. As a result, our findings should 
be interpreted with a certain level of caution when extended to other 
settings with differing population and health system characteristics. 
Future research could benefit from a multi-center trial, which would 
allow for a more diverse sampling of patient populations and healthcare 
settings. This would enhance the generalizability of our findings and 
further validate the insights we have gleaned from this investigation. 
Secondly, we must acknowledge the relatively small sample size of our 
study due to the low incidence of testicular cancer. While this small 
sample size enabled us to investigate this essential topic, it could 
nonetheless have affected the statistical power and practicability of our 
study. Considering this, we propose that future research on this topic 
strive for larger sample sizes to ensure a more robust analysis of data, 
gain a nuanced understanding of this cancer variety, and facilitate a 
more reliable estimate of the examination process’s practicability. Lastly, 
we  have recognized that the usage of the mRMR (minimum 
redundancy maximum relevance) algorithm could potentially 
underestimate the importance of features that individually bear limited 
impact on the targeted outcome but collectively can be highly effective. 
While the mRMR algorithm serves as a valuable tool for selecting 
relevant features in a dataset, it may not recognize the cumulative effect 
of feeble features. Future investigations should consider evaluating 
alternative methods alongside, or instead of, the mRMR algorithm. 

Employing different feature selection techniques could potentially give 
a more holistic view of factors affecting clinical outcomes, thereby 
enhancing the robustness and reliability of the results.

In summary, despite these limitations, our study provides essential 
insights into the fight against testicular cancer. Patient prognosis and 
treatment could be improved through further multi-center studies 
with larger sample sizes and different statistical methods. Nevertheless, 
it is vital that future research builds on this foundation and continues 
to explore these avenues to further advance our understanding and 
capabilities in combating this disease.

5 Conclusion

In conclusion, machine learning models based on MRI could 
accurately predict benign and malignant testicular lesions in the 
present study. Compared with a simple machine learning model, the 
ensemble model may achieve better performance, particularly when 
using the boosting algorithm represented by XGBoost. Information 
from a single sequence is limited, prompting the potential combination 
of different types of images or multiple sequences of a particular kind 
for machine learning training and prediction in the future. 
Additionally, integrating different machine learning could enhance 
predictive effectiveness.
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