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Heatstroke can cause multiple organ failure and systemic inflammatory 
response syndrome as the body temperature rises beyond the body’s ability to 
regulate temperature in a hot environment. Previous studies have indicated that 
heatstroke-induced acute kidney injury (AKI) can lead to chronic kidney disease. 
Therefore, there is an urgent need to elucidate the mechanism of heatstroke-
induced AKI and to establish methods for its prevention and treatment. Recent 
reports have revealed that innate immunity, including neutrophils, macrophages, 
lymphocytes, and mast cells, is deeply involved in heat-induced AKI. In this review, 
we will discuss the roles of each immune cell in heat-induced renal injury and 
their potential therapeutic use.
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Introduction

Due to global warming and heat waves, humans are being increasingly exposed to high 
temperatures, and the rate of heat-related illnesses is consequently increasing as well.

Heatstroke (HS), which is the most severe condition of heat-related illness, is characterized 
by central nervous system dysfunction and a core body temperature of greater than 40°C (1). 
Normally, the body temperature is maintained at approximately 37°C. However, when heat gain 
exceeds heat loss (noncompensatory phase), the body temperature continues to rise, triggering 
circulatory disturbances, cytotoxicity, and maladaptive inflammatory responses, which induce 
multiorgan dysfunction, including acute kidney injury (AKI) (2). Recent studies have shown 
that HS-induced AKI is not temporary but actually progresses to chronic kidney disease (CKD) 
(3, 4). Therefore, there is an urgent need to elucidate the exact mechanisms underlying 
HS-induced AKI and to explore prevention and treatment strategies for HS-induced AKI.

Many studies have reported that HS can cause a systemic inflammatory response syndrome 
(SIRS), which is defined as ≥2 of the following: body temperature >38°C or <36°C, heart rate 
>90/min, respiratory rate >20/min or PaCO2 <32 mmHg, and white blood cell count >12,000/
mm3 or <4,000/mm3 or >10% immature bands (5). SIRS can cause severe shock, disseminated 
intravascular coagulation (DIC), multiple organ dysfunction, and death (6). Proinflammatory 
cytokines, such as interleukin (IL)-6, increase following endotoxemia or hyperthermia due to 
heat exposure (7). Sustained elevation of circulating IL-6 could induce further inflammation 
and result in poor outcome of HS (8).

Recently, increasing evidence has supported that kidney immune cells play important roles 
in early tissue injury, repair, and fibrosis after AKI (9). In this review, we will discuss the roles of 
each immune cell in heat-induced renal injury and therapeutic strategies targeting immune cells.
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Neutrophils

Neutrophils rapidly respond to injured organs. In animal 
experiments, neutrophils infiltrated injured kidneys as early as 4 h 
and reached a maximum at 24 h after ischemia-reperfusion injury 
(10, 11). Consistently, infiltrated neutrophils in the kidneys were 
also reported to start increasing immediately after heat exposure 
and increase statistically significantly at 24 h after heat stress (12). 
It has also been reported that neutrophils increase in 
bronchoalveolar lavage fluid (BALF) as early as 2 h after heat 
exposure in a mouse heat-induced acute lung injury model (13). 
In humans, renal biopsies are rarely performed to confirm the 
diagnosis of HS-induced AKI, and whether or not neutrophils are 
involved in AKI after heat stress is unclear. However, one study 
indirectly showed the relationship between neutrophils and 
HS-induced AKI. A retrospective study enrolled 187 intensive-care 
unit (ICU) patients with exertional HS (EHS) and showed that an 
increase in neutrophils and a decrease in lymphocytes are risk 
factors for AKI (14).

Neutrophil infiltration into damaged kidneys could contribute 
to cytotoxicity through phagocytosis, chemotaxis, and oxidative 
burst (10). A recent study showed that citrullinated histone H3 
(Cit-H3), which is involved in the formation of neutrophil 
extracellular traps (NETs), appeared in the peripheral blood of HS 
patients (15). In a murine septic AKI model, NETs were induced 
by necrotic tubule-derived DAMPs and histones, leading to 
further cytokine release and resulting in additional tubular 
necrosis (16–18). Furthermore, these Cit-H3-positive cells 
possessed a multisegmented nucleus, and most were 
immunoreactive for CD66b (15). Multisegmented neutrophils, the 
so-called “botryoid nucleus,” were also observed in HS patients 
and mouse HS models (19, 20). These changes seem to result from 
nuclear degeneration induced by hyperthermia.

As a therapeutic target, oxytocin has been reported to reduce 
neutrophil infiltration, myeloperoxidase activity, and oxidative 
damage markers in acute lung injury after HS (21). Furthermore, 
CRRT in an early phase (≤8 h after admission) reduced percentages 
of neutrophils and APACHE II scores, which resulted in an improved 
survival of HS patients (22).

Monocytes and macrophages

Mononuclear phagocytes, including monocytes and macrophages, 
have crucial and distinct roles in tissue homeostasis (23). In 
experimental animals, several studies have shown that macrophage 
infiltration into the kidney increased as early as 24 h after heat stress 
(12, 24). Furthermore, these increases in infiltrated macrophages were 
associated with the extent of core temperature elevation and 
exacerbation of tubular damage and fibrosis after heat stress. Using the 
mitochondrial coupling agent 2,3-dinitrophenol (DNP) with exposure 
to heat stress, mice expressed higher core temperature, more tubular 
damage, and more F4/80-positive macrophages in kidney tissue than 
those who did not use DNP (24).

Kidney macrophages can be classified into two types: bone 
marrow (monocyte)-derived macrophages and tissue-resident 
macrophages. Monocytes and bone marrow-derived macrophages 
are key players in inflammation and pathogen challenge. These 

cells produce proinflammatory cytokines, such as tumor necrosis 
factor-α (TNF-α) (25–27). In contrast, tissue-resident 
macrophages have important roles in the development and 
resolution of inflammation as well as tissue repair (23, 28–30). 
Tissue-resident macrophages were reported to enhance Wingless-
type MMTV integration site family (Wnt) signaling after injury, 
which seemed to advance tissue repair (29). Using flow cytometry, 
we and others have reported that these two subsets of macrophages 
can be identified based on the differential expression of F4/80 and 
CD11b in mice: tissue-resident macrophages express 
F4/80highCD11blow, and bone marrow-derived macrophages express 
F4/80lowCD11bhigh (27–31). In our previous study, tissue-resident 
macrophages expressing F4/80high were decreased after heat stress 
in a mouse heat stress model. These macrophages seemed to 
become nonviable after heat stress (31). Furthermore, a decrease 
in the number of tissue-resident macrophages was coincident with 
a decrease in the number of PCNA-positive tubular cells, 
indicating delayed tubular regeneration.

Macrophages are also classified into two phenotypes: 
pro-inflammatory M1 phenotype and anti-inflammatory M2 
phenotype (32). This classification was based on the in vitro 
observation that macrophages activated classically [activated by 
interferon (IFN)-γ] or alternatively (activated by IL-4/IL-13) (32). 
We and others have reported that kidney macrophages polarize to 
the M1 phenotype after heat stress (12, 31). These changes 
occurred immediately after exposure to heat stress, before 
monocyte-and bone marrow-derived macrophage infiltration into 
the kidneys. Furthermore, we  also showed that not only bone 
marrow-derived macrophages but also tissue-resident 
macrophages were polarized to the M1 phenotype, suggesting that 
the kidney microenvironment after heat exposure might 
be involved in these phenotypical changes (31). In vivo, however, 
these phenotypes can coexist, so caution should be practiced when 
interpreting these results (33). For example, M2 macrophages 
contribute to both tissue repair and fibrosis in the context of 
AKI-to-CKD progression (34).

Regarding therapeutic targets, one study showed that electrical 
vagus nerve stimulation reduced the infiltration of CD11b-
positive macrophages into the lung and spleen, resulting in a 
decrease in serum proinflammatory cytokines and an improved 
survival rate in a rat heat stress model (35). We recently evaluated 
the effect of heat acclimation in mice and found that heat 
acclimation ameliorated the decrease in tissue-resident 
macrophages and polarization to the M1 phenotype after heat 
stress in both bone marrow-derived and tissue-resident 
macrophages, which improved tubular damage and kidney fibrosis 
due to heat stress (31). We also found increased levels of heat 
shock protein (Hsp) 70, which induces stress resilience in each 
cell, in renal tubular cells and tissue-resident macrophages after 
heat acclimation. Therefore, heat acclimation can induce 
cytoprotective effects in tissue-resident macrophages, resulting in 
preservation of the number of these cells after heat exposure 
(Figure  1). Furthermore, these results from our study were 
consistent with a recent clinical study that showed that heat 
acclimation was associated with a decrease in AKI incidence. The 
incidence rate of AKI was reported to significantly decrease after 
a 23 days heat acclimation program in the United  Kingdom 
military, which was coincident with the decrease in the levels of 
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IL-6, one of the proinflammatory cytokines released by M1 
macrophages (36).

Lymphocytes

Lymphocytes also play important roles in HS. Early studies 
demonstrated that CD8-positive cytotoxic T cells and natural killer 
(NK) cells are increased in the peripheral blood of HS patients, 
whereas CD4-positive helper T cells are decreased (37, 38). 
Furthermore, the number of CD8-positive T cells in the peripheral 
blood of HS patients was positively correlated with the rectal 
temperature (37). However, a recent study showed that a decreased 
number of lymphocytes was associated with increased 90 days 
mortality (39) and incidence of AKI (15) in HS patients. These 
controversial results might be due to the focus on whole lymphocytes 
or specific subpopulations thereof.

NK cells and NKT cells have been reported to play key roles in the 
early innate response in a mouse AKI model (11, 40, 41). These cells 
exert cytotoxic activities by releasing cytotoxic mediators and 
proinflammatory cytokines (42). Furthermore, when NK cells were 
depleted, the cytotoxic function of NKT cells was enhanced in a 
mouse α-GalCer-induced AKI model (43).

Regulatory T cells (Tregs), expressing forkhead/winged-helix 
transcription factor (Foxp) 3, release inhibitory cytokines and 
negative regulators of inflammation (44). In an animal 
experiment, decreases in the numbers of splenic Tregs and helper 
T cells and the production levels of anti-inflammatory cytokines 
were observed after heat stress (12, 45). Intestinal barrier 
dysfunction, which can cause leaky gut and endotoxemia, is also 
affected by a decrease in Tregs after heat exposure (46). These 
studies implied that Tregs might serve as potential therapeutic 
targets for HS patients.

Mast cells

Mast cells play an important role in the innate immune 
system. They are activated by antigen-specific immunoglobulin 
(Ig) E via high-affinity receptors for IgE (FcεRI), leading to 
degranulation and release of mediators, including histamine (47). 
Furthermore, mast cell-derived cytokines and other mediators 
affect immune cells, such as dendritic cells, T cells, and B cells 
(48). A recent study showed that mast cell tryptase (MCT), which 
is relatively specific for histamine release, was significantly 
increased in participants who developed post-exercise 
hypotension compared with those who did not (49). The authors 
suggest that mast cell degranulation is a vasodilatory mechanism 
underlying post-exercise hypotension and exercise associated 
collapse. However, one study showed that heat stress suppressed 
the IgE-induced degranulation of mast cells (50). A more recent 
study showed that exercise-associated changes in skeletal muscle 
temperature generated elevations in intramuscular histamine 
concentrations, although heating to comparable temperatures did 
not activate mast cell degranulation in an in vitro experiment (51). 
Therefore, the release of histamine without degranulation may 
cause post-exercise hypotension. In contrast, some studies have 
shown that the elevation of histamine levels in skeletal muscle 
might be important in generating positive adaptations to exercise 
training (51–53). An increase in histamine concentration induces 
an increase in post-exercise muscle perfusion (51, 52). 
Furthermore, with chronic interval training, histamine H1/H2 
receptor signaling increases in the skeletal muscle, which results 
in an enhanced insulin sensitivity, aerobic capacity, and vascular 
function (NO production) (53). Further studies are needed to 
investigate whether or not increased histamine and its receptor 
signaling after chronic training and/or heat acclimation affects 
systemic adaptation to heat stress.

FIGURE 1

The mechanisms by which heat acclimation (HA) prevents heat stress-induced AKI. HA induced intracellular heat shock protein (Hsp) 70 in tubular 
cells, which resulted in increased heat tolerance of tubular cells and prevented tubular injury (mechanism 1). HA also increased the levels of intracellular 
Hsp70 in tissue-resident macrophages and preserved the number of these cells after heat stress. As tissue-resident macrophages play an important 
role in tissue repair, regeneration of tubules occurred earlier with HA than without HA (mechanism 2).
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Conclusion

It is now clear that HS-induced AKI is due not only to dehydration 
or a decrease in renal blood flow but also to tubular damage caused by 
heat stress itself and the inflammatory immune response. Although 
the contributions of these studies are mentioned above, the precise 
immune response involved in HS-induced AKI remains unclear due 
to the wide distribution of involved immune cells and the complex 
interaction of these cells. Further studies focused on comprehensive 
changes in kidney immune cells after heat exposure, including studies 
using single-cell RNA sequencing, are needed to better understand the 
roles of each immune cell and the interactions of these cells, which 
might result in the development of new therapeutic approaches.
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