Limbal Stem Cell Deficiency (LSCD) is a blinding corneal disease characterized by the loss of function or deficiency in adult stem cells located at the junction between the cornea and the sclera (i.e., the limbus), namely the limbal stem cells (LSCs). Recent advances in
The current study employs a novel deep learning approach to classify neuron morphology in various LSCD stages and healthy controls, by integrating images created through latent diffusion augmentation. The proposed model, a residual U-Net, is based in part on the InceptionResNetV2 transfer learning model.
Deep learning was able to determine fiber number, branching, and fiber length with high accuracy (R2 of 0.63, 0.63, and 0.80, respectively). The model trained on images generated through latent diffusion on average outperformed the same model when trained on solely original images. The model was also able to detect LSCD with an AUC of 0.867, which showed slightly higher performance compared to classification using manually assessed metrics.
The results suggest that utilizing latent diffusion to supplement training data may be effective in bolstering model performance. The results of the model emphasize the ability as well as the shortcomings of this novel deep learning approach to predict various nerve morphology metrics as well as LSCD disease severity.