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Introduction: Limbal Stem Cell Deficiency (LSCD) is a blinding corneal disease 
characterized by the loss of function or deficiency in adult stem cells located at the 
junction between the cornea and the sclera (i.e., the limbus), namely the limbal stem 
cells (LSCs). Recent advances in in vivo imaging technology have improved disease 
diagnosis and staging to quantify several biomarkers of in vivo LSC function including 
epithelial thickness measured by anterior segment optical coherence tomography, and 
basal epithelial cell density and subbasal nerve plexus by in vivo confocal microscopy. 
A decrease in central corneal sub-basal nerve density and nerve fiber and branching 
number has been shown to correlate with the severity of the disease in parallel with 
increased nerve tortuosity. Yet, image acquisition and manual quantification require 
a high level of expertise and are time-consuming. Manual quantification presents 
inevitable interobserver variability.

Methods: The current study employs a novel deep learning approach to classify 
neuron morphology in various LSCD stages and healthy controls, by integrating 
images created through latent diffusion augmentation. The proposed model, a 
residual U-Net, is based in part on the InceptionResNetV2 transfer learning model.

Results: Deep learning was able to determine fiber number, branching, and fiber 
length with high accuracy (R2 of 0.63, 0.63, and 0.80, respectively). The model 
trained on images generated through latent diffusion on average outperformed 
the same model when trained on solely original images. The model was also able 
to detect LSCD with an AUC of 0.867, which showed slightly higher performance 
compared to classification using manually assessed metrics.

Discussion: The results suggest that utilizing latent diffusion to supplement 
training data may be effective in bolstering model performance. The results of 
the model emphasize the ability as well as the shortcomings of this novel deep 
learning approach to predict various nerve morphology metrics as well as LSCD 
disease severity.
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Introduction

Limbal stem cells (LSCs) are adult stem cells located at the 
junction between the cornea and the sclera which are responsible for 
continuous corneal epithelial renewal (1). Limbal stem cell deficiency 
(LSCD) is a potentially blinding corneal disease caused by a loss of 
function functional LSCs (2). This condition presents with debilitating 
symptoms including photophobia, burning, irritation, and loss of 
vision potentially leading to blindness. Without LSCs, conjunctival 
epithelial cells invade the corneal surface leading to decreased vision 
as a result of conjunctivalization of the cornea (3). Recent guidelines 
have clarified the disease definition, diagnosis, staging, and 
management of LSCD (2, 4).

As clinical presentation does not always correlate with the level of 
LSCD or in vivo LSC function (5, 6), it is recommended to perform 
additional diagnostic tests including in vivo imaging such as anterior 
segment optical coherence tomography (AS-OCT) and in vivo laser 
scanning confocal microscopy (ICVM) to evaluate in vivo biomarkers 
of the disease (2, 7). A composite score correlating with disease 
severity can then be generated by combining these biomarkers (7). 
One of the biomarkers is the central corneal sub-basal nerve density 
(SND) (8, 9). A decrease in SND correlates with the severity of 
LSCD. Other nerve parameters correlating with the severity of LSCD 
include central corneal sub-basal nerve branching number, fiber 
number, and fiber tortuosity (7, 8). Quantification of these nerve 
parameters requires highly trained personnel to manually annotate 
images, is time-consuming, and is open to interrater variability.

There have been many other attempts at automating the process 
of neuro-morphological classification outside of the cornea. Most of 
the current literature focuses on the segmentation of neuro-images 
and classifying neurons through the use of various deep learning 
algorithms (10, 11). While many approaches use convolutional neural 
networks (CNN), recent benchmarking efforts have revealed that 
linear discriminant analysis (LDA) can serve as a promising 
discriminatory classifier (10). Prior research in other domains of 
ophthalmology has used deep learning models to aid in the diagnosis 
of diabetic neuropathy and fungal keratitis using IVCM images (12–
14). Diagnostic challenges can be  remedied by integrating recent 
advances in computational approaches into the current clinical 
workflow. This approach can increase diagnosis precision and reduce 
time-to-treatment and clinician burden.

To address these challenges, our morphological classifier 
automates the process of diagnosing LSCD using nerve morphology 
features from ICVM images. Total corneal nerve fiber length, corneal 
nerve fiber density, corneal nerve branch density, and tortuosity 
coefficient are among the nerve morphology biomarkers used for 
disease staging clinically (7). These biomarkers have been shown to 
correlate significantly with LSCD as well as other biomarkers such as 
basal cell density (8, 9). Examining these biomarkers will elucidate 
how these quantifiable morphology features relate to LSCD disease 
progression. We  employed deep learning to classify neuron 
morphology. To maximize the effectiveness of these models 
we developed a novel pre-processing pipeline for use prior to training 
and testing. To overcome potential hurdles with the size of our data 
set we employed random sampling with replacement, as well as image 
augmentation and enhancement. Stable diffusion (SD) is a latent 
diffusion model which is generally used as a text-to-image model (15). 
Deep learning requires large datasets and diffusion models present an 

opportunity for more robust data augmentation beyond typical image 
transformations like rotations and flips (16). A number of recent 
studies have explored diffusion models for specific tasks in medical 
imaging, including synthesizing magnetic resonance imaging and 
computed tomography volume scans (17). To date, no other work in 
neuro-morphological classification has incorporated artificially 
generated images into training datasets using SD. The current study is 
the first to demonstrate the use of this approach in subbasal 
nerve analysis.

Materials and methods

Dataset

Appropriate consent was obtained from study subjects in 
accordance to IRB protocol (UCLA IRB #10-001601). The study was 
compliant with HIPAA regulations and adhered to the Declaration 
of Helsinki.

LSCD diagnosis was based on a comprehensive examination 
including history, slit lamp examination, and fluorescein-staining 
pattern, and confirmed in all cases by IVCM and/or AS-OCT and 
impression cytology (2). The control group included patients 
without any ocular or systemic morbidities and a normal ocular 
examination. The stage of LSCD was classified as mild (2–4 points), 
moderate (5–7 points), or severe (8–10 points) based on a clinical 
scoring system previously published (18). IVCM volume scans of 
the central cornea were obtained from 133 patients clinically 
presenting with LSCD and 54 healthy controls. Of the 187 volume 
scans, 62 were Mild (Class I), 55 were Moderate (Class II), and 16 
were Severe (Class III). Figure 1 shows an example case of each 
severity. In total, 641 individual scans were obtained. IVCM scans 
were performed using HRT III (Heidelberg Engineering GmBH, 
Germany) with the Rostock cornea module at the Stein Eye 
Institute, University of California, Los Angeles. A minimum of 
three high-quality Z-scans were acquired in the central cornea from 
the superficial epithelium down to the anterior stroma (40 scans of 
400 μm × 400 μm, one every 2 microns, representing 8-bit grayscale 
384 × 384 pixels). For each eye, up to 4 individual scans from the 
volume were identified by a senior cornea specialist (CB) as 
clinically relevant for nerve morphology identification and 
quantified by two trained readers for disease severity, fiber number, 
fiber length, branch number, and nerve tortuosity. The average of 
the provided labels by the two readers was used as ground truth 
labels for the quantification task.

Image preprocessing

To enhance the visibility of the structures of interest, we applied 
a combination of Top Hat and Black Hat transformations. The Top 
Hat transform is designed to find bright objects on a dark 
background, while the Black Hat transform does the opposite. By 
subtracting the Black Hat transform from the Top Hat transform and 
adding it back to the original image, we obtain an enhanced image 
that highlights the neurons in each image. The resulting transformed 
image provides improved contrast for quantification of biomarkers 
(Figure 2).
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Stable diffusion

Training set images were passed through Stable diffusion (SD), a 
model used to create additional artificial images by extending patterns. 
The model’s architecture, comprising a latent diffusion model (LDM) 

developed by the CompVis Group at Ludwig Maximilian University 
of Munich, consisted of two main components: (1) a variational 
autoencoder (VAE), a machine learning model that can infer and 
create new data relationships within images, and (2) a U-Net, a CNN 
designed for biomedical image segmentation by analyzing the image 

FIGURE 1

Grayscale in vivo confocal microscopy images of central cornea used as data source. Classification (control, mild, moderate, severe) based on 
presence, density, branching, and tortuosity of visible nerves.

FIGURE 2

Example of an original image (left) subject to the Top Hat and Black Hat transformation, resulting in a contrast enhanced image (right) with highlighted 
neurons compared to the original.
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at different scales (15). Each image from our original dataset 
underwent 16 augmentation runs, with varying strengths of Gaussian 
noise infusion ranging from 0.2 to 0.28 (Figure 3). An example of the 
different strength hyper-parameter outputs can be seen in Figure 4.

At each iteration, the latent diffusion model generated new images 
by iteratively denoising random noise, guided by the CLIP text 
encoder pretrained on relevant concepts (19). This process allowed the 
generation of diverse representations of images while maintaining 
their original disease severity. The augmented images created through 
SD were then interlayed with our original training dataset before 
performing normalization, transformation, and finally, model training.

Data Split and normalization

Image arrays and their corresponding metric values were read in 
after the image data was split into training and validation in a 
proportion of 70/30 by patient for model development. Separate lists 
were created to store the image features and the corresponding target 
variables for severity, fiber number, branch, fiber length, and 
tortuosity. These target variables represented the labels and metrics 
used for the subsequent analysis. Before feeding the image data into 
the model, normalization was applied to ensure consistent and 
standardized input. The image features were normalized to the range 
of [0, 1]. This normalization step ensured that all images had consistent 
intensity ranges and facilitated the convergence and stability of the 
model during training. Images were lastly feature scaled to ensure all 
input features have a similar scale or range.

Model architecture and training

Machine learning models are often constructed on an existing 
model architecture, pre-trained on an existing dataset, and applied to 
a domain-specific task. A model architecture consists of a stack of 
layers that take an input image, perform a series of transformations on 
the image, and output a prediction based on the features learned from 
the image. The model architecture designed and tested in this study is 
based on InceptionResNetV2, a model pre-trained on the ImageNet 
dataset (20, 21), which provides a solid foundation for image feature 

extraction (Figure 5). A CNN is a machine learning model that feeds 
images through a series of convolutions to understand features within 
images. The InceptionResNetV2 model is a state-of-the-art CNN with 
residual connections that feed information to later layers of the model 
to aid with model training. To adapt the InceptionResNetV2 for our 
specific task, we appended it with additional layers, creating a Residual 
U-Net (ResUNet) architecture. The model was trained to predict 
multiple nerve morphology metrics and was composed of several key 
elements. First, residual blocks (a sequence of layers that take the 
output of a layer and add it to another layer) are integrated into the 
architecture, featuring skip connections that facilitate gradient flow 
and promote the effective extraction of both low-level and high-level 
features from the input images. These residual connections allow the 
model to bypass certain layers during training, enabling efficient 
network propagation and reducing the vanishing gradient problem, 
which is an issue where learned features are lost during model training.

Encoders and decoders are key components of a machine learning 
model architecture that break down an image to learn features and 
subsequently output these learned features to make a prediction. The 
model contains a decoder architecture which plays a critical role in 
reconstructing feature maps to their original spatial dimensions, 
allowing for image information to be  more easily analyzed. This 
reconstruction is achieved through the incorporation of upsampling 
layers, which facilitate the restoration of high-resolution spatial details 
lost during the downsampling process in the encoder portion of the 
model. The upsampling layers work by replicating existing feature 
values to upscale the feature maps, effectively enlarging them to match 
their original dimensions. The decoder is composed of residual blocks, 
which leverage skip connections (connections that skip layers to 
deliver information to layers further within the architecture) to 
preserve essential feature information while upscaling the feature 
maps. Each residual block consists of two convolutional blocks with 
activation functions and batch normalization, which act as 
information processing layers. The skip connections within the 
residual blocks allow the decoder to directly access the original input 
features, facilitating the propagation of gradients and preventing the 
degradation of feature information during upsampling.

To enable the model to predict multiple metrics, we incorporated 
separate output branches for each target metric, namely severity, fiber 
number, branch characteristics, fiber length, and tortuosity. These 

FIGURE 3

Examples of output possibilities from using stable diffusion on the confocal microscopy dataset. The latent diffusion network can be applied at various 
strengths to generate varying degrees of similarity between output images and the original image.
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output branches consist of convolutional layers with exponential 
linear unit (ELU) activation functions and L2 regularization. 
Activation functions allow predictions by applying a mathematical 
transformation to a model’s predicted output. L2 regularization is 
applied to calibrate the model during training by adjusting loss term 
values. To further optimize model training, we compiled it with the 
Adam optimizer using a learning rate of 0.001. Our choice of mean 
squared error (MSE) loss functions tailored for each output branch 
allowed us to effectively quantify the discrepancy between the 
predicted values and the ground truth. Additionally, we  included 
mean absolute error (MAE) and root mean squared error (RMSE) as 
evaluation metrics to comprehensively assess the model’s performance 
during training and validation.

During model training there is a possibility for a model to overfit, 
where the model cannot generalize to data outside of the training set, 

leading to poor predictions. Augmentations of the images in the 
training set can be performed to help counter a model from overfitting 
to the training set. To enhance the model’s generalizability and prevent 
overfitting, we applied rigorous data augmentation techniques aside 
from and in combination with SD-generated images during training. 
We  augmented the training images with rotations, translations, 
shearing, zooming, and horizontal flipping. Furthermore, 
we  implemented a learning rate scheduler during training to 
dynamically adjust the learning rate, which is a mathematical value 
that determines the rate at which a model learns and processes image 
features, based on the validation loss. The scheduler reduced the 
learning rate by a factor of 0.1 if the validation loss did not improve 
after a certain number of epochs (the number of times that a machine 
learning model is trained), thus facilitating the model’s exploration of 
different areas in the loss landscape and preventing it from getting 

FIGURE 4

Example of an original image (A) and subsequent stable diffusion generated images at 0.23 (B) and 0.28 (C) strengths. Strength dictates the level of 
Gaussian noise infused into the original image.

FIGURE 5

Model Architecture: Multi-task model based on InceptionResNetV2 transfer learning and U-Net architecture. Model is composed of a global average 
pooling layer followed by two fully connected layers. The model has a total of 54,764,136 parameters, of which 427,400 were trainable.
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stuck in local minima. The final model was trained for 10 epochs, 
determined empirically on the training set, and tested on our held-out 
test set.

Evaluation

The model’s performance was evaluated using root mean squared 
error (RMSE) and coefficient of determination (R2) as metrics for 
predicting fiber number, branch, fiber length, and tortuosity 
parameters. RMSE was employed to assess the accuracy of the model 
by quantifying the average difference between predicted values and 
ground truth from the validation dataset. R2 reported the proportion 
of variance in the prediction for each metric that was explained by the 
model. To evaluate the model’s predictive performance for severity, 
Area Under the Receiver Operating Characteristic Curve (AUC) was 
used to measure the ability of the model to distinguish between true 
positives and true negatives, and F1 score was used as a metric of the 
balance between performance and recall.

Results

The results of the predictive models for various metrics related to 
limbal stem cell deficiency are summarized in Table 1.

When training the ResUNet on a combination of SD-augmented 
images and original images, the predictive model exhibited a notable 
performance increase across all morphology metrics aside from 
tortuosity when compared to the model trained solely on original 
images. For fiber number prediction, the model achieved an RMSE of 
4.44 and an R2 of 0.63. Similarly, for branch prediction, the model 
obtained an RMSE of 4.54 with an R2 of 0.63. Most notably, the model 
demonstrated high accuracy in predicting fiber length, with an RMSE 
of 5.56 and a high R2 of 0.80. However, in the case of tortuosity 
prediction, the model’s performance showed room for improvement, 
yielding an RMSE of 11.33 and a relatively low R2 of 0.03. Distribution 
of predictions and ground truth values can be found in Figure 6.

In contrast, when training the model on only original images as 
input, the model’s predictive capabilities were noticeably lower 
compared to the SD-augmented model. The RMSE for fiber number 
was 5.04, and the corresponding R2 was 0.53, indicating a moderate 
level of accuracy. For branch prediction, the model obtained an RMSE 
of 5.13 and an R2 of 0.52. For fiber length estimation, the model 
achieved an RMSE of 6.3 and an R2 of 0.74. Finally, regarding 
tortuosity prediction, the model showed an RMSE of 4.31 and an R2 
of 0.13.

Disease severity was assessed individually in a single metric 
variation of the residual U-net model. This single task version of the 
model was also trained on the SD and non-SD supplemented data sets. 
Disease severity was stratified and assessed as disease vs. no disease 
(control), control/mild vs. moderate/severe, and severe vs. non-severe. 
Performance was compared against a classifier based on the 
morphological features that were assessed manually during routine 
clinical practice. A summary of disease severity statistics can be found 
in Table 2.

In all three scenarios, the ResUnet model with SD outperformed 
classification using manual morphological metrics in terms of F1 
(0.839 vs. 0.805, 0.743 vs. 0.703, and 0.255 vs. 0.222, respectively). The 
accuracy using the ResUnet with SD produced higher accuracy than 
the manual metrics for classifying the controls and severe cases (0.789 
vs. 0.758 and 0.577 vs. 0.531, respectively), and they had the same 
accuracy when classifying between mild and moderate cases (0.778). 
The Area Under the Receiver Operator Characteristic Curve (AUC) 
for the ResUnet with SD was higher in the moderate and severe cases 
(0.810 vs. 0.803 and 0.765 vs. 0.733, respectively), but slightly lower in 
the control classification (0.855 vs. 0.857; Figure 7).

When comparing the classification with and without SD in the 
classifier, the model with SD again had higher accuracy (0.789 vs. 
0.747, 0.778 vs. 0.768, and 0.577 vs. 0.515) and F1 (0.839 vs. 0.797, 
0.743 vs. 0.734, and 0.255 vs. 0.230). The model without SD had higher 
AUC values for the control (0.855 vs. 0.867) and mild classifications 
(0.810 vs. 0.816), while the SD model had the highest AUC when 
classifying the severe cases (0.765 vs. 0.746).

Discussion

This study presents a novel approach to enhancing the 
performance of multi-task nerve morphology prediction by 
incorporating images generated through latent diffusion models as a 
form of training set bolstering. Specifically, SD-generated images 
were introduced as an augmentation technique to complement the 
original dataset in training the residual U-Net architecture. The 
results demonstrate the potential of this approach, as the inclusion of 
SD-generated images led to a notable improvement in the model’s 
nerve morphology prediction performance when compared to the 
same model trained solely on original images. The introduction of 
SD-generated images allowed the residual U-net model we created to 
leverage additional synthetic samples, resulting in enhanced 
generalization and predictive capabilities. It is important however to 
acknowledge the inherent limitations of training machine learning 
models on generated data.

TABLE 1 Multi-task neuro-morphology results: root mean squared error and R-squared values for stable diffusion trained model and model trained on 
solely original images.

Models Fiber 
number 
RMSE

Fiber 
number 

R2

Branch 
RMSE

Branch 
R2

Fiber 
length 
RMSE

Fiber 
length 

R2

Tortuosity 
RMSE

Tortuosity 
R2

Stable 

diffusion + Original 

images 4.44 0.63 4.54 0.63 5.56 0.80 11.33 0.03

Original images only 5.04 0.53 5.13 0.52 6.3 0.74 4.31 0.13

Bold values represent the model with the best performance for each metric.
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Previous work on using nerve features for severity prediction has 
theorized that morphological changes to nerves become more 
pronounced as disease severity increases, which is supported by the 
results shown (22). The high AUC of 0.855 supports the claim that 

nerve morphology can be used as an effective predictor of LSCD 
severity. In a larger pipeline, the disease severity prediction by nerve 
morphology can be supplemented by other predictors such as cell 
morphology and basal cell density. While in the context of this study 

FIGURE 6

Nerve feature prediction performance. From top left to bottom right: fiber number, branch number, fiber length, and tortuosity. For each metric, a 
regression line was fitted to illustrate the direction and magnitude of the correlation between ground truth and predicted values.

TABLE 2 Severity comparisons and corresponding AUC, Precision, Recall, F1, and accuracy values with and without stable diffusion (SD) images and 
using manually assessed metrics only.

AUC Precision Recall F1 Accuracy

Control vs. mild, 

moderate, severe

Manual 0.857 0.980 0.683 0.805 0.758

SD 0.855 0.947 0.754 0.839 0.789

No SD 0.867 0.970 0.676 0.797 0.747

Control, mild vs. 

moderate, severe

Manual 0.803 0.718 0.689 0.703 0.778

SD 0.810 0.838 0.667 0.743 0.778

No SD 0.816 0.653 0.838 0.734 0.768

Control, mild, 

moderate vs. severe

Manual 0.733 0.126 0.929 0.222 0.531

SD 0.765 0.146 1.00 0.255 0.577

No SD 0.746 0.130 1.00 0.230 0.515

Bold values represent the model with the best performance for each metric in each severity classification.
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nerve density was a sufficient predictor, some confocal microscopy 
images contain less pronounced nerve morphology. Thus, the 
predictions shown would likely be most beneficial as part of a larger 
pipeline that examines multiple features of corneal images for disease 
severity prediction.

Overall, the inclusion of SD-augmented images in the ResUnet 
model led to substantial improvements in predicting fiber number, 
branch, and fiber length metrics associated with limbal stem cell 
deficiency. The enhanced predictive accuracy demonstrated the 
model’s capacity to better capture intricate spatial features and 
relationships, resulting in more reliable and robust estimations. The 
models had more difficulty learning tortuosity; this difficulty is 
understandable as the clinical evaluation can be highly variable in 
images with few nerves present (i.e., severe cases). While certain 
challenges remain in predicting tortuosity accurately, the promising 
outcomes highlight the potential of the proposed approach for 
comprehensive and precise assessments of limbal stem cell 
deficiency metrics.

The inclusion of SD training images was less helpful in classifying 
severity than individual morphological features. While the SD model 
had consistently higher accuracy and F1, the differences were 
relatively small and largely resulted from a different classification 
threshold as demonstrated by the similar ROC curves (Figure 7). The 
highest difference between the two was in classifying severe cases, 
which had the fewest training examples, which could indicate that SD 
helped overcome this lack of data. The overall similarity in predictions 
could be  a result of the classification using nerve images alone 
whereas clinical diagnosis utilizes multiple other data sources and 
modalities. The utility of these models is demonstrated in the fact that 
the deep learning model outperforms a classifier trained only on the 
metrics manually assessed from these images through standard 
clinical practice. Future directions can extend these methods to 
incorporate these other data sources to create a more holistic classifier 
that better represents the full spectrum of information available to 
a clinician.

SD images may be beneficial for training the model in terms of 
increasing the dataset size, although it potentially may limit the 
features that can be learned. SD inherently alters the structure of an 
image, although the degree to which this affects the model’s ability to 

learn features is unknown. The addition of SD images in the training 
dataset may improve model predictions as the feature identification 
task becomes more difficult. Conversely, the inclusion of SD images 
may limit the model performance by forcing the model to learn 
extraneous features that were created as a result of including the 
SD-generated images.

Despite the limitations of SD, our findings highlight the potential 
benefits of incorporating latent diffusion-generated images as a 
means of data augmentation in the context of nerve morphology 
regression. The approach not only offers an avenue to expand the 
training dataset but also provides an opportunity to explore diverse 
representations of the same images while preserving their semantic 
meaning. Further investigations into mitigating overfitting and 
optimizing the augmentation process are warranted to unlock the full 
potential of this novel technique. The combination of real and 
generated data may lead to more robust and accurate predictive 
models when faced with limited training data. This can serve to 
facilitate advancements in the diagnosis and treatment of nerve-
related pathologies and beyond.

Future directions

In the future, additional processing methods such as 
bootstrapping, creating larger SD image sets, and modifying the noise 
parameters and weights in our latent diffusion model can 
be performed to improve results and further validate efficacy of the 
model. Additionally, it is possible that employing SD images changes 
the patterns or number of neurons in an image, which could make it 
more representative of a different disease state from the original 
image. Thus, including a step that segments the neurons in both the 
raw and SD images, compares the pixel volume of each, and assigns 
a weight to the SD image based on the difference when compared to 
its unaltered counterpart would help to correct this issue. 
Alternatively, once a model is trained to be proficiently accurate on 
raw data, it could be used to assign predicted metric values on SD 
images. Further research is required to validate the use case for 
including SD images in training data as a method of 
data augmentation.

FIGURE 7

Receiver operator characteristic curves for regression using manually derived features (blue), deep learning using stable diffusion (SD; orange), and 
deep learning without SD (green).
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Conclusion

This study demonstrates the effectiveness of incorporating 
SD-generated images as an augmentation technique to enhance the 
performance of a multi-task nerve morphology prediction model for 
limbal stem cell deficiency (LSCD). The inclusion of SD images 
significantly improved the model’s predictive capabilities for fiber 
number, branch, and fiber length metrics associated with LSCD, 
showcasing its potential for precise assessments of this disorder. 
However, challenges remain in accurately predicting tortuosity and 
disease severity, warranting further investigation. While this approach 
shows promise in leveraging synthetic data to bolster training sets, 
careful consideration of overfitting and model convergence is essential. 
By refining the preprocessing methods and exploring additional 
augmentation techniques, this novel approach may lead to more 
robust and accurate predictive models for nerve morphology analysis 
and disease severity prediction, potentially improving clinical 
workflows in the future.
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