AUTHOR=Meregildo-Rodriguez Edinson Dante , Asmat-Rubio Martha Genara , Vásquez-Tirado Gustavo Adolfo TITLE=Droplet digital PCR vs. quantitative real time-PCR for diagnosis of pulmonary and extrapulmonary tuberculosis: systematic review and meta-analysis JOURNAL=Frontiers in Medicine VOLUME=10 YEAR=2023 URL=https://www.frontiersin.org/journals/medicine/articles/10.3389/fmed.2023.1248842 DOI=10.3389/fmed.2023.1248842 ISSN=2296-858X ABSTRACT=
Tuberculosis is a rising global public health emergency. Then, it is a priority to undertake innovations in preventive, diagnostic, and therapeutic methods. Improved diagnostic methods for tuberculosis are urgently needed to address this global epidemic. These methods should be rapid, accurate, affordable, and able to detect drug-resistant tuberculosis. The benefits of these new diagnostic technics include earlier diagnosis and treatment, improved patient outcomes, and reduced economic burden. Therefore, we aimed to systematically review the diagnostic performance of droplet digital PCR (ddPCR)—a third-generation PCR—compared with quantitative Real Time-PCR (qPCR) for diagnosing pulmonary and extrapulmonary tuberculosis. We included 14 diagnostic accuracy test studies performed in Asia, Europe, and Latin America, 1,672 participants or biological samples, and 975 events (pulmonary or extrapulmonary tuberculosis). Most of the included studies had a low risk of bias (QUADAS-C tool). Sensitivity and specificity were lower for ddPCR [0.56 (95% CI 0.53–0.58) and 0.97 (95% CI 0.96–0.98), respectively] than for qPCR [0.66 (95% CI 0.60–0.71) and 0.98 (95% CI 0.97–0.99), respectively]. However, the area under the ROC curve (AUC) was higher for ddPCR than for qPCR (0.97 and 0.94, respectively). Comparing both AUCs using the Hanley & McNeil method, we found statistically significant differences (AUC difference of 4.40%,