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Objective: To compare the performance of radiomics-based machine learning 
survival models in predicting the prognosis of glioblastoma multiforme (GBM) 
patients.

Methods: 131 GBM patients were included in our study. The traditional Cox 
proportional-hazards (CoxPH) model and four machine learning models 
(SurvivalTree, Random survival forest (RSF), DeepSurv, DeepHit) were constructed, 
and the performance of the five models was evaluated using the C-index.

Results: After the screening, 1792 radiomics features were obtained. Seven 
radiomics features with the strongest relationship with prognosis were obtained 
following the application of the least absolute shrinkage and selection operator 
(LASSO) regression. The CoxPH model demonstrated that age (HR  =  1.576, 
p  =  0.037), Karnofsky performance status (KPS) score (HR  =  1.890, p  =  0.006), 
radiomics risk score (HR  =  3.497, p  =  0.001), and radiomics risk level (HR  =  1.572, 
p  =  0.043) were associated with poorer prognosis. The DeepSurv model performed 
the best among the five models, obtaining C-index of 0.882 and 0.732 for the 
training and test set, respectively. The performances of the other four models 
were lower: CoxPH (0.663 training set / 0.635 test set), SurvivalTree (0.702/0.655), 
RSF (0.735/0.667), DeepHit (0.608/0.560).

Conclusion: This study confirmed the superior performance of deep learning 
algorithms based on radiomics relative to the traditional method in predicting 
the overall survival of GBM patients; specifically, the DeepSurv model showed the 
best predictive ability.
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1 Introduction

Glioblastoma multiforme (GBM) is the most common and least 
prognostic primary tumour of the central nervous system, with a 
5-year survival rate of 6–22% based on a combination of age at 
diagnosis and other risk factors (1). Prognostic models that include 
only the patient’s age, ethnicity, whether or not they receive 
radiotherapy, and risk factors such as the size, location and 
histopathological composition of the tumour often fail to predict 
overall survival (OS) accurately (2, 3). Therefore, identifying risk 
factors for GBM prognosis and developing appropriate predictive 
models are essential for the individualized and precise treatment of 
GBM patients.

Radiomics, which transforms digital medical images into 
mineable high-dimensional features and builds statistical models to 
analyze the features, has been widely used in tumour diagnosis, 
prognosis prediction, and treatment selection (4). Studies have shown 
that GBM radiomics information is closely related to patient prognosis 
and recurrence (5, 6). Zhang et  al. (7) developed and validated a 
radiomics nomogram model to determine GBM survival probabilities 
in a non-invasive manner, achieving superior accuracy in both the 
training and test set. Survival analysis (also known as time-effect 
analysis) methods have been widely used in medical research, such as 
clinical efficacy trials and disease prognosis analysis. The Cox 
proportional-hazards model (Cox-PH) is the most well-known 
method used to determine the association between clinical predictor 
variables and the risk of mortality events. The CoxPH model is based 
on the assumption of a linear combination of event risk and variables; 
however, it is likely to be  too simplistic to fit the actual 
disease progression.

Machine learning is a branch of artificial intelligence that has a 
wide range of applications in diagnosing and prognostic assessing 
GBM (5, 8). Compared to CoxPH models, machine learning can 
identify clinically significant risks with some marginal variables that 
can significantly improve the model’s performance (9). Deep learning 
(DL) is a frontier area of machine learning algorithms. Deep learning-
based features are mainly extracted through convolutional neural 
networks (CNN), and feature learning algorithms are derived from 
the data itself and are more targeted to specific studies (10), and are 
widely used in imaging diagnosis, disease staging and prognosis, 
which can effectively improve outcome prediction (11–13). The 
Deepsurv model is a deep learning technique applied to a non-linear 
cox proportional risk network (14). Studies have shown that the 
DeepSurv model can obtain patient risk factors from multiple 
parameters and has achieved good predictive performance in 
assessing different patients, such as lung cancer and nasopharyngeal 
carcinoma (15, 16). Previous deep-learning algorithms that have been 
applied to assess the prognosis of GBM patients used traditional 
clinical prognostic risk factors and did not incorporate radiomics 
features (17). To our knowledge, no study has been conducted on the 
prognosis of GBM patients using radiomics combined with machine 
learning. Therefore, this study aimed to construct: (1) a traditional 
CoxPH model, (2) a tree-based SurvivalTree model, (3) an RSF 
model based on ensemble learning, (4) a DeepSurv, and (5) a DeepHit 
model based on deep learning for predicting the overall survival of 
GBM patients based on GBM radiomics and clinical data. Following 
the construction of these five models, we compared their performance.

2 Materials and methods

2.1 Clinical case data

According to the proposed inclusion criteria, (1) clinical 
information of The Cancer Genome Atlas (TCGA) for GBM was 
downloaded from the TCGA database1 and (2) Magnetic Resonance 
Imaging (MRI) data were obtained from the Cancer Imaging Archive 
(TCIA),2 and a total of 262 patients were enrolled. Then, 131 patients 
were excluded due to (1) the lack of fluid-attenuated inversion 
recovery (FLAIR) sequences from TCIA (n = 114) and (2) MRI 
sequences acquired with severe motion or artefacts that may have 
induced bias in the subsequent analysis (n = 17). A total of 131 patients 
with GBM were subsequently retrospectively enrolled in our study. In 
this retrospective study, the requirement for informed consent was 
waived, as the relevant patient data in the TCGA were publicly 
available. We followed the relevant policies of the TCGA and TCIA in 
the acquisition and use of data. The flow chart for this study is shown 
in Figure 1.

2.2 Image acquisition and segmentation

Using ITK-SNAP3 software to segment the FLAIR images of 
patients in 3D, the segmentation process is shown in Figure 2. The 
FLAIR scan parameters were as follows: thickness = 4 ~ 5.5 mm, TR/
TE = 9,000 ~ 12,500/140 ~ 157 ms, slice gap = 4 ~ 6.5 mm, flip 
angle = 80 ~ 90°. The area of interest covered the entire tumour and 
edema region, and all feature extraction methods were implemented 
using the Cancer Imaging Phenomics Toolkit (CaPTk www.cbica.
upenn.edu/captk). To confirm the reproducibility of the features, 30 
patients were randomly selected, two people performed the Region 
Of Interest (ROI) segmentation, and the intraclass correlation 
coefficient (ICC) of the two ROIs was calculated (18). A threshold of 
ICC > 0.8 was set for considering a good agreement between the two 
neuro-radiologists. Features that achieved ICC higher than this 
thereshold were considered as showing reproducibility. The calculated 
features all contain first-order statistical features and statistical-based 
texture features, such as grey-level co-occurrence matrices (GLCM), 
grey-level dependence matrix (GLDM), neighbourhood grey-tone 
difference matrices (NGTDM), grey-level run-length matrices 
(GLRLM), and grey-level size zone matrices (GLSZ), grey-level size 
zone matrices (GLSZM) (19, 20).

2.3 Establishing radiomics signature and 
data cleaning

The least absolute shrinkage and selection operator (LASSO) 
method was used to select key features from the dataset significantly 
associated with prognosis. The selected features were linearly 
combined according to their respective coefficient weights to construct 

1 https://tcga-data.nci.nih.gov/

2 https://wiki.cancerimagingarchive.net/

3 https://www.itk-snap.org/
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a radiomics signature, calculate the risk score for each patient, and 
determine the risk level. Subsequently, all collected data were classified 
as numerical or subtypes according to the input features. The missing 
data imputation was performed using the k-nearest neighbor (KNN) 
algorithm (Supplementary Table S1).

2.4 Feature engineering

According to Subtype, one-hot coding was performed to convert 
different categories of risk factors into categorical variables. This 

resulted in two new features called Subtype_Mesenchymal and 
Subtype_Proneural.

2.5 Construction of the model

2.5.1 CoxPH model
For the CoxPH model, proportional risk assumptions were made 

using the CoxPHFitter function. Filter-based feature selection was 
performed using Cox regression to select features significantly 
associated with prognosis in GBM patients. All comparisons were 

FIGURE 1

Flow chart of the study.

https://doi.org/10.3389/fmed.2023.1271687
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Zhang et al. 10.3389/fmed.2023.1271687

Frontiers in Medicine 04 frontiersin.org

performed at the 95% confidence level, with p < 0.05 indicating 
statistical significance.

2.5.2 SurvivalTree model
SurvivalTree is based on classification and regression trees 

(CART) (21). The model is based on the tree structure, and the tree 
building mainly includes tree generation and pruning. Simple 
dichotomous classification problems can better perform the 
prognostic grouping of the method.

2.5.3 RSF model
Random Survival Forest is a combination of random forest (RF) 

and survival analysis methods. The model calculates a cumulative risk 
function for each tree by selecting a subset of variables at each node 
and splitting the node tree based on survival time and event state, and 
finally calculates the mean of the integrated cumulative risk function 
to predict the error (22).

2.5.4 DeepSurv model
DeepSurv is a feed-forward deep neural network for CoxPH 

models to model a nonlinear representation of the risk of clinical 
events based on input features. The model architecture includes 
network inputs from patient data, fully connected and hidden layers, 
and an output layer with linearly activated individual nodes for 
estimating the logarithmic risk function in the CoxPH model (14). 
DeepSurv can make predictions without specifying interaction terms, 

and in addition, the model’s hyperparameters can vary depending on 
the model’s performance.

2.5.5 DeepHit model
The DeepHit model was initially designed to analyze the 

competing risks of multiple events (23). In the present study, 
we considered only one event: patient survival. Therefore, we can use 
a simplified DeepHit model to analyze our data. We can obtain an 
estimated probability value with the softmax layer of the model.

2.6 Model training and evaluation

After data preprocessing, the data was divided into 70% training 
data and 30% test data. The hyperparameters of the models were 
selected via random search. The performance of the models was 
compared using Harrell’s concordance index (C-index) and brier 
scores. C-index was used to estimate the proportion of random 
individuals with the same survival time ranking as their accurate 
survival time, with a C-index value of 1 indicating perfect 
discrimination and when 0.5 indicating random prediction. The brier 
score represents the mean squared difference between the observed 
patient status and the predicted probability of survival, with scores 
ranged from 0 (worst) to 1 (best). The overall estimate of the brier 
score for all available times is called the Integrated Brier Score (IBS). 
In practice, models with IBS below 0.25 are considered valuable. In 

FIGURE 2

Image segmentation (A–C) represent the axial, sagittal, and coronal views of the images, respectively, and (D) shows the 3D reconstruction results of 
the ROI.
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addition, for the SurvivalTree and RSF models, we  also used the 
receiver operating characteristic curves (ROC) over time and 
calculated the area under the curve (AUC) values to evaluate the 
model performance.

2.7 Statistical analysis

Statistical analysis was performed using R 3.6.0 and the model 
construction was performed using Python 3.7. The R packages used are 
as follows: glmnet package for LASSO logistic regression, gplots and 
pheatmap packages for heat map analysis. The Python packages were 
used are as follows: CoxPH analysis using the lifelines package, 
SurvivalTree and RSF using the scikit-survival package, feature 
importance ranking using the permutation_importance function; 
DeepSurv and DeepHit using the Pytorch-based pycox package. The 
comparison of patients between training and test set was performed for 
continuous variables with a t-test or Mann–Whitney test. The chi-square 
test was performed for subtype variables. All statistics were two-tailed, 
and p-values less than 0.05 were considered statistically significant.

3 Results

3.1 Clinical characteristics of patients

The clinical characteristics of the patients in the training and test 
set are shown in Table  1. There were no statistically significant 
differences in patient age, sex, race, radiation, pharmaceutical, survival 
status or survival month between the training and test set 
(p = 0.071–1.000).

3.2 Radiomics feature extraction and 
construction of radiomics signature

In this study, 1792 radiomics features were obtained based on 
T2-FLAIR images from the TICA database, using CaPTk software. 
The 1792 features were brought into the LASSO cox regression model 
to screen the optimal radiomics features. We screened the optimal 
radiomics features in the full dataset using the LASSO Cox regression 
model with ten-fold cross-validation (24). We  obtained seven 
radiomics features (three signal intensity features and four texture 
features) that were most closely related to the prognosis. A radiomics 
signature was constructed based on the linear combination of the 
screened seven radiomics features and their corresponding Cox 
regression coefficient products. The radiomics signature 
we constructed is described by a formula in the Supplementary Material.

3.3 Correlation between radiomics 
signature and clinical information

The correlation between the radiomics signature and clinical 
information was evaluated using heat map analysis 
(Supplementary Figure S1). The results show that “GLCM_Contrast_
Variance” has a high correlation with survival status, mostly in red color.

3.4 CoxPH model

The univariate cox analysis showed that age (HR = 1.576, 
p = 0.037), KPS score (HR = 1.890, p = 0.006), radiomics risk score 
(HR = 3.497, p = 0.001), and radiomics risk level (HR = 1.572, 
p = 0.043) were prognostic factors for overall survival in GBM 
(Table 2), and the univariate analysis forest plot is shown in Figure 3; 
multivariate cox analysis showed that KPS score (HR = 1.864, 
p = 0.008), radiomics risk score (HR = 3.370, p = 0.003) were 
prognostic factors for overall survival of GBM (Table  2). In the 
training and test set, the C-index of the CoxPH model was divided 
into 0.663 and 0.635, with an overall C-index of 0.662, and for 
predicting 1-year, 3-year, and 5-year survival, the brier score was 
0.225, 0.080, and 0.040, respectively, and the IBS was 0.102 (Table 3). 
The KM survival curves for variables that were significant for the 
univariate survival analysis are shown in Figure 4.

3.5 SurvivalTree and RSF model

GBM survival prediction models based on the SurvivalTree and 
RSF tree algorithms were built using the training set and validated in 
the test set. Figure 5 shows the AUC values of the CoxPH model, the 
SurvivalTree model and the RSF model over time. As can be seen from 
the graph, the CoxPH model has the highest AUC value of 0.701, and 
the SurvivalTree model has the lowest AUC of 0.564.

In the training and test set, the C-index of the SurvivalTree model 
was divided into 0.702 and 0.655, and the overall C-index was 0.564. 
For predicting 1-year, 3-year, and 5-year survival, the brier scores 
were 0.225, 0.080, and 0.040, respectively, and the combined brier 
score was 0.192. In the training and test set, the C-index of the RSF 
model was divided into 0.735 and 0.667, and the overall C-index was 
0.642; for predicting 1-year, 3-year, and 5-year survival, the brier 
scores were 0.214, 0.143, and 0.124, respectively, and the IBS was 
0.152 (Table  3). The IBS plots of the two models are shown in 
Figure 5.

The ranked importance of SurvivalTree and RSF model features 
are shown in Figure 6 and Supplementary Table S2; from the table, 
we can see that KPS, radiation and risk score are more important for 
the model. For both models, radiation is the most important feature, 
if radiation is removed from the model, the C-index of both will 
decrease by 0.145 and 0.101, respectively.

3.6 Deep learning model

DeepSurv and DeepHit survival prediction models based on deep 
learning algorithms were built using the training set and validated in 
the test set. In the training and test sets, the DeepSurv model had a 
C-index of 0.882 and 0.732, an overall C-index of 0.691, and a brier 
score of 0.203, 0.139, and 0.124 for predicting 1-year, 3-year, and 
5-year survival, respectively, with a combined brier score of 0.116. In 
the training and test set, the DeepHit model had a C-index of 0.608 
and 0.560, an overall C-index of 0.617, and a brier score of 0.347, 
0.330, and 0.146 for predicting 1-year, 3-year, and 5-year survival, 
respectively, with an IBS of 0.261 (Table 3). The IBS plots for the two 
models are shown in Figure 7.
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4 Discussion

Precision treatment of GBM can slow down tumour growth and 
help improve patient prognosis. Previous studies on GBM have used 
deep learning for diagnostic and prognostic assessment of tumours 
(17, 25). To our knowledge, this is the first study to use machine 
learning and radiomics approaches to assess the prognosis of GBM 

patients. In this study, by constructing radiomics prognostic labels, 
using different machine learning models and comparing the 
performance with the traditional CoxPH model, the results show that 
the DeepSurv deep learning model shows superior predictive power 
compared to the traditional CoxPH model.

While traditional radiography focuses on the visual presentation 
of images, radiomics focuses on the relationship between image 

TABLE 1 Demographics of patients enrolled in the training set and test set.

Variables Total (n =  131) Training set (n =  91) Test set (n =  40) p

Age 0.220

≤60 73 (56%) 47 (52%) 26 (65%)

>60 58 (44%) 44 (48%) 14 (35%)

Sex 0.979

female 44 (34%) 30 (33%) 14 (35%)

male 87 (66%) 61 (67%) 26 (65%)

Race 0.462

white 20 (15%) 12 (13%) 8 (20%)

others 111 (85%) 79 (87%) 32 (80%)

KPS 0.645

≤60 93 (71%) 63 (69%) 30 (75%)

>60 38 (29%) 28 (31%) 10 (25%)

Subtype 0.742

Classical 36 (27%) 24 (26%) 12 (30%)

Proneural 49 (37%) 36 (40%) 13 (32%)

Mesenchymal 46 (35%) 31 (34%) 15 (38%)

CIMP_status 0.773

G-CIMP 116 (89%) 81 (89%) 35 (88%)

Non G-CIMP 15 (11%) 10 (11%) 5 (12%)

Radiation 1.000

no 102 (78%) 71 (78%) 31 (78%)

yes 29 (22%) 20 (22%) 9 (22%)

Pharmaceutical 0.454

no 101 (77%) 68 (75%) 33 (82%)

yes 30 (23%) 23 (25%) 7 (18%)

Survival status 0.071

alive 16 (12%) 8 (9%) 8 (20%)

dead 115 (88%) 83 (91%) 32 (80%)

Survival months# 12.27 (5.5, 19.9) 13.13 (5, 22.09) 11.71 (6.88, 17.62) 0.581

#Continuous variables; median (range).

TABLE 2 Univariate and multivariate cox analysis of overall survival of GBM patients.

Variables Univariate analysis Multivariate analysis

Hazard ratio (95% CI) p value Hazard ratio (95% CI) p value

Age 1.576 (1.028–2.416) 0.037 1.452 (0.943–2.235) 0.090

KPS 1.890 (1.195–2.988) 0.006 1.864 (1.175–2.956) 0.008

Risk level 1.572 (1.015–2.436) 0.043 1.041 (0.580–1.850) 0.090

Risk score 3.497 (1.621–7.544) 0.001 3.370 (1.499–7.573) 0.003
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phenotypes and biological features and has been widely used in 
tumour diagnosis and prognosis evaluation (4). Studies have shown 
that FLAIR sequences are more advantageous in showing the extent 
of tumour borders and edema and that 90% of GBM recurrence 
occurs in the peritumoral edema area and has been shown to correlate 
with the prognosis of GBM (26). The FLAIR sequence was superior in 

showing the extent of the tumour border and edema. Some progressive 
patients showed no significant enhancement on the contrast scan but 
showed a high signal on the FLAIR sequence (27). Therefore, it is 
important to explore the prognostic evaluation of non-contrast FLAIR 
sequences in GBM. In order to construct a radiomics prognostic 
signature, we used the LASSO cox regression model to reduce 1792 

FIGURE 3

Coefficient convergence of LASSO Cox model for screening radiomics features and forest plot of univariate cox analysis. (A) The LASSO Cox model 
used tenfold cross-validation to select the optimal parameters. (B) The convergence of the coefficients of radiomics features under the parameters 
corresponding to the left figure, with each curve in the panel representing the trajectory of a feature coefficient. (C) Forest plot of univariate cox 
analysis.

TABLE 3 Hyperparameters, C-index and IBS results for the five models.

Model C-index Hyperparameters C-index Brier score IBS

Training set Test set 1-year 3-year 5-year

CoxPH 0.663 0.635 none 0.662 0.225 0.080 0.040 0.102

Survival Tree 0.702 0.655 max_depth:5,min_samples_leaf:2,min_samples_

split:12,n_estimators = 10

0.564 0.263 0.190 0.133 0.192

RSF 0.735 0.667 max_features:sqrt,min_samples_leaf = 2,min_samples_

split = 4,n_estimators = 10

0.642 0.214 0.143 0.124 0.152

DeepSurv 0.882 0.732 num_nodes = [32,32],out_

features = 1,dropout = 0.2,learning rate = 0.005

0.691 0.203 0.139 0.124 0.116

DeepHit 0.608 0.560 num_nodes = [32,32],out_features = labtrans.out_

features,dropout = 0.1,learning rate = 0.001

0.617 0.348 0.330 0.146 0.261
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features to 7 potential predictive features. The results of this study 
showed that the seven radiomics features obtained in the FLAIR 
sequence were strongly associated with GBM survival, and these 
features indicated grey-scale heterogeneity of GBM. In addition, the 
radiomics risk score was shown to be an independent prognostic 
factor for GBM by cox univariate and multivariate analyses. The 
radiomics risk score was likewise the more important feature in the 
tree model-based feature importance ranking, suggesting that our 
constructed radiomics risk score can be used as a prognostic marker 
for GBM.

The CoxPH model is a classic approach to survival analysis and 
event prediction; however, the model is semi-parametric and assumes 
that the risk of an event is linearly related to the variables. Recently, 
tree-based models have received increasing attention from researchers 
in addressing the identification of multidimensional interactions. 
SurvivalTree is similar to decision trees because it is constructed by 
the recursive splitting of tree nodes. Compared to CoxPH, 
SurvivalTree is more relaxed in its requirements for survival 
information and does not require survival times to satisfy a specific 
distribution (21). RSF is a combination of random forest and 
SurvivalTree. The advantage of the RSF model is that it is not 
constrained by the assumptions of proportional risk and log-linearity 

(22). Also, it can prevent the overfitting problem of its algorithm 
through two random sampling processes (28). In our study, the 
SurvivalTree and the RSF model achieved a C-index of 0.70 or higher 
in the training set. However, as the survival tree model has fewer 
parameters available for adjustment and is not an integrated algorithm, 
it has a lower overall C-index. The IBS results for both models also 
showed that the RSF performed better. In addition, the AUC values 
for the cumulative survival times of the two models indicate a 
significant difference between the first and second half of the time 
horizon, with higher AUC values for the model in the first half of the 
time horizon and lower AUC values in the second half of the time 
horizon. Therefore, the models are most effective in predicting 
mid-term mortality.

Deep learning models can learn and infer higher-order nonlinear 
combinations between patient clinical outcomes and predictor 
variables in an entirely data-driven manner and have been shown to 
outperform standard survival analysis, with one advantage being the 
ability to discern complex relationships between clinical outcomes and 
predictor variables without prior feature selection (14). In this study, 
the DeepSurv model achieved the highest C-index in both the training 
and test set. At the same time, the overall C-index also indicated that 
the model was superior, suggesting that the deep learning-based 

FIGURE 4

Survival curves of the high and low risk groups by univariate Cox analysis. (A–D) represent age, KPS, radiomics risk level, and radiomics risk score, 
respectively.
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FIGURE 5

AUC plot of cumulative survival time and IBS diagram based on the tree model. (A) AUC results for the SurvivalTree model, (B) AUC results for the RSF 
model, (C) IBS results for the SurvivalTree model, (D) IBS results for the RSF model.

FIGURE 6

Feature importance ranking results. (A) Results of feature importance ranking for the SurvivalTree model, and (B) results of feature importance ranking 
for the RSF model.
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survival model outperformed the CoxPH and RSF models in 
predicting GBM survival. Previous deep learning prognostic models 
based on clinical risk factors achieved a C-index of 0.823 and 0.700 in 
the training and test set, respectively (17); the present study achieved 
0.882 and 0.667 in the training and test set, indicating the superior 
performance of the prognostic model based on radiomics features. 
Another deep learning model constructed in this study is DeepHit, 
which can directly learn the distribution of first death times and 
performs better in dealing with multiple competing risks (28). 
However, since the ending of this study is a dichotomous variable and 
there are no multiple competing risks, the performance of this model 
was not improved by hyperparameter tuning, and this model may not 
apply to our data structure.

There are limitations to this study. First, MRI images were 
collected retrospectively from the TCIA database, and the 
heterogeneity of different imaging parameters generated by different 
devices and field strengths could not be controlled. In addition, there 
was a relatively low number of patients in this study. Some patients 
also had incomplete clinical risk factors. Second, a large amount of 
redundant information in the sequence images leads to a considerable 
workload and subjectivity in manual segmentation. A more advanced 
approach is to use deep learning models such as CNN to learn features 
directly from images, which reduces the presence of subjectivity 
between the raters. Finally, to construct prognostic models, our study 
only extracted features from FLAIR images. In constructing the 
models, it did not make use of structural images or functional 
MRI techniques.

5 Conclusion

In conclusion, based on the TCGA and TCIA databases 
combined with a radiomics approach, this study confirmed that the 
DeepSurv model based on deep learning achieves better performance 
in GBM patient data compared to the CoxPH model. Based on the 
above-optimized model, a personalized treatment recommendation 
system for GBM can be  developed to predict patient 
prognosis accurately.
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