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Numerous studies have shown that miRNAs play a crucial role in the investigation 
of complex human diseases. Identifying the connection between miRNAs and 
diseases is crucial for advancing the treatment of complex diseases. However, 
traditional methods are frequently constrained by the small sample size and high 
cost, so computational simulations are urgently required to rapidly and accurately 
forecast the potential correlation between miRNA and disease. In this paper, 
the DEJKMDR, a graph convolutional network (GCN)-based miRNA-disease 
association prediction model is proposed. The novelty of this model lies in the 
fact that DEJKMDR integrates biomolecular information on miRNA and illness, 
including functional miRNA similarity, disease semantic similarity, and miRNA 
and disease similarity, according to their Gaussian interaction attribute. In order 
to minimize overfitting, some edges are randomly destroyed during the training 
phase after DropEdge has been used to regularize the edges. JK-Net, meanwhile, 
is employed to combine various domain scopes through the adaptive learning 
of nodes in various placements. The experimental results demonstrate that this 
strategy has superior accuracy and dependability than previous algorithms in 
terms of predicting an unknown miRNA-disease relationship. In a 10-fold cross-
validation, the average AUC of DEJKMDR is determined to be 0.9772.
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1. Introduction

The miRNA is an endogenous non-coding single-strand RNA molecule that regulates gene 
expression in a significant manner. miRNA is involved in processes such as animal and plant 
cell differentiation, proliferation, apoptosis, and tissue and organ formation. miRNAs also 
perform crucial roles in a variety of vital biological processes, as evidenced by a growing number 
of reports. miRNAs contribute significantly to the comprehension of life sciences. Numerous 
aspects of microRNAs are significant, including cellular biological processes, regulation of gene 
expression at the transcriptional and post-transcriptional levels, and others. Understanding 
could be increased and experimental costs reduced if we could identify the most probable 
potential miRNA-disease connections and prioritize their biological experimental validation.

miRNA serve a crucial regulatory role in a variety of life processes within the human body 
and are tightly linked to the occurrence and development of cancer and other diseases. Methods 
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of computational prediction have become an essential tool for 
discovering new disease-related miRNAs.

On the molecular mechanisms and connections that exist between 
microRNAs and disease, genes and disease, etc., numerous studies 
have been undertaken.

With regard to the connection between miRNAs and disease, 
Genome Tiling Arrays were suggested for universal detection of 
Human Transcribed Sequences by Bertone et  al. (1). The related 
research on circulating and extracellular vesicle-derived microRNAs 
as biomarkers for bone-related maladies was developed by Huber et al. 
(2). Additionally, Zapata-Martinez et al. (3) proposed the involvement 
of inflammatory microRNAs in cardiovascular pathology. The role of 
miroRNA-21-containing microvesicles derived from renal tubular 
epithelial cells in cardiac hypertrophy was developed by Di et al. (4). 
The role of exosomal microRNAs in central nervous system diseases 
was explored by Yu et  al. (5). Research about the progress of 
microRNA-361-5p in human malignant tumor was proposed by Qi 
et  al. (6). In cancer research, the identification of regulatory 
mechanisms between miRNAs and genes is fundamental. It facilitates 
a thorough comprehension of the molecular mechanisms underlying 
cancer. A strategy identifying miRNA-Gene universal and specific 
functional modules for cancer was proposed by Chen et al. (7). A 
strategy predicting miRNA-Disease Associations via Node-Level 
Attention Graph Auto-Encoder was conducted by Zhang et al. (8). The 
MSGCL, an approach that utilizes multi-view self-supervised graph-
based contrastive modeling for inferring miRNA–disease associations, 
was recommended by Ruan et  al. (9). A study to explore disease 
regulation by investigating microRNA-dependent modulation of gene 
expression in GABAergic interneurons was offered by Kołosowska 
et al. (10).

Regarding the relationship between chromosomes and diseases, a 
method investigating the role of miR-143, miR-145, and the MiR-143 
host gene in cardiovascular development and illness was established 
by Vacante et  al. (11). In addition, Lu et  al. (12) investigated the 
MicroRNA-17’s functions as an oncogene by inhibiting Smad3 
expression in carcinoma of the liver. A phenotype-driven paradigm 
for disease and gene prioritization via bidirectional optimum 
corresponding lexical commonalities was discovered by Zhai et al. 
(13). A disease–gene association prediction algorithm that is 
interpretable from commencement to completion was proposed by Li 
et  al. (14). A model using knockouts to identify significant 
modifications to gene expression in multiple manipulation 
experiments was conducted by Zhao et al. (15).

Genomics and bioinformatics developments have assisted in the 
identification of microRNAs. It was additionally found that miRNAs 
bond with a variety of prescription drugs. For example, the SVMMDR, 
a prediction model of miRNAs-Drug resilience employing Support 
Vector Machines and Heterogeneous Network, was developed by 
Duan et al. (16). The SVMMDR incorporates miRNAs-drug resistance 
association, similarities in sequencing, chemical structure, and other 
parallels to derive path-based Hetesim features, and collects inclined 
diffusion features via restart random walk. Identifying the 
relationships between microRNAs and drug resistance can aid in the 
design of effective pharmaceuticals and drug combinations. In the 
meantime, the interactions between distinct RNAs may also play a role 
in the treatment of disease and the development of new drugs. For 
example, the NGCICM, a novel deep learning-based method for 
predicting circRNA-miRNA interactions, was proposed by Ma et al. 

(17). A model forecasting drug-disease associations for drug 
repositioning via a drug-miRNA-disease heterogeneous network was 
created by Chen et al. (18). The prediction of small molecule drug-
miRNA associations based on GNNs and CNNs was carried out by 
Niu et al. (19).

There are multiple public databases that catalog the relationships 
between miRNAs and diseases. For example, the HMDD database was 
created by Huang et al. (20) to curate experiential proof confirming 
human miRNA and disease associations. miRNAs are a type of 
indispensable regulatory RNA that primarily inhibit post-
transcriptional gene expression. The mTD was created by Chen et al. 
(21) to capture the miRNAs affecting the therapeutic effects of drugs. 
The microRNA–cancer association database constructed by using text 
analysis on scientific literature was developed by Xie et al. (22) to 
modulate gene expressions. The TransmiR v2.0 database was 
developed by Tong et al. (23) to provide an updated transcription 
factor-microRNA regulation. The miRTarBase 2020 was developed by 
Huang et  al. (24) to experimentally validate microRNA–target 
interaction. The dbDEMC 2.0 database was created by Yang et al. (25) 
to provide updated information about differentially expressed 
miRNAs in human cancers. However, the ability to predict potential 
associations between known miRNAs and disease from existing data 
sets is limited. Owing to the fact that most biological experiments are 
costly and laborious, it is important to develop computational 
techniques for predicting possible relationships between miRNAs 
and disease.

There are currently studies predicting a possible link between 
miRNAs and disease. For example, an innovative miRNA-disease 
association forecasting framework applying dual walk randomization 
with relaunch and spatial projection pooled method was developed by 
Li et  al. (26). A fresh structure to infer miRNA-disease link was 
recommended by Wang et  al. (27). A three-layer heterogeneous 
network combined with asymmetrical random paths for miRNA-
disease association prediction was developed by Yu et al. (28). Logistic 
profile-weighted bi-random walk was suggested by Dai et al. (29) to 
explore miRNA-disease associations. An amalgamated ranking 
algorithm and a disproportionate bi-random walk on a network with 
heterogeneity were developed by Yu et al. (30) to infer microRNA-
disease association. Biased Random Exercises with Restart on 
Multilayer Hierarchical Networks was conducted by Qu et al. (31) to 
conduct miRNA–Disease Association prediction. Analogy 
incorporation of networks and inductive matrix execution for miRNA–
disease association prediction was carried out by Li et al. (32). A model 
to estimate miRNA-disease associations using a neural network was 
introduced by Han et al. (33). A method to predict miRNA-disease 
association based on graph autoencoder and a self-attention 
mechanism was put forward by Gao et al. (34). A model based on 
Neighbor Selection Graph Attention Networks for predicting miRNA-
Disease associations was provided by Zhao et al. (35). A model based 
on multi-view graph convolutional networks for link prediction was 
proposed by Li et al. (36). On the basis of a broad range of biological 
source data and utilizing a combination of a convolutional neural 
network feature extractor and a high-performance learning classifier 
on a range of biological source material, a high-efficiency algorithm 
was developed by Liu et  al. (37). A miRNA Disease Association 
Prediction precision schema utilizing consolidated Similarity 
Information and Layered Autoencoders was offered by Sujamol et al. 
(38). The prediction method based on Network—Consistency 
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Projection for the LncRNA-Disease Associations was developed by Li 
et  al. (39). A ranking framework for miRNA-disease association 
identification was proposed by Zhang et  al. (40). Yan et  al. (41) 
proposed a method called DNRLMF-MDA to predict the miRNA-
disease associations based on dynamic neighborhood regularized 
logistic matrix factorization. A computational framework called 
KBMF-MDI was developed by Lan et al. (42) to measure similarities 
among miRNAs while the semantic and functional information of 
disease are used to measure similarity among diseases. A multi-
relational Graph Convolutional Network model was introduced by 
Peng et al. (43) to construct a miRNA-gene-disease heterogeneous 
network and learn feature embedding for miRNAs and disease through 
a multi-relational graph convolutional network model.

Although there are some instruments for forecasting the miRNA-
disease association, these cannot optimally fuse heterogeneous 
information and strengthen the reliability of prediction by conducting 
adaptive learning. In addition, the accuracy and performance of these 
methods need to be improved. To solve the aforementioned problems, a 
miRNA-disease association prediction model, DEJKMDR, based on 
graph convolution is proposed in this paper. DEJKMDR incorporates 
biomolecular information of miR11NA and disease, such as the 
functional similarity of miRNA, the semantic similarity of disease, and 
the similarity of Gaussian interaction properties of miRNA and disease. 
The DEJKMDR is used to predict potential miRNAs-disease associations. 
Our method’s contribution consists primarily of the following elements:

 1. The DEJKMDR employs SNFS to incorporate various types of 
biomolecule data signatures.

 2. During training, the DEJKMDR deletes random edges of the 
adjacency matrix, increasing the diversity of input sample data 
and reducing overfitting.

 3. The DEJKMDR utilizes JK-Net to integrate the node 
representations of all previous layers into the final layer and to 
learn different order representations of various subgraph 
structures. By integrating all representations from previous layers, 
it eliminates the issue of graph convolution’s excessive smoothing.

 4. The DEJKMDR method boosts the accuracy of predictions and 
has the finest AUC values among the current ones.

2. Materials and methods

First, statistics regarding miRNA-disease associations are accessed 
from the HMDD v3.2 database (20). A total of 1,206 miRNAs, 893 
diseases, and 35,547 miRNAs associated with diseases are included. 
The miRNA and disease data used in this paper are displayed in 
Tables 1, 2. Secondly, according to the verified miRNA-disease 
association, the deweighting and equalization process is carried out to 
obtain the miRNA-disease association network association matrix A, 
which is depicted by Formula (1):

 
A ,

    

   
m d

miRNA is associated with disease
miRNA is not asi j( ) = 1

0 ssociated with disease  



  

(1)

where A(m di j, ) = 1 represents the miRNA mi linked with disease 
dj, A(m d ji , ) = 0, which exemplifies the miRNA mi is unrelated to the 
disease dj.

2.1. DEJKMDR algorithm framework

Figure 1 depicts the DEJKMDR flowchart. DEJKMDR primarily 
consists of the following actions:

 1. The miRNA-disease correlation set and mirNa-disease 
correlation matrix A are created, respectively, by deleting 
duplicate data from the miRNA-disease correlation data set 
retrieved from the public database HMDD v3.2 (20).

 2. The SSD and FSM matrices, which stand for the semantic and 
operational similarity matrices, are computed, respectively.

 3. The disease Gaussian interaction variable resemblance matrix 
GSD and the ring-shaped miRNA Gaussian relation attribute 
similarity matrix GSM are computed.

 4. Similarity network fusion is utilized to generate disease similarity 
matrix SD on the basis of SSD and GSD, and similarly, miRNA 
similarity matrix SM is formed centered on FSM and GSM.

 5. Three subnets have been implemented to build a global 
heterogeneous network: the miRNA-disease association 
network association matrix A, the miRNA similarity matrix 
SM, and the disease resemblance matrix SD. DropEdge is the 
tool for regularizing edges in heterogeneous networks to 
minimize overfitting by deleting some edges at random.

 6. JK-Net is used to get the final predicted scores.

2.2. Calculation of similarity matrix

The calculation of the similarity matrix is explained in this section. 
This comprises calculating the disease’s semantic similarity matrix, the 
miRNA’s sequence similarity, and the kernel resemblance matrix for 
the disease’s Gaussian interaction attribute, and then creating the 
miRNA and disease’s final comprehensive similarity matrix.

2.2.1. Disease semantic similarity matrix
This section considers the semantic similarity of disease from two 

aspects. Firstly, diseases’ semantic correspondence is calculated 

TABLE 1 List of miRNAs.

id miRNA name

1 hsa-mir-200b

2 hsa-mir-21

3 hsa-mir-214

… …

1206 hsa-mir-320b-1

TABLE 2 List of disease.

id The disease’s name PMID

1 Colon neoplasms 15737576

2 Breast neoplasms 16466964

… …

893 Placenta cancer 29805755
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utilizing the Medical Subject Headings database (44). In this approach, 
directed acyclic graphs (DAGs) are applied to represent disease 
data structures.

For example, a disease directed acyclic graph could be shown as 
DAG [d(i)] = {d(i),T[d(i)], E[d(i)]}.Here, T[d(i)] represents the 
ancestor node set of disease d(i), and E[d(i)] represents the edge set 
from the ancestor node to disease d(i). This is shown in the following 
Figure  2. d(i) represents Breast Neoplasms, T[d(i)] are Breast 
Disease，Neoplasms by Site，Skin Disease，Neoplasms，and Skin 
and Connective Tissue Disease. From this, the contribution of disease 
d(n) to the lexical measurement of disease d(i) in DAG [d(i)] can 
be calculated, where n is the other diseases within T[d(i)].

 

( ) ( )( )
( ) ( )

( ) ( )( ) ( )
( ) ( ) ( )

1,

1 max{ 1 |

 },

d i d i

if d n d i

D d n D d n d n

children of d n if d n d i

′ ′

 =
= ∆×

∈ ≠  

(2)

Where Δ symbolizes the contribution factor for semantics, which 
will be modified to 0.5. This is shown in reference 39. Consequently, 
the semantic value of disease d(i) is derived as follows:

 
SSV1 1d i D d n

d n T d i
d i( )( ) = ( )( )

( )∈ ( )( )
( )∑

 
(3)

FIGURE 1

Flowchart of DEJKMDR.
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Finally, the semantic similarity scores between disease d(i) and 
d(j) are computed:

 
( ) ( )( )

( ) ( )( ) ( )( )
( ) ( )( )
( ) ( )( )

( )( ) ( )( )

1

1
1 ,

SSV1 SSV1

d i
d n T d i T d j

d j

D d n

D d n
SSD d i d j

d i d j
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 + =

+

∑

 
(4)

Secondly, to calculate semantic similarity between two diseases, it 
is also necessary to weigh the number of occurrences of the same 
disease in distinct DAGs. Since diseases in different layers of the same 
DAG also have different semantic contribution values of diseases, 
from this perspective, some specific diseases may contribute more to 
disease d(i). Based on this theory, the semantic value contribution of 
disease d(n) to d(i) is shown as follows:

 
D d n

the number of DAGs including d n
the numbed i2 ( ) ( )( ) = − ( )

log
    

 rr of disease  











 
(5)

Then the logical rating of disease d(i) and the semantic similarity 
of disease d(i) and d(i) are obtained as follows:
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(6)
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+

∑

  
(7)

Finally, the semantic similarity matrix of d(i) and d(i) is obtained 
by combining the two semantic similarity degrees:

 
SSD d i d j

SSD d i d j SSD d i d j
( ) ( )( ) = ( ) ( )( ) + ( ) ( )( )

,
, ,1 2

2  
(8)

2.2.2. Matrix of miRNA functional similarity
The computation of the functional similarities of miRNA is the 

same as in the previous investigation by Wang et al. (45), where the 
practical resemblance of the two miRNAs is calculated by calculating 
the semantic similarity of the two disease sets associated with the two 
miRNAs. Assuming that miRNA mi and miRNA mj are associated 
with m and n diseases, separately, the similarity between miRNA mi 
and miRNA mj could be determined by applying equations (9) and 
(10) as follows:

 
( )

( ) ( )( )

( ) ( )( )
1 m

1 m

, 1

, 1 m
m ,

j

i

id D

jd D
i j

S d D m

S d D
FSM m

m n

∈

∈
+

=
+

∑
∑

 
(9)

 
S d D SS d dj

d D
, m ,

mj

1
1 1

1( )( ) = ( )( )
∈ ( )
max

 
(10)

where FSM mi jm ,( ) is the miRNA functional similarity matrix, 
which is the maximum semantic similarity of every single illness 
in the disease set correlated with miRNA mi. D1 mi( )  a is a 
collection of diseases associated with miRNA mi. d is the number 
of diseases in disease concentration, and m is the number of 
diseases in disease concentration. n is the number of diseases in the 
disease cluster. S d D mi, 1( )( ) is the maximum semantic similarity 
of all diseases in disease set D mi1( ) associated with miRNA mi for 
disease d. d1 indicates the diseases in which D1(mj) diseases are 
concentrated. SS d d( , 1) represents the semantic similarity between 
disease d in the D1 mi( ) disease cluster and disease d1 in disease set 
D mj1( ). It should be noted that similarities between the disease 

FIGURE 2

The DAG of breast neoplasms.
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matrix SSD and miRNA similarity matrix FSM are sparse. 
Therefore, the kernel similarity of Gaussian interaction attribute is 
further introduced to alleviate this weakness.

2.2.3. Kernel similarity matrix of Gaussian 
interaction attribute between miRNA and disease

Both miRNA and disease show Gaussian interaction attribute 
kernel similarity. The similarity of Gaussian interaction kernel of 
disease is calculated below. Initially, the adjacency matrix is established 
through the associated information of miRNA and disease. The 
columns of the matrix represent miRNAs while the rows indicate 
illnesses. Additionally, applying the Gaussian kernel Function of 
Radial Basis Function (RBF) to the adjacency matrix yields a similar 
matrix to the spectral kernel of the Gaussian interaction of the disease. 
The Gaussian interaction spectrum of miRNA uses the same nuclear 
similarity calculation approach as illness. The adjacency matrix is 
generated by applying the associated data between miRNA and 
disease. The columns of the matrix represent diseases while the rows 
indicate miRNAs. Then, the radial basis function Gaussian kernel 
function is implemented to the proximity matrix to acquire a similar 
matrix of miRNA Gaussian interaction spectrum kernel. The specific 
calculation process is as follows. For A miRNA mi, its IP(mi) value is 
defined as row i of the miRNA-drug association matrix A, and the 
kernel similarity of Gaussian interaction attribute between every 
single pair of miRNA mi and miRNA mj is calculated, as shown in 
Equation (11):

 
GSM m m IP m IP mi j m i j, exp( ) = − ( ) − ( )( )γ 2

 
(11)

 
γ γm m

i

nm
inm

IP m= ′ ( )










=
∑/

1

1

2

 
(12)

Where GSM represents the kernel similarity matrix of the 
Gaussian interaction attribute of miRNA. Element GSM (m mi j, ) 
represents the kernel similarity of the Gaussian interaction properties 
of miRNA mi and miRNA mj. γm is employed to control the bandwidth 
of kernel similarity of Gaussian interaction attribute. It represents the 
normalized Gaussian interaction attribute kernel similarity bandwidth 
based on the new bandwidth parameter γ ′m. nm represents the 
number of miRNAs.

Likewise, based on the hypothesis that there is an association 
between functionally similar miRNAs and similar diseases, a Gaussian 
interaction attribute kernel similarity matrix GSD for diseases is 
constructed by using the identified miRNA-disease 
association network.

For a disease, its IP′ ( )di  value is described as column i of miRNA-
disease correlation matrix A. The kernel similarity of Gaussian 
interaction attributes between each pair of diseases is calculated, as 
shown in Equation (13):

 
( ) ( ) ( )

2
, expi j d i jGSD d d IP d IP dγ ′ ′ = − − 

   
(13)

 
γ γd d

i

nd
ind

IP d= ′ ( )










=

′∑/
1

1

2

 
(14)

Where, GSD represents the kernel similarity matrix of the 
Gaussian connection attribute of disease.

The element GSD ,d di j( )  represents kernel resemblance of the 
Gaussian interaction characteristic of disease di and disease d j . γ d  
represents standardized Gaussian interaction kernel closeness 
bandwidth determined by bandwidth parameters γ ′d. and represents 
the number of diseases.

2.3. Similar network convergence

Despite the fact that the disease semantic similarity matrix and the 
miRNA functional similarity network have been obtained through the 
aforementioned techniques, further research is warranted; owing to 
the paucity of valuable information, these similarity matrices are rare. 
In order to enrich the similarity matrix, the kernel likeness of the 
Gaussian interaction matrix of miRNA and the kernel resemblance of 
the disease engagement band are calculated according to the 
recognized connection between miRNA and disease. At the same 
time, similarity network fusion is employed for fusion. SNF is an 
effective method for fusion of different types of data features. SNF 
generates an equivalent system matrix for every possible similarity and 
employs the non-linear combination method relying on k-nearest 
neighbor to integrate two networks. For miRNA, functional similarity 
matrix FSM and Gaussian interaction spectrum kernel similarity 
matrix GSM have been obtained. First, the FSM and GSM lines are 
normalized to get RFSM and RGSM. After using KNN, KRFSM and 
KRGSM are obtained, as shown in the formulas (15) and (16).

 

KRFSM ,

RFSM ,

RFSM ,
m N m

other

m N m

j i

k i

m m

m m
m mi j

i j

i j( ) =
( )

( )
∈ ( )

∈ ( )∑
0 wwise








  

(15)
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( )

( ) ( ) ( )
k i

j i
m N m

RGSM ,
m N m

RGSM ,KRGSM ,

0 otherwise

i j

i ji j

m m

m mm m ∈


 ∈= 



∑

 

(16)

Where N(mi) is the collection of K nearest neighbors of mi. Finally, 
multiple similar networks are fused using an iterative method.

 RFSM KRFSM RGSM KRFSM tt t
T= × × ≥−1 1   (17)

 RGSM KRGSM RFSM KRGSM tt t
T= × × ≥−1 1   (18)

Where t is the number of iterations. RFSM RFSM0 =  and 
RGSM RGSM0 = . After iterating t times, we  get the final 
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RFSM RGSMt t, . The average sum between RFSM and RGSMt t  is 
taken as the miRNA set similarity matrix:

 
MM RFSM RGSMt t=

+
2  

(19)

By means of the identical method, the disease integration 
similarity matrix DD is obtained.

2.4. Model training and prediction

The miRNA similar network, disease similar network, and 
miRNA-disease association matrix obtained after fusion of similar 
networks were constructed into graph structure data and input into 
the JK-Net model for training to obtain a prediction model. In the 
training process, the random edge removal rate is set as 0.4. JK-Net 
uses multi-layer graph convolutional neural network for representation 
learning of nodes to aggregate node information in different fields and 
can adjust adaptively according to the position of nodes in the network 
and the topology structure of the graph to better represent both the 
local and broader traits of network nodes.

3. Results and discussion

3.1. Data sets

Part of the experimental parameters in the DEJKMDR method 
will be introduced in this section, and part of the parameters used by 
DEJKMDR are displayed in Table 3.

3.2. Performance measures

3.2.1. Cross validation
In the aim to appraise the effectiveness of DEJKMDR about 

predicting miRNA-disease association, this study employs 5-fold and 
10-fold cross-validation techniques. ROC and PR curves are acquired, 
respectively. According to Figures 3, 4, the final average AUC value of 
5-fold cross-validation is 0.976193 and AUPR is 0.939682. The average 
AUC value and AUPR of the 10-fold cross-validation are 0.97772 and 
0.944819, respectively.

3.2.2. Performance comparison of different edge 
loss rates

To investigate the effect of various edge loss rates on the 
efficacy of the DropEdge method model, several groups of 
comparative experiments are conducted, and the edge loss rates are 
set as 0, 0.2, 0.4, 0.6, and 0.8, respectively. The average AUC and 
other performance indicators are also verified using the 10-fold 
crossover, as shown in Figures 5, 6. When p = 0, it means that the 
original adjacency is used as input for training. In Figure 4, it can 
be discovered that when p = 0, the AUC obtained is 0.869, and with 
a rise in loss rate p, the AUC also increases on a gradual basis. 
When p is 0.4, the ROC curve obtains the maximum AUC area and 
reaches a small vertex. When p continues to increase to 0.6 and 0.8, 
AUC gradually decreased, indicating that high edge loss rate would 
reduce model performance. Further, Figure  6 shows other 
performance indicators, such as accuracy, recall, and F1 scores at 

TABLE 3 Some experimental parameters of DEJKMDR.

Sign Value Definition

nl 1206 The number of miRNA

ne 893 The number of diseases

n 2099 The sum of miRNA and the disease

γ ′l 1 The Gaussian interaction properties of miRNA 

kernels are identical in bandwidth

γ ′e 1 The Gaussian interaction properties of disease kernels 

are similar in bandwidth

K 10 The nearest number of k-nearest neighbors (KNN) in 

similar network convergence

p 0.4 DropEdge’s deletion rate

Epochs 1000 GCN training times

FIGURE 3

The ROC and PR curve of DEJKMDR under 10-fold cross validation.
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different edge loss rates. Similar to the AUC, these metrics also 
show the best performance advantage at a drop rate of 0.4. These 
experimental results indicate that the DropEdge strategy can 
considerably enhance the performance of the model, but too high 
edge loss rate will lead to performance degradation.

3.2.3. Ablation experiment
In an effort to confirm the performance advantages of similar 

network fusion, random edging, and JK-Net in the model, several 

ablation experiments are carried out based on the proposed 
DEJKMDR, and several groups of comparison experiments are 
designed to evaluate the effectiveness of these strategies by 
changing the structure of the model. By means of these 
investigations, we can better understand the contribution and 
function of these methods in the model. The average AUC and 
other performance indexes are also obtained by using the 10-fold 
crossover. As shown in Figure 6, DEJKMDR in the figure is the 
ROC curve obtained by this model. DEJKMDR1 is the ROC 

FIGURE 4

The ROC and PR curve of DEJKMDR under 5-fold cross validation.

FIGURE 5

The ROC and PR curves of DEJKMDR with varied edge drop rate.
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curve obtained by using average value to integrate multiple 
similar networks, but DropEdge and JK-Net are used for 
prediction. DEJKMDR2 is the ROC curve obtained by this model 
without using DropEdge. In other words, it is the ROC curve 
obtained without random edge deletion operation and with other 
structures remaining unchanged. DEJKMDR3 is the ROC curve 
obtained by replacing JK-Net module in this model with ordinary 
graph convolution and retaining other structures for prediction. 
According to Figure  7, the AUC of DEJKMDR, DEJKMDR1, 
DEJKMDR2, and DEJKMDR3 are 0.977, 0.945, 0.869, and 0.900, 
respectively. Figure  8 indicates other performance indicators 
under these experiments. Similar to AUC, DEJKMDR has obvious 
advantages over other experiments in terms of accuracy and 
recall rate. The results show that similar network fusion, random 
edging, and JK-Net are used to enhance the method performance.

3.2.4. Efficacy comparison with current methods
Some studies have predicted the potential association between 

miRNAs and disease, comparing the DEJKMDR algorithm with 
existing methods for predicting the relationship between miRNAs and 
drug susceptibility. In the experiment, three methods are selected to 
compare with the proposed DEJKMDR method. They are NIMGSA 
(32), TCRWMDA (28), and GAEMDA (36). These methods have been 
compared with existing methods under the same data.

3.2.4.1. NIMGSA
NIMGSA is an end-to-end deep learning framework which integrates 

inductive matrix completion and tag propagation (32). It implements a 
self-attention mechanism through inductive matrix completion of two 
graph autoencoders, while combining inductive matrix completion and 
tag propagation utilizing a neural network architecture.

3.2.4.2. TCRWMDA
TCRWMDA is a three-layer heterogeneous network miRNA-

disease association prediction algorithm combined with 
non-equilibrium random walk (28). TCRWMDA operates on 
more than just known microRNAs associated disease and 
includes more data (lncRNA—microRNAs and lncRNA—disease 
association) to construct three distinct levels of heterogeneous 
network. To this is added the lncRNA as the shift of moderate 
spot route, allowing greater reliability between networks.

3.2.4.3. GAEMDA
The GAEMDA model uses a graph-based neural network 

encoder consisting of a clustering operation and multi-layer 
perceptron, to aggregate the adjacent data from nodes, produce 
low-dimensional embedding of miRNA and disease nodes, and 
accomplish operational fusion of heterogeneous info, 
subsequently embedding microRNAs and disease node input 
bilinear decoders to identify potential connections between 
miRNAs and disease nodes (36).

Figure  9 displays the comparison details, showing that the 
DEJKMDR method outperforms the others.

The reasons are as follows: first, DEJKMDR integrates several 
biomolecular data types using SNF; secondly, DropEdge 
randomly deletes some adjacency matrix edges during training, 
increasing input sample data diversity and reducing overfitting. 
Finally, JK-Net combines the node representations of all previous 
layers in the last layer to learn different order representations of 
different subgraph structures. By combining all representations 
from previous layers, the problem of over-smoothing graph 
convolution is alleviated. All of these enable DEJKMDR to 
achieve better performance.

FIGURE 6

The results of the performance comparison of DEJKMDR with different edge drop rates.
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4. Conclusion

More and more studies have shown that the expression level of 
miRNAs is closely related to the occurrence and development of a 
variety of tumors. Predicting the association between miRNA-disease 

can help to identify early diagnosis protocols for the disease and 
prognostic observation of diseases. Therefore, in this paper, an 
outstanding durability technique based on heterogeneous networks 
for predicting the association between miRNAs and disease 
(DEJKMDR) is proposed. Firstly, DropEdge is used to regularize the 

FIGURE 7

The ROC curve of Ablation study.

FIGURE 8

The results of the performance comparison of Ablation study.
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edges in the original adjacency matrix and some edges are randomly 
deleted to reduce overfitting. At the same time, JK-Net is used to 
gather the domain information of nodes. The effect of DEJKMDR is 
demonstrated by 10-fold cross-validation. Compared with other 
current excellent prediction models, DEJKMDR is effective at 
predicting undocumented miRNA-disease associations because of its 
substantial enhancements in performance.
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