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Purpose: To compare the accuracy of machine learning (ML) algorithms to

classify the sex of the participant from retinal thickness datasets in different retinal

layers.

Methods: This cross-sectional study involved 26 male and 38 female subjects.

Data were acquired using HRA + OCT Spectralis, and the thickness and volume of

10 retinal layers were quantified. A total of 10 features were extracted from each

retinal layer. The accuracy of various algorithms, including k-nearest-neighbor,

support vector classifier, logistic regression, linear discriminant analysis, random

forest, decision tree, and Gaussian Naïve Bayes, was quantified. A two-way

ANOVA was conducted to assess the ML accuracy, considering both the classifier

type and the retinal layer as factors.

Results: A comparison of the accuracies achieved by various algorithms in

classifying participant sex revealed superior results in datasets related to total

retinal thickness and the retinal nerve fiber layer. In these instances, no significant

differences in algorithm performance were observed (p > 0.05). Conversely, in

other layers, a decrease in classification accuracy was noted as the layer moved

outward in the retina. Here, the random forest (RF) algorithm demonstrated

superior performance compared to the others (p < 0.05).

Conclusion: The current research highlights the distinctive potential of various

retinal layers in sex classification. Different layers and ML algorithms yield distinct

accuracies. The RF algorithm’s consistent superiority suggests its effectiveness in

identifying sex-related features from a range of retinal layers.
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Introduction

Over the past 30 years, optical coherence tomography (OCT)
has been used as a non-invasive method for image acquisition to
evaluate the anterior and posterior segments of the eye in both
diseased and healthy conditions of the human retinal structure
(1–3). The development of eye diseases can occur throughout life
due to the natural aging process, exposure to unhealthy lifestyle
habits, systemic disorders, or genetic inheritance. In addition to
these factors, sex-related factors, such as the concentrations of
sex hormones that vary throughout an individual’s life, can also
influence the development of eye diseases (4–6).

The existence of sexual dimorphism of the retina in humans
has been investigated using OCT. The first findings of retinal
sexual dimorphism pointed to a larger total retinal thickness
in male subjects than in female subjects (7–12). However, the
debate regarding retinal layers remains open, as some studies have
observed that some retinal layers are thicker in male subjects than
in female subjects, while other investigations have found no or few
sex-related differences (13–19).

Overall, investigating sex-related features in the human retina
is an important area of research that could lead to new insights
into the causes of retinal diseases, the development of sex-specific
treatments, and the design of more effective medical devices for
the eye and the possible impact of postmenopausal hormone
replacement anti-estrogenic therapy therapy (20).

Due to the large amount of data extracted from the retina
during an OCT scan, the use of machine learning methods could be
an alternative candidate for analyzing OCT data. Machine learning
methods have been used due to their ability to capture complex
relationships, work with high-dimensional data, generalize to new
data, be flexible and adaptable, and perform automated learning
of relevant features, reducing the need for human intervention
(21–23). Compared to norms based on populational averages,
which may not account for the significant individual variability
that exists within each sex group, machine learning models
can capture and leverage this variability, allowing for more
precise and individualized assessments of retinal thickness. This
individualized precision can be particularly valuable in clinical
decision-making as it takes into account the uniqueness of each
patient’s condition. Additionally, retinal thickness datasets can
exhibit complex patterns and subtle variations that may not be fully
captured by simple norm-based criteria.

In the present study, we aimed to evaluate the performance
of several machine learning algorithms to predict the sex of the
participants based on information from retinal structure features.
Our primary goal was to identify which retinal layers are best to
correctly classify the sex of the participant and which machine
learning algorithms are better for predicting the participant’s sex
in the different retinal layers.

Materials and methods

Ethical considerations

The present study was approved by the Ethical Committee
for Research in Humans of the Universidade Federal do Pará
(report number 3.285.557). All participants were informed

about the experimental procedures and gave written consent to
participate in the study.

Participants

The sample consisted of 26 male participants (mean
age ± standard deviation: 26.19 ± 4.96 years) and 38 participants
(mean age ± standard deviation: 26.05 ± 4.68 years). All
participants had normal visual acuity or were corrected to 20/20
visual acuity using a refractive lens. Only two participants (one
male and one female) used optical corrections of −0.5 and −0.7
diopters and we considered that any imprecision of their OCT
measurements had little or no influence on the results. Participants
with neurological, systemic, eye, or retinal diseases that affected the
structure or function of the visual system were excluded.

OCT imaging

Retinal OCT imaging was performed using the Spectralis
HRA + OCT system (Heidelberg Engineering GmbH, Heidelberg,
Germany). Each session consisted of a 25-line horizontal raster
scan in a 20◦×20◦ area centered on the fovea, followed by 24
automated real-time repetitions. The Heidelberg Eye Explorer
software (Heidelberg Engineering GmbH, Heidelberg, Germany)
was used to segment retinal layers [total retina (TR), retinal nerve
fiber layer (RNFL), ganglion cell layer (GCL), inner plexiform layer
(IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer
nuclear layer (ONL), and retinal pigmented epithelium (RPE)] and
three combinations of retinal layers [overall retinal, outer retinal
layers (ORL), which range from the external limiting membrane to
Bruch’s membrane, and inner retinal layers (IRL), which range from
the inner limiting membrane to the external limiting membrane].
The thickness and volume of each layer were quantified. Visual
inspection of the segmentation was performed to avoid possible
errors. The outcome of the image segmentation of retinal layers
was the mean thickness of nine macular subfields (central, nasal
inner, temporal inner, superior inner, inferior inner, nasal outer,
temporal outer, superior outer, and inferior outer), following the
Early Treatment Diabetic Retinopathy Study (ETDRS) grid. The
volume of each layer was also extracted.

For each participant, the examination was performed by the
same operator following the manufacturer’s guidelines. Two images
were obtained in sequence for each eye on the same day. The first
image was used as a reference to scan the same parts of the retina
during the second image (device’s follow-up mode). The thickness
of both images was averaged for subsequent analysis. Data were
acquired from 128 eyes with the Spectralis HRA + OCT system,
and 64 eyes were randomly selected for analysis.

Machine learning algorithms

Prior to the application of ML algorithms, a bootstrap
resampling method was employed, utilizing 200 replications for
each feature derived from OCT readings. A total of 10 features were
used for each retinal layer, comprising nine subfield thicknesses and
the volume of the retinal layer. Python scripts were utilized for data
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analysis and normalization, feature selection, and the execution
of ML algorithms through the training and testing phases. The
performance of the ML was subsequently evaluated.

We utilized the StandardScaler function from the sklearn.
Preprocessing package to standardize the features into standard
deviation units, as shown in Equation 1.

Standardized_feature

= (feature–mean)/standard_deviation (Equation 1)

The standardized features were used to train and test seven
supervised ML algorithms:

The sklearn.neighbors.KNeighborsClassifier function was
employed to implement the k-nearest neighbors (kNN) algorithm,
utilizing the Minkowski distance and a k-value within the range of
5–10. The optimal k-value, which yielded the highest accuracy, was
determined using the GridSearchCV function.

The support vector classifier (SVC) utilizes sklearn.svm.SVC
function with the radial basis function kernel. The gamma and C
parameters are set to 1 and 10, respectively.

The sklearn.linear_model.LogisticRegression function is utilized
for logistic regression (LR), with the parameters “penalty” and
“solver” set to “l1” and “liblinear,” respectively.

The sklearn.discriminant_analysis.LinearDiscriminantAnalysis
function is utilized for linear discriminant analysis. The
parameters “solver” and “store_covariance” are set to “svd”
and “true,” respectively.

The sklearn.ensemble.RandomForestClassifier function is
utilized in the application of random forest (RF), with the
parameters set as follows: “criterion” is set to “gini impurity,”
“n_estimators” is set to 50, and “max_depth” is set to 6.

The decision tree (DT) employs the sklearn.tree.
DecisionTreeClassifier function, maintaining identical parameter
values for “criterion,” “n_estimators,” and “max_depth,” as utilized
in the RF algorithm.

Gaussian Naïve Bayes (GNB) using the sklearn.naive_
bayes.GaussianNB function.

The accuracy of ML algorithms in correctly classifying the data
was evaluated (Equation 2).

Accuracy

= (true positives + true negatives)/total (Equation 2)

True positives represent the data points correctly classified as
male, while true negatives denote those accurately identified as
female. The total refers to the overall number of data points.

The ShuffleSplit function from the Scikit-learn library (version
0.21.3) was utilized to divide the data, allocating 70% for model
training and 30% for model testing.

Statistics

We used a t-test to compare the thickness of the different
datasets obtained from both eyes of male and female subjects
and to later carry out an intergroup comparison of retinal layer
thickness. We conducted a one-way ANOVA to evaluate the
influence of macular field in the retinal thickness as well as two-
way ANOVA to evaluate the influence of the classifier type and
retinal dataset factors on the accuracies (model training and model
testing) of the classifier. For multiple comparisons, we employed
the Tukey HSD post-hoc test. We compared the accuracies of
the model training and model testing using a t-test for repeated
measures. A confidence level of 5% was applied for the statistical
comparisons.

Results

Inter-eye comparison of the retinal
thickness for male and female subjects

To ensure that the selection of the eye did not introduce
any bias, we conducted a comparison of the thickness of various
retinal layers between the right and left eyes of participants of
both sexes. Our analysis revealed that no significant differences
were observed in any of the retinal layers between the eyes.
Based on these findings, we opted to randomly select one eye
from each participant for data extraction concerning retinal
thickness. Table 1 displays the comparison of retinal thickness
in the various datasets obtained from both eyes within the
sample.

We randomly select one eye to extract retinal thickness and
compared this feature between male and female groups, as depicted
in Table 2. Our findings indicated significant differences in the total

TABLE 1 Comparison of the retinal thickness obtained from both eyes of male and female groups.

Thickness (µm) Male group p-value Female group p-value
Right eye Left eye Right eye Left eye

TR 323.6± 10.8 322.3± 10.8 0.65 311.1± 12.7 309.8± 13.4 0.72

RNFL 28± 2 27.3± 2.2 0.22 25.9± 2.3 25.3± 2 0.33

GCL 43.4± 2.4 43.3± 2.4 0.87 40.4± 3.6 40.3± 3.7 0.89

IPL 36.1± 1.6 36.1± 1.7 0.86 34± 2.7 34.2± 2.8 0.88

INL 35.6± 2.1 35.7± 2.1 0.91 33.5± 2.6 33.3± 2.3 0.79

OPL 28.4± 2.7 29.3± 2.8 0.23 28.8± 4.1 29.06± 4.1 0.81

ONL 69.2± 8.1 68.5± 8.3 0.76 66.6± 6.4 66.4± 7.1 0.90

RPE 15± 1.1 15± 1 0.93 14.9± 1.2 14.64± 1.4 0.45

TR, total retina; RNFL, retinal nerve fiber layer; GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer; RPE,
retinal pigmented epithelium.
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TABLE 2 Comparison of retinal layer thickness between male
and female groups.

Retinal thickness (µm)

Retinal layers Male group Female group p-value

TR 322.9± 11.3 310.6± 12.9 0.0005

RNFL 27.8± 2.1 25.3± 1.8 <0.0001

GCL 43.2± 2.2 40.4± 3.5 0.0012

IPL 36± 1.6 34.1± 2.8 0.0039

INL 35.6± 2.2 33.4± 2.5 0.0016

OPL 29.1± 2.6 29.3± 4.2 0.78

ONL 68.7± 8.3 66.4± 6.8 0.28

RPE 15.1± 1 14.7± 1.2 0.22

TR, total retina; RNFL, retinal nerve fiber layer; GCL, ganglion cell layer; IPL, inner plexiform
layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer; RPE,
retinal pigmented epithelium.

retina and layers comprising information from the inner retina
(RNFL, GCL, IPL, INL), with the male group exhibiting greater
thickness compared to the female group (p < 0.01). Conversely, no
significant differences were discerned in the layers within the outer
retina (OPL, ONL, RPE; p > 0.01).

In the intergroup comparison, considering the thickness of
different macular fields (Table 3), we observed that in datasets
representing the total retina and data from the inner retina,
the male group had thicker tissues across all fields than the
female group (p < 0.01). However, in the datasets from the
outer retina, we observed a predominance of non-significant
differences.

Machine learning accuracies during
model training

Table 4 presents the mean accuracies (± standard deviation)
derived from model training across various classifiers and retinal
datasets. The results of a two-way ANOVA revealed significant
effects attributed to both the algorithm factor, the retinal
dataset factor, and the interaction between these two factors, as
summarized in Table 5. Notably, post hoc multiple comparisons
demonstrated that the accuracies achieved by all algorithms were
markedly superior when utilizing the total retina dataset and
datasets originating from the inner retina (RNFL, GCL, IPL,
INL), as compared to datasets from the outer retina (OPL, ONL,
and RPE).

In evaluating the accuracies of different algorithms across the
diverse retinal datasets, multiple comparisons indicated a notable
absence of significant differences in algorithm performance within
the total retina dataset and the inner retina datasets (p > 0.05).
Conversely, in the OPL dataset, it was evident that random forest
(RF), support vector classifier (SVC), and decision tree (DT)
exhibited significantly higher accuracies when contrasted with
other algorithms. Similarly, in the ONL dataset, random forest
and decision tree outperformed their counterparts. Notably, in
the RPE dataset, random forest demonstrated the highest accuracy
among all algorithms.

Machine learning accuracies during
model testing

Table 6 displays the mean accuracies (± standard deviation)
derived from model testing across various classifiers and retinal
datasets. Once again, the results of a two-way ANOVA revealed
significant effects associated with the algorithm factor, the retinal
dataset factor, and their interaction (as summarized in Table 7).
Post hoc multiple comparisons further substantiated that, much
like the training model, all algorithms achieved significantly higher
accuracy levels when employing the total retina dataset and datasets
from the inner retina, in comparison to the datasets from the
outer retina. Consistent with the training model, the results of
multiple comparisons within the total retina dataset and datasets
from the inner retina indicated an absence of significant differences
in algorithm accuracies (p > 0.05). In contrast, concerning the
outer retina, random forest (RF) exhibited notably higher accuracy
compared to other algorithms (p < 0.05).

Comparison of the accuracies estimated
for the models in the training and testing
stages

The comparison of the accuracies calculated for the models in
the training and testing showed that 10.8% of the comparisons had
significant differences, and all of them showed higher accuracy of
the model in the training (Figure 1).

After finding that the random forest classifier outperformed
other methods in classifying the datasets, we examined feature
importance scores, which indicate the extent to which each feature
influences the model’s predictions. Random forest employs the Gini
impurity, which reveals how frequently a feature is used to split the
data in its decision trees. Figure 2 displays the feature importance
scores for macular thickness in different fields. We conducted one-
way ANOVA to assess the impact of the macular field on the feature
importance score for each dataset. We found that in all datasets,
there were significant differences (p < 0.01), with one or more
fields having a greater importance than others in the classification
decision.

Discussion

This study’s findings reveal significant patterns in the
classification accuracy of sex-specific data, utilizing various retinal
layers and ML algorithms. The most reliable accuracies for
accurately distinguishing between male and female participants
were observed when analyzing data from the total retinal structure
and the retinal nerve fiber layer. These results suggest that these
retinal layers possess unique sex-related characteristics that were
effectively identified by the employed ML techniques. Interestingly,
the highest classification accuracies were consistently achieved
using these retinal layers, yet no statistically significant differences
were detected among the accuracies derived from the various ML
algorithms used in this study. This suggests that the algorithms
consistently performed when tasked with sex classification based
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TABLE 3 Comparison of retinal dataset thickness in the different macular fields from measurements obtained from both groups.

Retinal thickness (µm)
TR Male Female p-value RNFL Male Female p-value

C 274.9± 15.9 258.6± 18.9 <0.01* C 12± 1.5 10.3± 2.1 <0.01*

NI 353.1± 12.8 338.4± 16.9 <0.01* NI 21.1± 2.1 18.8± 1.4 <0.01*

NO 328.8± 13.3 318± 14.0 0.04* NO 48.6± 5.6 44.8± 4.5 <0.01*

TI 336.5± 10.3 320.6± 14.7 <0.01* TI 16.9± 1.4 16± 0.9 <0.01*

TO 297.6± 13.9 283.3± 11.4 <0.01* TO 18.8± 1.2 17.7± 1 <0.01*

SI 353± 12.8 340± 16.2 <0.01* SI 24.5± 2.9 21.9± 2.4 <0.01*

SO 313.8± 13.3 305.7± 13.2 0.02* SO 39.5± 5 36.6± 4.1 0.02*

II 351.1± 11.7 336.4± 16.8 <0.01* II 26.1± 2.6 23.8± 2.2 <0.01*

IO 300.8± 10.8 291.9± 12.5 0.02* IO 41.8± 4.8 39± 4.3 0.02*

GCL Male Female p-value IPL Male Female p-value

C 15.4± 2.8 12.9± 4.1 <0.01* C 21.2± 2.6 19.18± 3.1 <0.01*

NI 54.7± 3.9 50.7± 5.9 <0.01* NI 45.2± 3 41.6± 4.7 <0.01*

NO 41.7± 3.5 40.7± 3.3 0.45 NO 31.9± 2.5 31.5± 3 0.51

TI 51.1± 3.4 46.3± 5.7 <0.01* TI 43.7± 2.3 41.9± 4.3 0.02*

TO 41.2± 3.8 36.9± 3.5 <0.01* TO 34.4± 2.6 32.3± 2.3 <0.01*

SI 55.4± 3.2 52.3± 5.7 0.01* SI 44± 2.2 41.4± 3.4 <0.01*

SO 38.1± 2.8 37.3± 3.2 0.168 SO 31.1± 2.3 30.3± 2.5 0.15

II 55.5± 2.6 53.3± 5.3 0.02* II 43.6± 1.9 41.2± 4.1 0.04*

IO 36.2± 3.2 35.3± 3.5 0.34 IO 29.5± 2 28.6± 2.5 0.21

INL Male Female p-value OPL Male Female p-value

C 17.8± 4.1 13.9± 4.4 <0.01* C 21.9± 4 22.1± 5.8 0.92

NI 41.59± 4 38.3± 4 <0.01* NI 33± 6.5 32.1± 6.5 0.66

NO 37± 1.7 36.8± 2.8 0.4 NO 29.8± 3.1 29± 4.4 0.42

TI 37.7± 3.3 34.9± 3.4 0.01* TI 29.3± 2.4 31.5± 7.1 0.20

TO 36.7± 2.2 34.8± 2.5 <0.01* TO 27.3± 2 27.24± 3.8 0.95

SI 40.7± 3.2 39.3± 3.7 0.07 SI 32.4± 5.2 36.4± 9.5 0.11

SO 33.8± 2 32.9± 2.4 0.39 SO 27± 1.7 28.3± 4.8 0.23

II 42.2± 3.5 39.2± 4.3 <0.01* II 32± 5.1 31.3± 5.4 0.46

IO 33.4± 2.3 31.8± 2.4 0.09 IO 26.8± 2.3 26.3± 2.8 0.23

ONL Male Female p-value RPE Male Female p-value

C 93.6± 9 91± 11.63 0.43 C 18.3± 1.5 17.3± 1.7 0.21

NI 72.3± 13 71.1± 11.7 0.99 NI 16.2± 1.2 16± 1.6 0.92

NO 57.4± 8.8 58.7± 6.7 0.88 NO 14± 1.3 13.8± 1.4 0.77

TI 75.3± 7.8 71.1± 8 0.04* TI 15.1± 1.3 14.4± 1.3 0.07

TO 60.8± 7.2 57.4± 6 0.09 TO 13.3± 1.2 13.2± 1.2 0.27

SI 71.3± 10.7 67.1± 11 0.07 SI 16± 1.5 15.7± 1.6 0.50

SO 64.1± 8.2 60.5± 6.8 0.15 SO 14.1± 1.2 13.6± 1.5 0.24

II 68.5± 10.3 68± 8.6 0.88 II 15.4± 1 15± 1.2 0.24

IO 54± 6.3 53± 5.5 0.68 IO 13.6± 1.2 13.1± 1.1 0.21

TR, total retina; RNFL, retinal nerve fiber layer; GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer; RPE, retinal
pigmented epithelium. C, central retina; NI, nasal inner; NO, nasal outer; TI, temporal inner; TO, temporal outer; SI, superior inner; SO, superior outer; II, inferior inner; IO, inferior outer.
*p < 0.05.

on retinal data, regardless of their inherent methodologies.
Moreover, a fascinating trend was observed where classification
accuracies showed a decreasing trend as the analysis moved
toward the outer retinal layers. Additionally, some algorithms
demonstrated statistically significant deviations from others in
terms of classification accuracy. Notably, the RF algorithms
displayed higher accuracies compared to the others in this context.

While the sex of a patient is typically known during a
consultation, it is not always evident whether the retinal thickness
of that patient aligns with the sex-based patterns expected.
Comparing a patient’s retinal thickness to sex-based populational
norms can be a valuable tool in evaluating the patient. However,
alternative approaches, such as machine learning, can complement
conventional statistical methods. For instance, our study revealed
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TABLE 4 Comparison of mean accuracies (± standard deviation) obtained from the machine learning algorithms to classify the sex-related differences
in the retinal layers (and total retina) for model training.

Machine learning algorithm accuracies (%)

Layers SVC GNB RF KNN LR LD DT

RPE 72.5± 9.6 71.8± 5.1 83± 4.5 64.3± 5.5 68.5± 6.2 69.3± 7.6 71.3± 9.9

ONL 69.3± 6.5 67.8± 7.1 90.5± 5.5 68.5± 9.4 67.5± 8.7 65.3± 6.3 82.8± 5.2

OPL 79.8± 7.5 70.5± 4.1 89.5± 5.8 71.8± 5 65.5± 7.5 66.8± 7.8 79.8± 6.8

INL 84.5± 4.5 89± 3.4 92.3± 3.8 81.5± 6.5 85± 6.2 85.8± 6.7 81.5± 6

IPL 85.8± 3.3 88± 3.3 92± 5 83.8± 5.4 84.5± 6.1 82.3± 5.3 82.3± 7.2

GCL 89.5± 3.7 90± 4.3 94.5± 2 89.8± 4.3 85.5± 4.7 87.5± 4.3 88± 3.9

RNFL 92.3± 2.8 91.5± 3.8 94.5± 2.8 91± 4.6 90.5± 3.9 91± 3.2 90.8± 4.7

TR 92.5± 2.3 96± 2.4 96.5± 3.9 91± 4.6 93.5± 5.3 93.3± 3.9 89± 4.3

TR, total retina; RNFL, retinal nerve fiber layer; GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer; RPE,
retinal pigmented epithelium; SVC, support vector classification; GNB, Gaussian Naïve Bayes; RF, random forest; kNN, k-nearest neighbors; LR, logistic regression; LD, linear discriminant;
DT, decision tree.

TABLE 5 Two-way ANOVA results for model training.

SS DF MS F p-value

Algorithms 7,937 6 1,322.9 42.87 < 0.001

Retinal datasets 37,140 7 5,305.7 171.93 < 0.001

Algorithms*retinal datasets 6,703 42 159.6 5.17 < 0.001

Residuals 15,554 504 30.9

SS, sum of squares; DF, degrees of freedom; MS, mean squares.

TABLE 6 Comparison of mean accuracies (± standard deviation) obtained from the machine learning algorithms to classify the sex-related differences
in the retinal layers (and total retina) for model testing.

Machine learning algorithms (%)

Layers SVC GNB RF KNN LR LD DT

RPE 68.8± 9.5 70.8± 5.8 76.8± 3.7 59.8± 5.2 66± 5.6 66.5± 7.3 69.5± 6

ONL 70.5± 8.8 63.5± 6.7 89.3± 5.4 68± 6.5 64.3± 5.9 66.8± 10 75.5± 6

OPL 76.3± 4.3 74.5± 7.9 88.5± 3.8 72± 5.2 64.5± 9 62.8± 7.2 83± 6.2

INL 82.8± 6.3 85.8± 5.5 88.8± 4 80.5± 6.3 77.5± 6.6 80.8± 5.3 85.3± 7

IPL 85.3± 6.6 83.3± 5.5 93.8± 2.4 80.5± 5.1 82.3± 5.8 84.3± 4.3 85.8± 7.1

GCL 89.3± 4.4 82± 4.1 92.3± 4.2 84± 7.4 86.3± 5.3 88.8± 5 89.8± 4.4

RNFL 91.5± 3.8 91± 3.9 94.5± 4.7 92.3± 4.6 90.3± 5.1 91.3± 4.6 90± 5.3

TR 91.8± 2.7 93.3± 3.7 94± 4.1 89.5± 5.1 91.3± 3.6 91.5± 5.7 91.3± 4.3

TR, total retina; RNFL, retinal nerve fiber layer; GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer; RPE,
retinal pigmented epithelium; SVC, support vector classification; GNB, Gaussian Naïve Bayes; RF, random forest; kNN, k-nearest neighbors; LR, logistic regression; LD, linear discriminant;
DT, decision tree.

that, even in retinal layers where there were no significant
differences in thickness between the male and female groups,
such as the datasets from the outer retina, we achieved a sex
classification accuracy exceeding 75%. What would it signify if a
male patient were classified as female based on retinal thickness
patterns, or vice versa? It is crucial to emphasize that this
classification does not pertain to the patient’s actual sex but
rather reflects the retinal thickness patterns expected for each
sex. The clinical implications of a disparity between a patient’s
actual sex and a different sex classification based on retinal
structure remain unclear, but further investigations may shed light
on this question.

An investigation has previously been conducted using a deep
learning method to predict sex through macular OCT images (24).
It showed that the differences between male and female subjects
might not be uniform throughout the macula. The best accuracy
in separating data from male and female subjects occurred in the
central fovea (around 75%) and lower accuracy was found in the
external limit of the fovea (around 70%). They also fed models
considering different macular sectors and found non-uniformity in
the accuracies (ranging between 52 and 62%). The data they used
are comparable to the total retina dataset of the present study. We
interpreted that our accuracies were higher because we had fed
our models with thickness information of all the macular sectors,
and they used information from each sector for their classification.
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TABLE 7 Two-way ANOVA results for model testing.

SS DF MS F p-value

Algorithms 8,299 6 1,383.1 41.91 <0.001

Retinal datasets 41,178 7 5,882.6 178.25 <0.001

Algorithms*retinal
datasets

6,276 42 149.4 4.53 <0.001

Residuals 16,633 504 33

SS, sum of squares; DF, degrees of freedom; MS, mean squares.

Taking into account the significance of macular field thickness,
our results align with the findings achieved using deep learning
approaches for the total retinal dataset, wherein the temporal fields
were identified as the most crucial for classifying sex. The current
study also revealed that in other retinal layers, the field of greatest
importance varied.

The difference between the accuracies of the training and
testing models is a crucial aspect in the evaluation of machine
learning models. This difference can provide insights into how
well the model is generalizing to unseen data, which is essential
for determining the model’s robustness. In the current study, the
vast majority of comparisons showed no significant discrepancy
between the training and testing accuracies, which is a positive
indication. It suggests that the model, which fits the training data
well, also exhibits good generalization to new data. This alignment
between training and testing accuracies indicates that the model is
not overfitting the training data and has the potential for reliable
performance on new, unseen data.

The superior performance of random forest in achieving
higher accuracies compared to alternative machine learning
algorithms in our study can be attributed to several key
advantages of this ensemble learning technique. random forest

harnesses the power of multiple decision trees, where each tree
is trained on a different subset of the data and with feature
randomness (25). This inherent diversity and randomness help
mitigate overfitting, a common challenge in machine learning,
by reducing the model’s sensitivity to noise and outliers (26).
Moreover, random forest’s ability to handle both classification
and regression tasks, its capacity to capture complex non-linear
relationships in the data, and its robustness to multicollinearity
make it particularly well-suited for a wide range of datasets
(27). Additionally, the ensemble nature of random forest allows
it to aggregate the predictions from multiple trees, reducing
the risk of bias that can be associated with individual models.
Consequently, the comprehensive nature of random forest,
combining predictive power and robustness, positions it as
an attractive choice for achieving high accuracy in diverse
machine learning tasks.

Prior research has suggested that male participants typically
display a greater retinal thickness compared to female participants
(7–12). The impact of sex on retinal layers is still a topic of
ongoing debate. Some studies (13–17) have reported thicker retinal
layers in male subjects (GCL, IPL, INL, OPL, and ONL), while
others have observed minimal or no sex-related differences (18,
19). Some studies have shown that female subjects had a thicker
peripapillary RNFL than male subjects (28, 29). The present study
uncovers a greater thickness in the inner retinal layers of male
subjects compared to female subjects. Sexual hormones interacting
with receptors such as estrogen and androgen receptors can affect
ocular tissue. However, despite their influence on various ocular
structures, the effect of these hormones on retinal layer thickness
remains largely uninvestigated (30–35).

Neglecting to account for sex differences in comparisons
of retinal thickness between healthy individuals and patients
could result in erroneous diagnoses, particularly for inner retinal

FIGURE 1

Comparison of the algorithm accuracies calculated in the model training and model testing in the different retinal datasets. ∗p < 0.05.
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FIGURE 2

Comparison of the feature importance score obtained from random forest algorithm to classify the sex of the participant based on retinal thickness
from different datasets. The color code is indicated at the bottom of the figure. ∗p < 0.05.

diseases that display substantial sex-related disparities. Conditions
like glaucoma, macular holes, diabetic retinopathy, and age-
related macular degeneration demonstrate varying prevalence rates
between male and female subjects. This is likely attributable to
changes in sex hormone concentrations after the age of 50 (36, 37).

The current investigation focuses on recruiting predominantly
young adult participants, and as a result, the applicability of
our findings may be limited to this specific age group. This
demographic constraint represents a notable limitation of our
study. To enhance the generalizability and robustness of our
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conclusions, it is imperative for future research endeavors to
encompass a broader spectrum of cases, incorporating individuals
from various age ranges. In the present study, our primary aim
was to demonstrate that various models can learn pertinent sex-
related patterns within diverse retinal datasets. While the current
sample size has proven adequate for this initial validation, it
remains a limitation of the study and should be expanded in future
research endeavors.

In conclusion, this research highlights the discriminative
capacity of different retinal layers in sex classification, achieving
varying levels of accuracy across distinct layers and ML algorithms.
The consistently superior performance of the RF algorithm
indicates its effectiveness in identifying sex-related characteristics
in various retinal layers. Furthermore, the identified patterns of
accuracy fluctuations across retinal layers offer invaluable insights
for subsequent research and algorithmic advancement in the field
of retinal data analysis.
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