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Precision lifestyle medicine is a relatively new field in primary care, based on 
the hypothesis that genetic predispositions influence an individual’s response 
to specific interventions such as diet, exercise, and prescription medications. 
Despite the increase in commercially available genomic testing, few studies have 
investigated effects of a physician-directed program to optimize chronic disease 
using genomics-based precision medicine. We performed an pilot, observational 
cohort study to evaluate effects of the Wild Health program, a physician and 
health coach service offering genomics-based lifestyle and medical interventions, 
on biomarkers indicative of chronic disease. 871 patients underwent genomic 
testing, biomarker testing, and ongoing health coaching after initial medical 
consultation by a physician. Improvements in several clinically relevant out-of-
range biomarkers at baseline were identified in a large proportion of patients 
treated through lifestyle intervention without the use of prescription medication. 
Notably, normalization of several biomarkers associated with chronic disease 
occurred in 47.5% (hemoglobin A1c [HbA1c]), 33.3% (low density lipoprotein 
particle number [LDL-P]), and 33.2% (C-reactive protein [CRP]). However, due to 
the inherent limitations of our observational study design and use of retrospective 
data, ongoing work will be crucial for continuing to shed light on the effectiveness 
of physician-led, genomics-based lifestyle coaching programs. Future studies 
would benefit from implementing a randomized controlled study design, tracking 
specific interventions, and evaluating physiological data, such as BMI.
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1. Introduction

Every individual has different and unique risk factors for the development of chronic 
diseases such as cardiovascular disease, insulin resistance, and inflammation. This risk is 
determined by a complex interplay between both modifiable and nonmodifiable factors such 
as genomics, epigenetics, and lifestyle factors. Although there is significant scientific interest 
in utilizing these factors in understanding disease processes, to date, few opportunities exist 
for consumers to engage with healthcare in this method of risk modulation. While the 
American College of Medical Genetics states “the application of exome and genome 
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sequencing screening tests for apparently healthy individuals is in 
its infancy,” it also highlights that “the public’s interest in obtaining 
their own genomic information is likely to increase along with 
demands on health-care providers to assist patients in accessing 
testing, interpreting results, and using results in medical care (1).” 
While there has been considerable interest in expanding health-care 
provider assistance to the public (2, 3), currently, most consumers 
engage with direct-to-consumer programs and products which offer 
genetic and laboratory testing in the absence of a doctor-patient 
relationship. These user-directed methods fail to provide the benefit 
of clinically relevant interpretations and 
subsequent recommendations.

Since the mapping of the human genome in 2008, precision 
medicine research has skyrocketed with an extraordinary number of 
new genome wide association studies. Although this has led to ample 
“clickbait” news articles, very little research has been focused on 
clinical healthcare delivery. Despite this, there is evidence that genetic 
predispositions do have a significant effect on clinical response to 
lifestyle interventions in the general populations (1–3) and, 
furthermore, that lifestyle interventions can modify risk of disease 
(4–6). At the heart of this knowledge is the hypothesis that since 
humans respond differently to specific interventions based on their 
genetic predispositions, prior knowledge of those predispositions may 
improve behavior change and thus the success of the interventions. 
Although this has been preliminarily studied in lifestyle coaching, few 
studies have evaluated the effect of a lifestyle program implemented 
by both physicians and health coaches using a multi-omic approach 
consisting of genomics, epigenetics, laboratory, lifestyle, and 
microbiome analysis (7).

The Wild Health program encompasses genomic testing, 
biomarker analysis, physician consultation and health coaching, 
with a focus on lifestyle intervention to prevent and/or treat 
common chronic diseases such as pre-diabetes, diabetes, and 
hyperlipidemia. Physician recommendations for specific lifestyle 
interventions were discussed with patients, who subsequently 
received health coaching support through motivational interviewing 
and structured behavior change. Patients received lIfestyle and 
behavioral recommendations based on their genetic and laboratory 
data, as well as their specific goals and pre-existing conditions. 
Recommendations were comprehensive and covered key pillars of 
health including nutrition, training, sleep optimization, stress 
reduction, and supplement use as needed for vitamin or 
micronutrient deficiencies.

The purpose of this study was to pilot the analytic arm of the 
Wild Health program, explore trends in patient health during the 
program, and identify areas of focus for future study (i.e., promising 
targets for intervention in a more data-rich and controlled study 
environment). Specifically, we retrospectively examined laboratory 
biomarkers for patients enrolled with Wild Health over a 2-year 
time frame resulting in 871 participants with repeat laboratory 
testing. Our primary goal was to investigate whether participation 
in the Wild Health program could be associated with improvement 
of key biomarkers indicative of chronic illness, by comparing 
pre-intervention values (baseline values at enrollment) vs. post-
intervention values (follow-up measurements taken at least 30 days 
after enrollment). Our secondary goal was to describe 
pre-intervention and post-intervention values across all biomarkers 
for which data was available in this cohort.

2. Methods

2.1. Study setting

Wild Health is a precision lifestyle medicine program that 
encompasses genomic testing, biomarker analysis, and health 
coaching for patients across the U.S. provided by a multidisciplinary 
team of clinicians and health coaches. Patients enter the program most 
commonly through self-referral and receive follow-up for at least 
12 months. Although the number of follow up visits with clinicians 
and health coaches is variable and based on clinical necessity and 
patient availability, all patients have an initial consultation including 
genomic testing, laboratory baseline analysis, and background data 
collection. All patients included in this study also had at least one 
additional visit with repeat laboratory testing.

The patient journey is such that after sign-up the patient completes 
an at-home genetics test and obtains baseline labs at a local blood 
draw site. The precision medicine and health coaching is then 
delivered via a series of telemedicine consultations with clinicians and 
health coaches. Patients start with a 30-min initial coaching 
consultation to identify current lifestyle patterns and health and 
wellness goals. Subsequently, a 60-min medical consultation is 
conducted, including providers and health coaches trained in 
precision medicine. Wild Health Clarity is a data aggregation tool 
designed to help physicians interpret large datasets with multiple 
inputs. The tool uses a combination of single gene and polygenetic 
analysis combined with patient history and lifestyle as well as 
laboratory findings to highlight possible disease risk as well as identify 
more precise lifestyle interventions. This data aggregation allows the 
care team to interpret complex datasets with efficiency and 
consistency, consider a larger volume of available evidence regarding 
patients’ health, and to better inform decision making in cooperation 
with their patients.

To better demonstrate the design, consider the example of 
cardiovascular disease risk: Clarity would simultaneously aggregate 
and display for the clinician the patient’s personal and family history 
of cardiovascular disease, relevant risk factors, laboratory analysis of 
lipids, insulin resistance, inflammation, calculated MESA score, 
genetic cardiovascular risk as assigned by Mega, et al., as well as a 
genomic-based predisposition to response to a dietary intervention 
(8–12). The clinician could then use this data to help direct care as 
they deemed necessary. Similar processes are undertaken for lifestyle 
pillars including nutrition, exercise, and sleep, and chronic diseases 
and including dementia, insulin resistance, and inflammation.

Recommended interventions are primarily focused on lifestyle 
changes including dietary, exercise, sleep, and neurobehavioral 
interventions. Supplements are recommended when medically 
appropriate, and prescriptions are rarely used in the event that lifestyle 
change is deemed unsuccessful or medically necessary. After the initial 
medical consultation, coaching is provided via telemedicine as 
needed, with follow up laboratory testing and medical visits with 
clinicians as clinically necessary.

2.2. Study design

The study was a pilot, retrospective observational cohort study of 
adult patients, aged 18 years and above, who agreed to participate in 
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research and enrolled in the team-based precision medicine program, 
with index (baseline) visits to Wild Health clinicians between July 
2019 and September 2021 for plasma biomarker testing as part of 
initial health screening. To be included in the study, participants had 
to have at least one follow-up visit for plasma biomarker collection 
between 1 and 12 months post-baseline. The study was reviewed and 
approved by the Institutional Review Board of the Institute of 
Regenerative and Cellular Medicine. Written informed consent for 
participation was not required for this study in accordance with the 
national legislation and the institutional requirements.

2.3. Genomic and laboratory testing

After study enrollment, participants were sent a home genomic 
collection kit which was performed at LabCorp using a specifically 
designed Illumina SNP chip. The SNP chip used in this study was 
designed in house on a standard GSA array adding approximately 
6,000 additional SNPs to meet requirements supporting multiple 
validated polygenomic scores along with clinically relevant individual 
SNPs. Polygenic risk scores were taken from the available clinical 
literature and include cardiovascular, dementia, exercise, and 
nutrition, among others (13–17). Individual SNPs were chosen based 
on literature review and had to meet internal requirements for clinical 
quality including: (1) the SNP has had consistent and significant odds 
ratio or positive likelihood ratio with a specific disease process, and 
(2) has been proven in multiple studies of adequate power and 
applicability to the patient population.

In addition to the initial laboratory screening panel, epigenetic 
testing and microbiome testing were performed on an as-needed or 
desired basis. Initial testing results were entered into a proprietary 
software program, Wild Health Clarity™ which functions as a data 
aggregation tool and analyzes genomic, laboratory, lifestyle, biometric, 
and microbiome data. Biomarker ranges were evaluated via expert 
review (MD authors) for face validity. No outliers were removed 
from analysis.

2.4. Data analysis

Unadjusted biomarker concentrations at baseline and follow-up 
were summarized using median and quartile values, along with 
frequencies and percentages of laboratory values out of range among 
the cohort. Where multiple repeat measurements were available, one 
follow-up laboratory value was randomly selected per patient to 
prevent overcounting patients with more frequent follow up. No tests 
of hypotheses regarding pre-/post-biomarker measurements were 
performed at this stage due to lack of a priori assumptions and in 
order to prevent mis-interpretation (Type 1 error) from excessive 
multiple hypothesis testing. Comparison testing for number of follow 
up tests in patients in the top quintile of responders to the Wild Health 
program vs. patients in the bottom quintile was performed via 
Student’s t-test.

For key biomarkers related to chronic illness, all laboratory values, 
including repeat measurements, were analyzed via covariate-adjusted 
mixed effects regression modeling, using a pre/post design. The 
outcome was defined as continuous biomarker at follow up. Model 
covariates were defined as age, sex, and days since baseline 

measurement, and pre-intervention (baseline measurement) vs. post-
intervention (at least 30 days after baseline measurement). Post-
estimation marginal analyses were performed to provide a sample of 
model-predicted baseline and follow-up laboratory values for 
illustrative purposes. All analyses were performed in Stata IC 15.1 
(College Station, TX).

3. Results

3.1. Study cohort

During the enrollment period, 2,230 consecutive participants 
received plasma biomarker testing through Wild Health. Of these, 871 
participants had at least one instance of follow-up testing between 1 
to 12 months after their baseline test and were included in the study. 
Repeat testing was performed at the physicians’ discretion and based 
on medical and clinical utility. The resulting cohort was 49.7% female 
with a mean age of 48 years (Table 1). Out-of-range [OOR] baseline 
testing of biomarkers associated with chronic disease demonstrated 
hyperlipidemia (low density lipoprotein [LDL-C] > 100 mg/dL) in 
78.1% of patients tested, diabetes (hemoglobin A1c [HbA1c] ≥ 6.5%) 
in 30.9% of patients tested, and pre-diabetes (HbA1c 5.7–6.4%) in 
9.4% of patients tested. Baseline and follow-up testing generally 
captured a subset of the 47 available biomarkers with a median of 19 
biomarkers (IQR = 5,29). The five most commonly tested biomarkers 

TABLE 1 Cohort description.

Frequency (Percent)

Demographics

Age (Mean, SD) 47.6 (12.5)

Male 438 (50.3)

Female 433 (49.7)

Pre-existing Conditions

Diabetes Panel

High A1C 204 (23.4)

High fasting glucose 137 (15.7)

Lipids Panel

High total Cholesterol 325 (37.3)

Low HDL-C 58 (6.7)

High LDL-C 418 (48)

High Triglycerides 140 (16.1)

Medications

Metformin at baseline 12 (1.4)

Metformin after 30 days 8 (0.9)

Statin at baseline 25 (2.9)

Statin after 30 days 16 (1.8)

Total Follow-Up Labs

1 687 (78.87)

2 140 (16.07)

3+ 44 (5.05)

Description of study cohort, N = 871.
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were Total Cholesterol, LDL-C, HDL-C, Triglycerides, and Protein, 
and were captured in over 60% of participants (Table 2). At baseline 
measurement, 826 (94.8%) patients had at least one biomarker out of 
range (OOR). The median number of OOR biomarkers at baseline was 
12 (IQR = 7, 25; Supplementary Figure). The five biomarkers most 
commonly reported as OOR at baseline were Apolipoprotein B, 
Homocysteine, Neutrophils, Creatinine, and LDL size.

3.2. A majority of biomarkers out-of-range 
at baseline demonstrated improvement at 
follow-up timepoint

To explore changes in biomarkers over time, we focused on the 
subset of participants and labs that were abnormal at baseline and 
examined the proportion that shifted to in range. For 34 of the 
biomarkers tested, 30% or more of participant labs shifted to normal 
range at a randomly selected follow-up timepoint. For 18 biomarkers, 
50% or more participant labs shifted to normal range (Table 2).

3.3. Key biomarkers of chronic disease 
demonstrated improvement at follow-up 
timepoint

A large percentage of patients demonstrated normalization of key 
biomarkers associated with metabolic disease at a randomly selected 
follow-up timepoint, including Hemoglobin A1c (47.5%), fasting 
glucose (49.6%), LP-IR (64.3%), and fasting insulin (39.5%). Similarly, 
patients demonstrated normalization of key biomarkers associated 
with cardiovascular disease including LDL-P (33.3%), LDL-C (13.4%), 
HDL-C (37.9%), CRP (33.2%), Apo-B (12.3%), Triglycerides (53.6%), 
and LP-PLA2 (43.2%). We examined medication as a factor and found 
that improvement at follow-up was not due to metformin or diabetic 
medication use (in the case of metabolic biomarkers) nor due to statin 
or other lipoprotein modulating medication use (in the case of 
cardiovascular biomarkers), with only one patient (or in many cases 
none of the patients) receiving a new prescription during the 
treatment period, per biomarker, as noted in Table 1.

3.4. Several key biomarkers demonstrated 
consistent improvement throughout the 
study period via time- and 
covariate-adjusted analyses

To continue investigating the biomarkers that were associated 
with normalization at a single, randomly selected follow-up timepoint 
in the previous analyses, more in depth analyses were applied. In these 
analyses, all follow-up laboratory measurements were included in 
analyses, and time- and demographics-based adjustments were 
applied, testing for statistically significant differences between 
pre-intervention (baseline) and post-intervention (at least 30 days post 
baseline) laboratory values. Based on these models, A1C, insulin, 
LDL-C, LDL-P, LPIR, and trigylceride levels exhibited significant 
decreases associated with the intervention. HDL-C exhibited 
significant increases associated with the intervention (Table 3). For 
illustrative purposes, we also display the results of post-estimation 

marginal analysis, which estimates biomarkers values pre- and post-
intervention (under the condition that all other covariates are held at 
their means). This type of model output often allows more intuitive 
comparisons on the scale of biomarker concentrations, over model 
coefficients alone.

3.5. Spectrum of response in key 
biomarkers

The highest quintile (top 20%) of responders to the Wild Health 
program had large reductions from their baseline biomarker 
measurements. For biomarkers associated with metabolic disease, 
median Hemoglobin A1c in this group fell by 45.0%, fasting insulin 
by 72%, glucose by 28%, and LP-IR by 59%, on average. For biomarkers 
associated with cardiovascular disease, CRP fell by 78%, LDL-P by 
76%, Triglycerides by 70%, and HDL-C rose by 44% (Table 4). In 
contrast, the lowest quintile (bottom 20%) of responders generally had 
increases from their baseline biomarker measurements (and decrease 
in HDL-C; Table  4). Patients in the top quintile did not have a 
significantly different number of follow up tests (Mean = 1.4; 95% 
CI = 1.3–1.4) than those in the bottom quintile of responders 
(Mean = 1.3; 95% CI = 1.3–1.4).

4. Discussion

We present an analysis of the Wild Health clinical platform 
consisting of longitudinal biomarker data among participants in the 
Wild Health program who were exposed to a lifestyle-focused 
approach encompassing optimization of nutrition, exercise, sleep, 
stress reduction and supplementation.

While prior research (18–20) has indicated a trend towards 
normalization of out-of-range biomarkers in patients participating in 
automated personalized nutrition and lifestyle platforms, to our 
knowledge, this is the first study evaluating a precision medicine care 
model (incorporating a physician and health coach team), and 
demonstrates a trend towards normalization of out-of-range 
biomarkers indicative of chronic disease.

The effect of the Wild Health program on HbA1c is particularly 
notable, with substantial improvements as compared to traditional 
pharmacologic intervention, as well as coaching interventions in 
the absence of a physician/coach care team (21, 22). Mean HbA1c 
levels decreased by 1.9% from baseline, as compared to established 
mean reduction in HbA1c of 1.1% with metformin use (23). 
Furthermore, 23.0% of patients with initial HbA1c ≥ 6.5% 
normalized their HbA1c on subsequent testing, effectively inducing 
remission of diabetes. This is compared to a 3.3% remission rate in 
those patients receiving standard primary care in the National 
Diabetes Audit (24).

Significant improvements were noted in patients lipids at follow 
up, including resolution of elevated LDL-P in 33.3% and resolution of 
LDL-C in 13.4% of patients. The median reduction in LDL-P was 
15.8% and disproportionate to LDL-C reduction of 3.3%. This finding 
suggests an alteration of LDL particle size and a reduction of small, 
atherogenic LDL particles consistent with a 19.4% median reduction 
of small-LDL particles and a 34.7% median reduction in the 
lipoprotein insulin resistance score from Labcorp (25). Statin therapy 
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TABLE 2 Change in out-of-range biomarkers at follow-up.

Biomarker Total 
tests

% tested Baseline OOR Lab values 
(Baseline  =  OOR)

Follow up lab 
values

Pct. Δ from OOR 
to in range

N Pct N Pct Med. IQR Med. IQR From 
high

From 
low

A/G Ratio 474 54.4 72 15.2 2.4 (2.3, 2.6) 2.3 (2.0, 2.5) 40.3 6.9

A1C 427 49.0 204 47.8 9.1 (6.0, 9.6) 5.7 (5.4, 6.1) 47.5 0.0

ALT (SGPT) 459 52.7 256 55.8 29.0 (24.0, 38.0) 26.0 (22.0, 35.0) 19.5 0.0

AST (SGOT) 488 56.0 302 61.9 26.0 (23.0, 33.0) 26.0 (21.0, 32.0) 22.5 0.0

Albumin 481 55.2 30 6.2 5.2 (5.1, 5.3) 4.9 (4.6, 5.0) 66.7 3.3

Alkaline 

Phosphatase 484 55.6 93 19.2 30.0 (22.0, 37.0) 63.0 (41.0, 93.0) 4.3 60.2

Apolipoprotein B 206 23.7 162 78.6 111.0 (101.0, 135.0) 109.0

(98.0, 

126.0) 12.3 0.0

BUN/Creatinine 439 50.4 59 13.4 27.0 (24.0, 34.0) 21.0 (16.0, 24.0) 62.7 5.1

CRP 391 44.9 184 47.1 2.1 (1.3, 4.0) 1.6 (0.9, 3.1) 33.2 0.0

Carbon Dioxide 472 54.2 54 11.4 9.8 (9.5, 19.0) 24.0 (22.0, 25.0) 13.0 74.1

Cholesterol, Total 532 61.1 325 61.1 231.0 (213.0, 254.0) 224.0

(203.0, 

247.0) 18.5 2.8

CoQ10 124 14.2 80 64.5 0.6 (0.5, 0.7) 1.0 (0.7, 1.6) 12.5 46.3

Cortisol 178 20.4 104 58.4 9.5 (7.7, 19.7) 10.8 (8.2, 15.9) 13.5 25.0

Creatinine 481 55.2 438 91.1 0.9 (0.8, 1.1) 1.0 (0.8, 1.1) 5.5 0.5

eGFR-Non African 

American 481 55.2 22 4.6 54.0 (44.0, 56.0) 55.0 (42.0, 60.0) 0.0 27.3

Eosinophils 

(Absolute) 270 31.0 35 13.0 80.0 (48.0, 129.0) 0.1 (0.1, 0.7) 68.6 0.0

Ferritin/Iron 237 27.2 49 20.7 27.0 (18.0, 509.0) 63.0

(26.0, 

312.0) 24.5 22.4

Glucose 521 59.8 137 26.3 107.0 (102.0, 117.0) 100.0

(94.0, 

109.0) 49.6 0.0

HDL-C 537 61.7 58 10.8 34.0 (29.0, 36.0) 35.0 (31.0, 42.0) 0.0 37.9

HDL-P 310 35.6 82 26.5 27.9 (24.9, 29.2) 29.2 (25.8, 31.8) 1.2 34.1

Hemoglobin 284 32.6 92 32.4 18.4 (16.3, 42.8) 15.2 (13.7, 16.6) 57.6 7.6

Homocyst(e)ine 408 46.8 386 94.6 9.9 (8.7, 11.6) 9.0 (7.8, 10.3) 16.8 0.0

Insulin 294 33.8 129 43.9 12.2 (9.8, 17.2) 9.0 (6.4, 13.9) 39.5 0.0

LDL Size 336 38.6 310 92.3 21.3 (20.9, 21.5) 21.2 (21.0, 21.5) 0.0 0.3

LDL-C 535 61.4 418 78.1 136.5 (119.0, 159.0) 133.0 (115.0, 

156.0)

13.4 0.0

LDL-P 370 42.5 177 47.8 1486.0 (1273.0, 

1767.0)

1250.0 (819.0, 

1787.0)

33.3 0.0

LP-IR Score 329 37.8 14 4.3 62.0 (50.0, 72.0) 40.0 (27.0, 64.0) 64.3 0.0

Lipoprotein (a) 187 21.5 63 33.7 144.6 (100.2, 211.8) 138.1 (94.8, 

205.7)

4.8 0.0

Lp-PLA2 Activity 223 25.6 37 16.6 230.0 (208.0, 241.0) 209.0 (184.0, 

235.0)

43.2 0.0

Lymphocytes 

(Absolute)

270 31.0 66 24.4 4.8 (0.5, 1233.0) 1.7 (1.1, 2.5) 39.4 24.2

MCH 279 32.0 32 11.5 33.1 (24.4, 34.5) 32.2 (25.7, 33.6) 25.0 6.3

Monocytes (%) 267 30.7 104 39.0 10.0 (9.0, 11.0) 9.0 (8.0, 10.0) 34.6 0.0

(Continued)
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has been shown to decrease LDL-P by 30%, suggesting that this 
precision lifestyle intervention is comparable to statin therapy (26).

Otherwise healthy individuals with elevated C-Reactive Protein 
(CRP) levels are at up to a 4x higher risk for atherosclerotic 
cardiovascular disease (27, 28). Lowering of CRP through 
pharmacologic intervention such as statin therapy is associated with 
lower incidence of adverse cardiovascular events (29). In our dataset, 
significant improvements in CRP were noted without the need for 
statin therapy, including resolution of elevated CRP levels in 33% of 
patients, suggesting the potential for a marked cardiovascular risk 
reduction in this patient population. Our results in CRP reduction 
through lifestyle intervention are similar to the CANTOS trial using 
150 mg canakinumab which noted a 17% overall reduction in the risk 
of MACE (30).

Importantly, the non-randomized observational nature of this 
study introduced multiple sources of bias that would tend to 
overestimate the effect size from our study sample if attempting to 
extrapolate to the general population. “Sufficient data bias” 
encompasses several biases, and refers to including only patients 
who have sufficient data for analysis in the study (31). Here, only 
patients with at least one follow up biomarker measurement were 
analyzed, which may indicate a more dedicated clinician, a sicker 
patient, or a more adherent patient, all of which would bias toward 

positive results; although we did not find that patients in the top 
quintile of responders had significantly more follow up 
measurements than those in the bottom quintile. “Healthy user 
bias” refers to the likelihood that patients that enrolled in the 
program, or adhered to the program long enough for one follow up 
biomarker measurement, may have other healthy habits or 
socioeconomic resources that contributed to their successful 
normalization of biomarkers associated with chronic disease (32). 
“Spectrum bias” refers to a focused sampling bias, which precludes 
the description of intervention effect on the full spectrum of 
patients with different severity of illness (33). In this study, 
intentionally focused on patients with out of range biomarkers at 
baseline for two reasons. Clinically, these are the patients that 
would be  targeted by the Wild Health program for meaningful 
health interventions. And analytically, this group could be more 
sensitive to intervention, and allow us to generate hypotheses for 
follow up in more rigorous future studies. The current study is not 
meant to show definitive evidence of improvement in biomarkers 
due to the Wild Health program across all-comers in the population.

We also note that not all patients responded equally to the Wild 
Health Program. At the time of this study, our ability to delve into the 
reasons for these differences are limited due to the incomplete nature 
of our retrospective data source. Specific lifestyle intervention and 

TABLE 2 (Continued)

Biomarker Total 
tests

% tested Baseline OOR Lab values 
(Baseline  =  OOR)

Follow up lab 
values

Pct. Δ from OOR 
to in range

N Pct N Pct Med. IQR Med. IQR From 
high

From 
low

Neutrophils 248 28.5 203 81.9 57.0 (54.0, 63.0) 58.0 (52.0, 64.0) 8.9 3.0

Omega6: Omega3 272 31.2 39 14.3 14.6 (3.3, 15.9) 8.5 (5.6, 10.8) 41.0 41.0

Omega-3 275 31.6 202 73.5 3.7 (3.1, 4.3) 5.5 (4.3, 7.0) 0.0 53.5

Potassium 479 55.0 57 11.9 44.0 (44.0, 44.0) 4.5 (4.3, 4.7) 87.7 1.8

Protein 540 62.0 144 26.7 10.0 (4.6, 30.0) 7.0 (6.7, 7.3) 45.8 38.2

RBC 285 32.7 131 46.0 845.0 (497.0, 

1103.0)

4.9 (4.5, 5.8) 61.8 0.8

Small LDL-P 337 38.7 132 39.2 759.5 (616.5, 970.5) 650.0 (461.0, 

885.5)

37.9 0.0

Testosterone 293 33.6 151 51.5 5.3 (2.8, 24.7) 6.6 (2.7, 18.5) 10.6 13.9

TMAO 163 18.7 91 55.8 9.6 (7.4, 17.1) 4.5 (3.3, 9.5) 53.8 0.0

TSH 345 39.6 61 17.7 4.9 (4.1, 6.3) 3.3 (1.8, 4.9) 41.0 9.8

Triglycerides 540 62.0 140 25.9 217.0 (175.0, 260.5) 135.5 (89.0, 

212.0)

53.6 0.0

Uric Acid 128 14.7 98 76.6 6.6 (6.0, 8.6) 6.2 (5.6, 7.0) 16.3 0.0

Vitamin B12 226 25.9 123 54.4 427.0 (354.0, 485.0) 701.0 (487.0, 

994.0)

8.1 46.3

Vitamin B6 84 9.6 36 42.9 76.8 (56.2, 113.3) 58.5 (31.3, 

107.8)

47.2 0.0

Vitamin D 424 48.7 316 74.5 33.5 (27.9, 40.8) 45.9 (37.7, 59.0) 1.3 38.6

“Total Tests” shows total count of tests performed by biomarker, including those with both in range and out-of-range results. “%Tested” shows the percent of the total cohort of 871 participants 
that were tested for each biomarker. “Baseline OOR” shows the count and percentage of tests that resulted in out-of-range values for each biomarker. “Lab Values (Baseline = OOR)” shows 
median and interquartile range for baseline lab values, restricted to out of range values. “Follow Up Lab Values” shows median and interquartile range for follow up lab values, restricted to 
those participants with lab values out of range at baseline. “Pct Δ from OOR to In Range” shows the percentage of participants that shifted from out of range at baseline to in range at follow up, 
split into those that shifted from high (“From High”) to normal, vs. low to normal values (“From Low”). Biomarkers are sorted alphabetically. OOR, Out of range; Pct, Percent; Med., Median.
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medical recommendations were not analyzed, and therefore we are 
unable at this time to identify the level of impact associated with any 
specific intervention, as opposed to the overall approach provided by 
the Wild Health program. In addition, adherence to interventions was 
not tracked.

While this observational study was not designed to evaluate 
the economic impact of lifestyle-based precision medicine, a 
discussion of the potential health savings impact is warranted 
given the costs associated with the treatment of chronic disease. 
According to the American Diabetes Association, the cost of 
diabetes in the United States in 2017 was 327 billion dollars with 
annual direct costs of $9,600 per patient (34). When extrapolated 
to our patient population in this dataset, of which 30.9% patients 
met criteria for diabetes on initial labs, the 98 patients with 
normalization of HbA1c on follow up labs has the potential to save 

$940,800 dollars annually. Further research is necessary to 
establish the total cost savings associated with this method of 
care delivery.

Similarly to diabetes, cardiovascular disease represents a 
significant cost burden to the American economy with costs estimated 
as high as 229 billion in 2017 (35). Prior research has found that statin 
based reduction of LDL cholesterol to normal levels could account for 
a total annual cost savings of 430 million or $9,900 per patient in 2011 
(36). Given that we  have shown LDL normalization in 33.3% of 
patients, comparable as those seen with statins, we would expect an 
even greater cost savings given the lack of need for statin-based 
prescription therapy and the associated cost.
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TABLE 3 Model results from comparison of pre-intervention and post-intervention biomarker levels.

N Model coefficient (Post- 
vs. Pre-intervention)

Predicted lab values: 
pre-intervention

Predicted lab values: 
post-intervention

A1C 563 −1.9 (−2.2, −1.6) 8.2 (8, 8.4) 6.3 (6.1, 6.5)

Apo B 441 2.1 (−4.6, 8.8) 114.8 (110.4, 119.3) 117 (113.4, 120.6)

CRP 544 0.8 (−2.9, 4.5) 3.7 (1.1, 6.3) 4.5 (2.5, 6.4)

Fasting glucose 400 −18 (−47.1, 11) 141.8 (120.1, 163.5) 123.8 (105.6, 142)

HDL-C 170 5.2 (2.6, 7.8) 31.7 (29.7, 33.7) 36.9 (35.2, 38.6)

Insulin 341 −7.5 (−12.6, −2.5) 19.2 (16, 22.4) 11.7 (8.9, 14.4)

LDL-C 1,142 −6.6 (−11, −2.1) 143.7 (140.4, 147) 137.1 (134.4, 139.8)

LDL-P 523 −242.4 (−391.3, −93.5) 1580.4 (1476.6, 1684.1) 1337.9 (1260.1, 1415.7)

LPIR 49 −17.3 (−29.3, −5.2) 60.4 (52.2, 68.7) 43.2 (36.8, 49.6)

LPPLA2 108 −9.2 (−27.8, 9.4) 223.6 (210.6, 236.5) 214.4 (204.9, 223.9)

Triglycerides 401 −74.6 (−98.7, −50.4) 242.5 (224.6, 260.5) 168 (152.9, 183.1)

Table shows model coefficients for the association of intervention (post vs. pre) with biomarker values, along with 95% confidence intervals. Model predictions of lab values pre- and post-
intervention are based on post-estimation marginal analysis (with all other covariate coefficients held at means) and are provided for illustrative purposes.

TABLE 4 Percent biomarker improvement in highest and lowest quintile 
of responders.

Biomarker Highest quintile 
of improvement

Lowest quintile of 
improvement

A1C −44.8 (1.9) 3.1 (12.3)

Apolipoprotein B −18.6 (7.5) 14 (10.8)

CRP −78.3 (22.5) 74.8 (85.3)

Glucose −27.5 (31.9) 5.9 (28.2)

HDL-C 44.2 (127.5) −15.8 (10.2)

Insulin −71.6 (30.9) 42 (69)

LDL-C −26.1 (10.7) 16.7 (13.4)

LDL-P −75.9 (26.7) 30 (33.5)

LP-IR score −59.1 (13.5) −4.3 (4.9)

Lp-PLA2 activity −24.1 (3.7) 9.6 (12.3)

Triglycerides −69.6 (5.8) 13.6 (29.5)

Table shows the summary values (Median, IQR) of the top 20% of responders, and the 
bottom 20% of responders. The top 20% describes greatest decreases in all biomarkers from 
baseline to follow up, except in the case of HDL-C, where the largest increases were 
described; and vice versa for the bottom 20%.
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