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Medical images are information carriers that visually reflect and record the

anatomical structure of the human body, and play an important role in clinical

diagnosis, teaching and research, etc. Modern medicine has become increasingly

inseparable from the intelligent processing of medical images. In recent years,

there have been more and more attempts to apply deep learning theory to

medical image segmentation tasks, and it is imperative to explore a simple and

e�cient deep learning algorithm for medical image segmentation. In this paper,

we investigate the segmentation of lung nodule images. We address the above-

mentioned problems of medical image segmentation algorithms and conduct

research on medical image fusion algorithms based on a hybrid channel-space

attention mechanism and medical image segmentation algorithms with a hybrid

architecture of Convolutional Neural Networks (CNN) and Visual Transformer.

To the problem that medical image segmentation algorithms are di�cult to

capture long-range feature dependencies, this paper proposes a medical image

segmentation model SW-UNet based on a hybrid CNN and Vision Transformer

(ViT) framework. Self-attention mechanism and sliding window design of Visual

Transformer are used to capture global feature associations and break the

perceptual field limitation of convolutional operations due to inductive bias. At

the same time, a widened self-attentive vector is used to streamline the number

of modules and compress the model size so as to fit the characteristics of a

small amount of medical data, which makes the model easy to be overfitted.

Experiments on the LUNA16 lung nodule image dataset validate the algorithm

and show that the proposed network can achieve e�cient medical image

segmentation on a lightweight scale. In addition, to validate themigratability of the

model, we performed additional validation on other tumor datasets with desirable

results. Our research addresses the crucial need for improved medical image

segmentation algorithms. By introducing the SW-UNet model, which combines

CNN and ViT, we successfully capture long-range feature dependencies and

break the perceptual field limitations of traditional convolutional operations. This

approach not only enhances the e�ciency of medical image segmentation but

also maintains model scalability and adaptability to small medical datasets. The

positive outcomes on various tumor datasets emphasize the potential migratability

and broad applicability of our proposed model in the field of medical image

analysis.
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1. Introduction

The segmentation of medical images plays a crucial role in

the analysis of medical imaging, involving the separation and

labeling of distinct regions within such images (1). This technology

holds significant importance in various medical applications, such

as tumor diagnosis (2). Medical image segmentation techniques

assist physicians in precisely identifying tumor regions, measuring

tumor dimensions and shape, and offering valuable insights for

devising treatment strategies (3, 4). In recent times, the fusion of

computer-aided detection (CAD) and deep learning has emerged

as a prominent area of research in medical image segmentation

(5). This is due to the following advantages: medical image

segmentation tasks can extract specific regions for quantitative

analysis and calculation, providing more objective and accurate

results for diagnosis and treatment, which in turn improves patient

treatment results; medical image segmentation algorithms can

provide accurate references for doctors’ diagnosis and treatment

decisions, reducing their workload and shortening the time for

diagnosis and treatment; medical image segmentation topics are

computer medical image segmentation is a hot topic in the

field of computer vision technology, and the study of medical

image segmentation algorithms can promote the development

and application of artificial intelligence technology in the field of

medicine and provide reference and reference for the application

in other fields. Machine learning uses algorithmicmodels that allow

computers to learn the context of visual data on their own (6).

The current mainstream medical image segmentation

models are mainly segmentation models, and most of the

existing models adopt the structure of CNN as the main

framework, thanks to two inductive biases: local correlation

and weight sharing, which are assumptions that can help

the network to learn and generalize effectively in the case of

insufficient training data or high noise (7). Although CNN-

based approaches perform well in tasks in computer vision,

the bias assumption of convolutional operations also limits the

performance of the model in learning remote dependencies

to local perceptual fields (8), thus losing the possibility of

capturing long-range feature associations and not being flexible

enough to adapt to image inputs of different sizes, shapes,

and textures, leading to information loss and model instability

(9–12).

Vaswani et al. (13) proposed a new convolution-independent

model, Transformer, in which the traditional CNN and RNN are

discarded and the entire network structure is composed entirely

of Attention mechanisms. More precisely, Transformer consists

of and only consists of Self-Attention and Feed Forward Neural

Network. A trainable neural network based on Transformer can

be built by stacking Transformers, and the authors’ experiments

were conducted by building Encoder-Decoder with 6 layers each

of encoder and decoder, totaling 12 layers, and achieved a new

high BLEU worth in machine translation. The use of attentional

mechanisms and multiscale analysis methods are widely used

in the field of medical analysis as well as in other fields (14–

16). Dosovitskiy et al. (17) proposed ViT that divides the input

image into multiple patches, and then projects each patch into

a fixed-length vector to be fed into the Transformer, with the

subsequent encoder operations identical to those in the original

Transformer. Liu et al. (18) proposed a Swin Transformer with

a hierarchical design that includes sliding window operations, in

response to the problem that Transformer’s computation based

on global self-attention leads to a large amount of computation.

The sliding window operation includes a non-overlapping local

window, and an overlapping cross-window. Limiting the attention

computation to a single window introduces the localization of

the CNN convolution operation on the one hand, and saves

computation on the other (19).

Inspired by the attention mechanism in natural language

processing (13, 17, 18), existing studies use the Transformer, a non-

local neural network, to overcome this limitation, which can model

remote dependencies in sequence-to-sequence tasks, capturing

relationships between arbitrary positions in a sequence (20). The

Transformer structure is proposed based only on the self-attention

mechanism, completely eliminating the convolutional structure,

and is powerful in modeling global context is powerful, and

several studies have shown that Transformer-based frameworks

also achieve state-of-the-art performance on a variety of computer

vision tasks (21). However, the self-attentiveness in Transformer

requires large computation and memory consumption when

dealing with long sequences, and the sparse nature ofmedical image

data makes the model prone to overfitting during the training

session, which hinders the application of Transformer in medical

image segmentation tasks, which has been tried and tested in the

field of natural image processing (22, 23). To reduce the number

of computational parameters, we refer to the approach in Swin

Transformer, which uses two layers of attention structures with a

hierarchical design, including a non-overlapping local window, and

an overlapping cross-window (18).

Our main contributions are:

• We propose a medical image segmentation network SW-UNet

based on a hybrid CNN-ViT architecture;

• We design a Transformer module with a sliding window

design to overcome the lack of interaction between different

regions of conventional convolutional operations and reduce

the number of stacked modules by widening the self-

attentive vector dimension to the effect of reducing the model

parameters is achieved;

• Validating the effect of our model on lung nodule dataset

LUNA16 and other tumor datasets, themodel yields consistent

improvements over many baselines.

2. Method

In this paper, we design a CNN-ViT based medical image

hybrid segmentation network SW-UNet, taking into account the

strengths of both. First, the CNN is able to rapidly compress

the number of input feature image pixels in the downsampling

phase as a way to reduce the computational cost of the whole

model, which allows the model to be trained and inferred faster.

Second, ViT achieves long-range sequence modeling through a

self-attentive mechanism, which can tap the degree of association

between arbitrary pixel points. This global perception capability can

help the model better understand the overall structure of the image,

rather than just segmenting local regions. For some images with
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strong global structure features, ViT can outperform the traditional

CNN model. the design of SW-UNet combines the advantages of

CNN and ViT, making full use of the features of both models,

thus enabling the model to better adapt to different medical image

datasets. The structure of the model is shown in Figure 1.

2.1. Encoders and decoders

The architecture of the SW-UNet model is based on the

encoder-decoder structure of U-Net. Initially, the input image F ∈
RC×H×W undergoes a 3 × 3 convolution operation, followed by

three consecutive downsampling steps using convolution with a

stride of 2. This downsampling process aims to reduce the size of

the feature map before inputting it into the final ViT. Our input is

a single-channel 1 × 128 × 128 CT image map of the lungs, and

both the encoder and decoder have a three-layer structure, with

each layer consisting of two consecutive convolutions; the pooling

layer in the encoder reduces the image height and width by half,

and the transposed convolution in the decoder doubles the image

size.

By employing this encoding step prior to inputting into ViT, the

SW-UNet model efficiently extracts local image features, allowing

for effective utilization of computational resources in the early

stages of the model. The resulting feature map is then fed into the

SlidingWindowTransformer Block (SWTB) for further operations.

On the decoder side, a similar structure to the encoder is

employed. Each layer is upsampled using two successive 3 ×
3 deconvolutions, and the encoder features are fused with the

decoder features at each layer through skip connections. This

fusion enables the SW-UNet model to capture finer spatial details

in the segmentation process.

2.2. Sliding window transformer block

Since the computational complexity of the ViT structure is

proportional to the square of the input sequence length, it is

impractical to directly tile the input image into a sequence as

the input to the model. Therefore, the feature map needs to be

segmented into fixed-size chunks as the sequence input before it

is passed into ViT. For the feature map output at the encoding side,

we design a feature expansion module to make the dimensionality

of the feature map meet the input requirements of ViT. First, the

number of channels of the feature map is expanded from 64 by

the convolution operation, and the two dimensions of H and W

are combined into the same dimension to finally obtain the input

sequence z0 ∈ Rd×N of SWTB, where N = H
4 × W

4 is the number

of elements corresponding to the incoming sequence in ViT.

Specifically, the computation of attention is accomplished in

two stages: in the first stage, the computation of attention is

performed inside the regular non-overlapping window, and in the

second stage, the computation of attention is performed in the new

window obtained by shifting the first layer of the window to the

right by a distance of half of the window’s width, i.e., the sliding

window operation. The difference in complexity between the self-

attention computation without the sliding window operation and

the self-attention computation with the sliding window operation

is shown in Equations (1) and (2), respectively, where H,W, and C

represent the height, width, and number of channels of the feature

map, respectively, and M represents the length of the rectangular

window edge in terms of feature points as a preset unit. For the

experimental setup in this chapter, the computation of the single

self-attention structure is reduced from 800 million reduced to 270

million, which effectively relieves the computational pressure of the

model as a whole.

�(W −MSA) = 4HWC2 + 2H2W2C (1)

�(SW −MSA) = 4HWC2 + 2M2HWC (2)

In order to alleviate the problem of large computational effort

of traditional ViT in computing global attention of images, we

design SWTB with sliding window operation and layer design

to replace the global multi-headed self-attention mechanism, to

save computational effort by limiting the attention computation

to a window of fixed size, so that the computational complexity

grows linearly instead of squarely with the image size, and to

allow correlation between windows so as to achieve The first

layer performs the multi-headed self-attentive computation inside

a regular non-overlapping window, and the second layer performs

the multi-headed self-attentive computation in a new window

obtained by shifting the first window down to the right by a distance

of half the window width, which is also known as the sliding

window operation. Specifically, the spatial dimension of the input

sequence z0 is N = 32 × 32. To facilitate the edge operation, we

set the window size to M = 4 × 4 and the window is panned

down to the right by 2 pixel points at a time. This is shown in

Figure 2, where the letters represent different feature sequences

and the colors represent the range of receptive fields for different

windows.

Since only half a window distance is shifted, a feature map of

half a window width will appear at the edge of the whole feature

map, if this part is directly discarded it will result in the loss of

feature information, and if this part is retained it will introduce

additional computation, both of which are not very desirable. For

this reason, this section proposes a sliding window operation with

cyclic shifting, where the extra part is added to other small windows

to make them complete windows, as shown in Figure 3. This cyclic

shifting brings a new problem: for some windows, some of their

feature blocks are moved from other positions, and these feature

blocks are subject to self-attention computation with originally

non-adjacent feature blocks, so that the values obtained from this

computation lack practical significance, and are only operated in

this way in order to keep the number of windows the same as the

original. In order to block out the interference of these pseudo-

values, three different types of masks are designed here to be added

with the results of the self-attention calculation.

Many previous investigations have utilized multiple sets of

Transformer modules with numerous self-attentive mechanisms

computed sequentially to enhance their efficacy. While this

approach can effectively enhance the model’s performance, it

also introduces a substantial number of parameters, which we
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FIGURE 1

The structure of the model.

believe have more adverse effects than positive advantages for

medical image segmentation tasks. To mitigate the proliferation

of parameters associated with stacking Transformer modules,

we reduce the depth of the SWTB while increasing its width.

Specifically, we augment the width of ViT using the Feature

Expansion module before input, and we expand the hidden layer

dimension of Q and K to dm = Ed by increasing the rate E while

keeping the dimension of V unchanged. Within the SWTB, the

self-attention computation for each window follows the equations

shown in Equations (3) and (4). In these equations, Wq ∈ Rd×dm ,

Wk ∈ Rd×dm , and Wv ∈ Rd×d represent the parameter matrices,

and the features xi ∈ RM
2×d of each window are multiplied

with these parameter matrices to yield three attention vectors:

Q ∈ RM
2×dm , K ∈ RM

2×dm , and V ∈ RM
2×d. To incorporate

positional information in the self-attention within the window,

the calculation integrates a learnable relative positional deviation

B ∈ RM
2×M2

. Here, we set the number of groups for the multi-

headed self-attention mechanism to 4. The features obtained from

the final computation are concatenated, and the information is

further consolidated through an additional global self-attention

layer.

[Q;K;V] = [Wq;Wk;Wv] · xi (3)

Attention(Q,K,V) = Softmax(
QKT

√
d

+ B)V (4)

Equations (5), (6), (7), and (8) depict the equations pertaining

to the entirety of the ViT segment. Here, the notation LN

denotes layer normalization, and FFN represents the output of the

window multi-headed self-attention mechanism, as well as serving

as the input for the sliding window multi-headed self-attention

mechanism. The sliding window multi-headed self-attention

mechanism part generates the output for further processing.

z′0 = W −MSA(LN(z0))+ z0 (5)

z1 = FFN(LN(z′0))+ z′0 (6)

z′1 = SW −MSA(LN(z1))+ z1 (7)

z2 = FFN(LN(z′1))+ z′1 (8)

After the feature map has gone through SWTB, the model

has learned enough image information. In order to achieve a skip

connection and keep the feature map in the same number of layers

with the same size in the encoder, two consecutive convolution

operations are used here to reshape its dimension to size d× H
4 ×

W
4 .

After the above operations, the feature map has the same shape as

the output F at the encoder side.

3. Experiments

3.1. Datasets

We use the segmentation results of the algorithm on the

LUNA16 lung nodule dataset (24) to evaluate the performance

of the SW-UNet model proposed in this section. To verify the

general applicability of the model to medical images, we conduct

experiments on two other tumor datasets, the LiTS 2017 (25) liver

tumor dataset and the KiTS 2019 (26) kidney tumor dataset. The

details of the three datasets are described below.

3.1.1. Lung nodule dataset LUNA16
The LUNA16 dataset is a subset of the largest public lung

nodule dataset, LIDC-IDRI, whose main purpose is to perform

automatic detection and segmentation of lung cancer. 888 CT scans

of the lung are included in the LUNA16 dataset, each containing 1–

4 lesions, for a total of 1,186 lesions. The LUNA16 annotations are

presented in terms of nodule location (x, y, and z-axis coordinates),

and the original image size is 512× 512.
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FIGURE 2

The shifting window operation and feature shift operation.

FIGURE 3

The mask type corresponding to feature shift operation.

TABLE 1 Segmentation results of di�erent models on LUNA 16.

Method Accuracy Dice Sensitivity Specificity H95

TransUNet 0.98 0.79 0.80 0.98 13.46

TransAttUnet 0.99 0.81 0.82 0.98 9.12

TransBTS 0.99 0.83 0.81 0.99 7.55

SW-UNet 0.99 0.84 0.82 0.99 7.41

The bolded ones are the best results.
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TABLE 2 Segmentation results of di�erent models on LiTS 2017.

Method Accuracy Dice Sensitivity Specificity H95

TransUNet 0.97 0.58 0.60 0.98 13.83

TransAttUnet 0.98 0.63 0.62 0.98 11.65

TransBTS 0.98 0.62 0.62 0.99 9.76

SW-UNet 0.99 0.66 0.65 0.99 9.13

The bolded ones are the best results.

TABLE 3 Segmentation results of di�erent models on KiTS 2019.

Method Accuracy Dice Sensitivity Specificity H95

TransUNet 0.98 0.77 0.75 0.98 11.34

TransAttUnet 0.98 0.80 0.78 0.98 10.19

TransBTS 0.99 0.80 0.77 0.98 8.85

SW-UNet 0.99 0.82 0.81 0.99 8.26

The bolded ones are the best results.

TABLE 4 Comparison of di�erent models.

Model Vision
Transformer-base

TransUNet TransBTS SW-UNet

Parameters 86M 105M 43M 32M

FLOPs 33.03G 1205.76G 333.09G 51.3G

Bolded values are the ones that achieve the best performance in the network performance comparison.

3.1.2. Liver tumor segmentation dataset LiTS
2017, kidney tumor segmentation challenge
dataset KiTS 2019

The LiTS 2017 dataset is provided by the Liver Tumor

Segmentation (LiTS) Challenge 2017, which has 200 3D CT scan

images, including 130 images for model training and validation and

70 images for objective model evaluation. Similar to LiTS 2017,

KiTS 2019 is also provided by the Kidney Tumor Segmentation

(KiTS) Challenge 2019. The dataset has a total of 300 3D CT scans

containing 210 images for model training and validation and 90

images for objective model evaluation, with image sizes of 512×512

pixels for both datasets.

3.2. Model evaluation metrics

In this paper, the evaluation of the model is mainly done using

the Dice coefficient and the Hausdorff 95 (H95) distance, etc. The

Dice coefficient is calculated as shown in Equation (9). The Dice

coefficient measures the similarity between the predicted and true

results, and its value ranges from 0 to 1. The closer the value is to

1, the higher the similarity between the predicted and true results,

and the better the performance of the model. On the contrary, the

closer the value is to 0, the lower the similarity between predicted

and true results, and the worse the performance of the model.

Dice =
2TP

2TP + FP + FN
(9)

The Hausdorff distance is calculated as shown in Equation 10,

which measures the similarity between two sets, and is calculated

by calculating the minimum value of the distance from each

point in set X to set Y , and then taking the maximum value

of these minimum values as the Hausdorff distance, which is

commonly used in medical image segmentation to measure the

difference between the segmentation result of the model and the

real segmentation result. The smaller the H95 value, the smaller

the difference between the segmentation result of the model and

the real segmentation result, and the better the segmentation

performance of the model.

Hausdorff = max{d(X,Y), d(Y ,X)} (10)

3.3. Data pre-processing and experimental
parameter setting

In order to make the data better suited to the network structure

proposed in this work, a preprocessing operation is required on

the data. On the three datasets, the range of pixel values saved

in their raw data varies due to different criteria. In order to have

the same distribution of grayscale values for each image in the

training set, pixel value normalization of the input data is necessary.

Specifically, for the background and content-containing pixels in

medical images, MinMax normalization is applied in each image,

calculated as shown in Equation (11). After performing the above

operation, the pixel values are all distributed between 0 and 1.

For the LUNA 16 dataset, because of its special annotation form,
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FIGURE 4

Visualization of segmentation results for LUNA16 dataset.

we first generate the corresponding masks indicating the nodal

locations using the annotations and sliced them to fit our 2D

network model. Since it contains large non-nodal regions, we crop

the image according to the nodal locations and selected an image of

128×128 size including all parts of the nodes. Similarly, in order to

keep the image size of the incomingmodel consistent, we uniformly

adjust the images of the LiTS 2017 dataset and KiTS 2019 dataset

to 128 × 128 by cropping or resampling means to fit the network

parameters.

x′i =
xi −min(xi)

max(xi)−min(xi)
(11)

We use the deep learning library Pytorch to build the model

and to train it. In the training session, we use an initial number of

16 convolutional kernels and set each batch to 48. We use Adam as

the optimizer with a learning rate of 0.00001 and end the training

with convergence after 100 rounds with no decrease in the loss

value on the validation set. For each dataset, we divide the data

that can participate in training into a training set and a validation

set, where the training set accounts for 80%, the validation set

accounts for 10%, and the remaining 10% is used as a test set

to evaluate the model. Our loss function continues to use the

combined loss of Dice loss and Focal loss, where the weight α

of Dice loss is set to 0.8 and the weight β of Focal loss is set to

0.2.

LDice = 1−
2
∑N

i yiy
′
i + ε

∑N
i yi +

∑N
i y′i + ε

(12)

LFocal =
N∑

i

(−yi(1− y′i)
γ logy′i − (1− yi)y

′γ
i log(1− y′i)) (13)

LSeg = αLDice + βLFocal (14)

3.4. Results

To verify the performance of SW-UNet, we compare its

segmentation results with those of TransUNet (27), TransAttnet

(28), and TransBTS (29), and Tables 1–3 lists their performance
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FIGURE 5

Visualization of segmentation results for LiTS 2017 dataset.

when running on LUNA16, LiTS 2017, and KiTS 2019. It can

be seen that SW-UNet achieves optimal performance in all two

metrics, Dice coefficient and H95 distance. In the Dice coefficient

score, SW-UNet has a small lead of about 1-5 percentage points

on all three datasets, and it can be said that SW-UNet is more

accurate and clearer for the segmentation effect of the internal

structure of the model. In the evaluation index of H95 distance,

SW-UNet achieves 7.41, 9.13, and 8.26 scores, respectively,

which also achieves the best, which indicates that SW-UNet is

also very accurate in dividing the prominent part of the edge

region.

To make the model suitable for medical image segmentation

tasks, we reduce the number of model parameters as much as

possible so that it can be trained efficiently without overfitting

problems even with only a small amount of data. As shown in

Table 4, we count the number of parameters for several models with

Transformer structure. Among them, the number of parameters

of SW-UNet is only 32M, which is 63% lower than the 86M

parameters of ViT-Base, 70% lower than the 105M parameters of

TransUNet, and 25% lower than the 43M parameters of TransBTS.

It can be said that SW-UNet is a structure specialized for medical

image segmentation tasks, and for those diseases with distinct

geographical features, each hospital has the ability to label a

small dataset by itself for training without acquiring huge amount

of data.

3.5. Visualization analysis

To visually evaluate the model performance, we randomly

select four sets of segmentation results of TransUNet,

TransAttUnet, TransBTS and SW-UNet on three datasets,

LUNA 16, LiTS 2017, and KiTS 2019, as a display. As shown in

Figure 4, the black part of the LUNA 16 segmentation results

is the background and the white part is the segmentation

results. It can be seen that part of the segmentation results of

TransUNet has deviations in positioning, segmenting parts

that originally do not belong to the label, and there are also

errors in the division and positioning of the interior of the

segmented region. TransAttUnet is not accurate enough in

portraying the shape of the segmented region, and also has

the problem of incorrectly identifying the background as

the segmented region. TransBTS has a fair performance in

segmenting the smoother trend of the The segmentation

performance of TransBTS is fair at the edges, but it cannot
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FIGURE 6

Visualization of segmentation results for KiTS 2019 dataset.

detect protrusions and small fragmented areas. In contrast,

SW-UNet is more accurate in shape description, and its

localization performance and anti-interference ability are

also more outstanding.

The images of the LiTS 2017 and KiTS 2019 datasets have many

similarities, mainly in that the tumor regions in both datasets are

very small compared to the organ parts. Therefore, it is not too

difficult for the model to segment out the organ part, while it is

more difficult to precisely locate the tumor region. The purple part

of the segmentation results of both datasets is the background,

the green part is the organ segmentation results, and the yellow

part is the tumor segmentation results. From Figures 5, 6, we can

see that TransUNet can only segment the organ part in many

samples, but cannot perceive the tumor region, especially in those

LiTS samples with low contrast of the original image. TransBTS is

closer to the real value in organ segmentation, but the recognition

performance of tumor region is slightly inferior to that of SW-

UNet. The segmentation results of both organs and tumor regions

are very accurate.

Taken together, our proposed SW-UNetmodel is more accurate

for the internal details of the segmented region, and the boundary

alignment of the segmentation is clearer, which can better capture

the minute structures and changes in the images and improve

the accuracy of the segmentation. Due to the complexity of

medical image structure and artifact interference, general models

may have incorrect segmentation. The segmentation results on

three important human organs, lung, kidney, and liver, prove

that the SW-UNet model has strong generalization and good

robustness, and can be migrated to other data sets for training

and specialization to segmentation models for specific organs or

specific disease types, thus helping This will help doctors to better

understand and diagnose patients’ conditions.

3.6. Ablation experiments

To verify the improvement of SWTB on model segmentation

performance, we design ablation experiments to test the impact

of SWTB on overcoming the bias assumption of the CNN

architecture, and the control group replaced the sliding window

module in SWTB with a non-sliding module. As can be seen

in Table 5, the models with the sliding window mechanism

added are generally higher in Dice coefficient scores by more

than 5 percentage points compared to the models without the

sliding window mechanism on the three different datasets, which
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TABLE 5 The ablation study results of sliding window operation.

Dataset
Dice H95

No SW With SW No SW With SW

LUNA16 0.79 0.84 21.38 7.41

LiTS 2017 0.59 0.66 12.87 9.13

KiTS 2019 0.75 0.82 15.42 8.26

TABLE 6 The ablation study results of CNN downsampling frequency.

Dataset

Dice H95

1 2 3 1 2 3

LUNA16 0.79 0.84 0.81 11.03 7.41 8.97

LiTS 2017 0.58 0.66 0.65 14.62 9.13 8.78

KiTS 2019 0.76 0.82 0.80 15.18 8.26 9.44

Bolded values are those that achieved the best performance in the down sampling count comparison.

indicates that the association of perceptual fields established

between different windows can bring positive effects on the model

segmentation performance. The Transformer module, which is

the core operation to establish the association between different

perceptual fields, is no different from the convolution operation in

the CNN framework, as both of them compute the features in part

of the feature map, except that the CNN part can be optimized in

terms of computational efficiency to better adapt to the training

and inference needs of large-scale datasets. It can also be seen

from Table 5 that the model with the sliding window mechanism

has smaller values of the H95 distance metric compared to the

model without the sliding window mechanism, indicating that the

contours of the segmented regions are also better portrayed and

can adapt to the edges of the regions with different scale size

variations.

In addition, we also experimentally investigate the optimal

solution for the number of CNN downsampling times to find

the optimal placement of the encoder by varying the number of

times the encoder is downsampled at the input SWTB, set to

downsample once, twice, and three times, respectively. As can

be seen in Table 6, the data after downsampling twice achieve

the highest scores in the Dice coefficient evaluation index, which

indicates that the combination of high-level semantic and low-

level features after downsampling twice gives the best segmentation

effect to the model for the input image. In addition, the data

after three downsampling are better and closer to the results after

two downsampling than after one downsampling, and even better

than the model after two downsampling on the H95 evaluation

metric for the LiTS 2017 dataset, suggesting that the computation

on high-level semantics is more valuable compared to doing

the computation on global self-attentive mechanism on low-level

features. However, we believe that the conclusion may have some

limitations due to the fact that the size of the input image is fixed

at 128 × 128, which might have different standard answers in

different segmentation tasks if it is properly adjusted in the data

preprocessing stage.

4. Conclusion

This paper presents the design ideas and experimental results

of a lung nodule image segmentation model based on a hybrid

architecture of CNN and ViT. First, the universal problems of

segmentation networks based on CNN architecture are analyzed,

and the negative effects caused by their inductive bias are analyzed

and solutions are given. Secondly, the detailed design process

and implementation method of SW-UNet, the sliding window

Transformer module, the medical image segmentation model

proposed in this chapter are given. Finally, the effectiveness of the

SW-UNet model is verified by experiments on lung nodule dataset

LUNA 16, and the general applicability of the model for medical

image segmentation is confirmed on two other datasets.
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