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Introduction: Leprosy reactions (LR) are severe episodes of intense activation of 
the host inflammatory response of uncertain etiology, today the leading cause of 
permanent nerve damage in leprosy patients. Several genetic and non-genetic 
risk factors for LR have been described; however, there are limited attempts to 
combine this information to estimate the risk of a leprosy patient developing LR. 
Here we present an artificial intelligence (AI)-based system that can assess LR risk 
using clinical, demographic, and genetic data.

Methods: The study includes four datasets from different regions of Brazil, 
totalizing 1,450 leprosy patients followed prospectively for at least 2  years to 
assess the occurrence of LR. Data mining using WEKA software was performed 
following a two-step protocol to select the variables included in the AI system, 
based on Bayesian Networks, and developed using the NETICA software.

Results: Analysis of the complete database resulted in a system able to estimate 
LR risk with 82.7% accuracy, 79.3% sensitivity, and 86.2% specificity. When using 
only databases for which host genetic information associated with LR was 
included, the performance increased to 87.7% accuracy, 85.7% sensitivity, and 
89.4% specificity.

Conclusion: We produced an easy-to-use, online, free-access system that 
identifies leprosy patients at risk of developing LR. Risk assessment of LR for 
individual patients may detect candidates for close monitoring, with a potentially 
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positive impact on the prevention of permanent disabilities, the quality of life of 
the patients, and upon leprosy control programs.
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1. Introduction

Leprosy is a chronic, disabling infectious disease caused by 
Mycobacterium leprae (M. leprae) (1) that affected 141,000 new 
individuals worldwide in 2021 – a number likely to be underestimated 
due to potential sub-notification caused by the COVID-19 pandemic 
– with most cases concentrated in India and Brazil (2). In the classical 
Ridley & Jopling (R&J) classification system, tuberculoid (TT) and 
lepromatous (LL) leprosy occupy opposite ends of a continuous 
disease spectrum that includes three borderline forms (BT, BB, and 
BL) (3). The TT + BT and BB + BL + LL cases roughly correspond to 
paucibacillary (PB) and multibacillary (MB) leprosy, according to the 
treatment-oriented World Health Organization (WHO) classification 
scheme, respectively (2, 4, 5). Today, it is widely accepted that exposure 
to M. leprae is necessary but not sufficient for the development of 
leprosy; different sets of host gene variants mediate susceptibility to 
leprosy in three different stages (6): (i) controlling infection per se, that 
is, the disease regardless of its clinical presentation, (ii) defining the 
clinical form of disease after the infection is established, and (iii) 
outlining the risk of developing leprosy reactions (LR) (7, 8).

Leprosy reactions are characterized by an intense and sudden (re)
activation of the host inflammatory response that may be diagnosed 
concomitantly with leprosy, during or even after treatment (9–12). 
Upon diagnosis, LR requires immediate medical attention to prevent 
irreversible nerve damage, motor disability, and permanent anatomical 
deformities. In 2021, 6.04% of newly detected leprosy cases worldwide 
presented grade-2 disabilities in the diagnosis (2), often due to 
LR. Cohort studies estimate that, during leprosy, 16 to 56% of the 
patients will develop irreversible nerve damage, again, mainly due to 
reactional episodes (13–16). Over the past years, advances in genetic 
research improved our understanding of the molecular basis of 
leprosy pathogenesis, and several host genetic variations have been 
implicated in the control of LR episodes (17–19).

There are two major types of LR of distinct clinical presentation: 
type-1 (T1R) and type-2 reaction (T2R). T1R affects 10–30% of 
leprosy patients and occurs primarily within, but not limited to, the 
first 2 years after leprosy diagnosis (20, 21). Known risk factors for 
T1R are (i) borderline clinical groups BT-BL (22); (ii) age of leprosy 
onset, with older individuals being at higher risk (23, 24); (iii) positive 
bacillary index (25); (iv) an increased number of lesions at leprosy 
diagnosis (26, 27); (v) detection of M. leprae DNA in biopsies of 
lesions (24); and (vi) genetic/genomic studies have identified an 
association between T1R and genes TLR1 (28), TLR2 (29), TLR3 (30), 
TLR7 (30), TLR10 (30), NRAMP1/SCLC11A1 (31), VRD (32), NOD2 
(33), TNFSF15/TNFSF8 (34, 35), lncRNA ENSG00000235140 (36), 
LRRK2 (19), and PRKN (19).

Leprosy T2R mainly affects patients classified within the BB-LL 
range (13, 37). Patients presenting bacterial index higher than 4+ in 
skin smears are at increased risk for T2R (38, 39). There is a wide 

variation in the prevalence of T2R in different geographic and endemic 
settings. In Brazil, approximately 37% of BL and LL cases develop T2R, 
while in India, Nepal, and Thailand, the proportion is between 19–26% 
(40). A prospective study involving BL and LL patients from India 
followed for 11 years, showed that less than 10% of the individuals who 
developed T2R had a single episode, whereas 62% had chronic T2R 
(21). In Ethiopia, 63% of leprosy cases had more than one T2R 
episode, while 37% had a single event (41). Host genetics also seems 
to play a significant role in controlling the occurrence of T2R, and 
genes C4B (42), TLR1 (43), NRAMP1/SCLC11A1 (31), NOD2 (33, 35), 
and IL6 (12, 35) have been implicated as critical molecular players.

One of the challenges of translational medicine is to systematize 
the analysis of a large amount of patient data to predict a specific 
outcome. In addition, scientific results from basic research are often 
difficult to translate into daily medical practice. Artificial Intelligence 
(AI) methods seek to systematically address often large, complex data 
sets to provide a base for decision-making. Of particular interest in 
health care, Bayesian Networks (BN) are among the most successful 
techniques in processing and unraveling the relationship between a 
large number of variables, with risk estimation being the outcome (44).

A Bayesian Network (BN) is a graphical model of an outcome 
variable’s posterior conditional probability distribution based on 
evidence. It contains nodes that represent the random variables and 
links between pairs of nodes, which represent the causal relationship 
of these nodes, together with a conditional probability distribution in 
each node. From the definition, one can deduce that any joint 
probability distribution may be represented by a Bayesian network, 
which shows its modeling power: any deterministic model is a 
particular case of a probabilistic model, and any probabilistic model 
may be represented as a Bayesian network (45, 46).

Several BN-based systems have been created using medical data, 
developed for different purposes, and applied to several health 
conditions such as cardiovascular diseases, liver diseases, cancer and 
Alzheimer’s disease (47–57), including leprosy (44, 58–65). However, 
few initiatives aim to systematize a large amount of existing 
information of distinct nature to estimate the risk of the occurrence 
of a particular event. In the context of leprosy, creating a simple-to-use 
and flexible platform to predict the risk of LR based on patient data 
may help minimize the consequences of such aggressive events. 
Moreover, such a tool could improve leprosy control initiatives and 
public health systems. Here we present an AI system designed to 
predict the risk of a leprosy patient to develop LR using a complete or 
partial dataset of clinical, demographic, and host genetic data.

2. Materials and methods

A flowchart summarizing the three stages of the study and the 
procedures described next is available in Figure 1.
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2.1. Population samples

This study used four pre-existing data sets from previous research 
initiatives of different/independent designs and contexts. The first 
database included in the study consisted of 409 leprosy patients 
diagnosed at the Reference Center for Diagnosis and Therapy located 
in Goiania, central-western Brazil, between February 2006 and 
March 2008, originally used for the genetic study that identified an 
association between T2R and variants of the IL6 gene. A complete 
description of the Goiania population has been published elsewhere 
(12). Later, the Goiania population was used for an expanded 
investigation involving a larger number of candidate genes that 
detected an association between T1R and variants of the gene 
TNFSF8 (34). Finally, an association between T1R and lncRNA 
ENSG00000235140 (36) and LRRK2 (unpublished data) was also 
detected in the Goiania sample. Two additional databases comprised 
533 patients recruited at the Dermatological Center Dona Libânia, 
Fortaleza, northeast Brazil, and 137 patients diagnosed with leprosy 
at the Fundação Alfredo da Matta, Manaus, north Brazil. Enrolment 
of these two population samples was performed under a single 
protocol of a clinical study described previously (66) and conducted 
by the Tropical Medicine Center of the University of Brasília between 

March 2007 and February 2012. Finally, a fourth database consisted 
of 371 patients diagnosed with leprosy at the Instituto Lauro de Souza 
Lima, Bauru, southeast Brazil, between March 2008 and January 
2013, originally for a genetic study that detected an association 
between leprosy and variants of the TLR1 (67) and NOD2 (68) genes. 
For all databases, leprosy diagnosis/classification was defined after 
detailed dermatological and neurological examination by specialized 
leprologists, complemented by bacilloscopy and histopathology of 
skin lesions. All cases were classified following the R&J scheme (3). 
Patients were followed up for at least 2 years since diagnosis to 
monitor LR occurrence. Individuals who did not present LR at the 
initial diagnosis or during follow-up, were defined as non-reactional 
leprosy patients.

All patients were treated for leprosy according to WHO/MDT 
guidelines and for LR with the appropriate therapy. All subjects were 
evaluated for an extensive clinical, socioeconomic, and demographic 
information list.

2.2. Variable selection

The four databases included in this study were composed of 
clinical and laboratory parameters, most of them obtained for 
descriptive, epidemiological purposes unrelated to the occurrence of 
LR. Each one of the databases was subjected individually to a two-step, 
unbiased process aiming to identify those variables exerting the 
highest impact upon the risk of LR, thus, to be included in the system, 
as follows:

2.2.1. Frequency, redundancy, and grouping
The first selection step consisted of removing variables with low 

frequency (less than 15%) of occurrence and/or mutually correlated 
(redundant), consequently capturing the same information. In the 
case of redundant variables, the most frequent was selected to capture 
the information of the set.

2.2.2. Data mining
Data mining is one of the main stages of the knowledge extraction 

process from large databases, also known as KDD – Knowledge 
Discovery in the Databases (69). This AI method is defined as the 
process of discovering patterns in data to generate helpful information 
for the decision-making (70). WEKA (Waikato Environment for 
Knowledge Analysis) is an open-source program with a collection of 
algorithm implementations of various data mining techniques, such 
as pre-processing, classification, clustering, and visualization (71). 
This study used WEKA in the second variable selection step to identify 
those hierarchically important for LR occurrence in the population 
samples. The variables were selected using the C4.5 algorithm, which 
creates a decision tree and identifies the most relevant and 
non-redundant variants, thus reducing the number of attributes. The 
C4.5 selection is made according to the gain ratio, which is a 
normalization of the information gain, a parameter based on the 
entropy measure (originating from information theory) closely related 
to the maximum likelihood estimations (MLE) and usually used to 
make inferences about parameters of the underlying probability 
distribution from a given dataset (45, 72–75).

Four dermatologists/hansenologists with extensive experience in 
the area continuously validated the two-step variable selection 

FIGURE 1

Flowchart: study design.
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TABLE 1 Distribution of sex, age at diagnosis, and clinical type of disease of leprosy-affected individuals with T1R, T2R, and non-reactional leprosy 
patients in each population sample.

Patients, No. (%)

Goiania Fortaleza Manaus Bauru Combined

Age, Years 

(Mean ± SD)
44.63 ± 16.67 45.15 ± 14.25 40.00 ± 15.39 59.00 ± 18.04 48.00 ± 17.29

Sex

Male 234 (57.1) 352 (66.0) 100 (72.9) 258 (69.5) 944 (65.1)

Female 175 (42.9) 181 (34.0) 37 (27.1) 113 (30.5) 506 (34.9)

Ridley&Jopling 

Classification
NRLP T1R T2R NRLP T1R T2R NRLP T1R T2R NRLP T1R T2R NRLP T1R T2R

TT 22 0 0 28 0 0 16 0 0 34 0 0 100 0 0

BT 124 79 0 164 24 0 36 4 0 18 30 0 342 137 0

BB 16 29 3 12 14 0 2 3 0 27 27 1 57 73 4

BL 26 46 8 47 71 66 12 28 10 12 20 33 97 165 117

LL 28 0 28 33 0 68 5 0 16 66 0 102 132 0 214

I 0 0 0 6 0 0 5 0 0 1 0 0 12 0 0

HI (Mean) – – – – – – – – – 1.73 2.69 3.84 1.73 2.69 3.84

Proportion per 

Group
52.9 37.6 9.5 54.4 20.5 25.1 55.5 25.5 19.0 42.6 20.8 36.6 51.0 25.9 23.1

Total 409 533 137 371 1,450

BB, borderline borderline; BL, borderline lepromatous; BT, borderline tuberculoid; HI, histological index; I, indeterminate leprosy; LL, lepromatous leprosy; NRLP, non-reactional leprosy 
patients; SD, standard deviation; TT, tuberculoid leprosy; T1R, type-1 reaction; T2R, type-2 reaction.

through a qualitative process based on their experience in the field of 
leprosy diagnosis. These specialists were also involved in conducting 
system performance assessments, evaluating usability, and organizing 
the workflow for integrating data from the four databases. By 
leveraging the knowledge and expertise of specialists, clinical decision 
systems can be  effectively validated and optimized for real-world 
clinical use (76). Criteria for selecting the specialists were; (i) holding 
MD/Ph.D. degrees in dermatology/hansenology; (ii) having more 
than 10 years of experience in leprosy diagnosis; (iii) being 
representative of regions of Brazil with different levels of 
leprosy endemicity.

Finally, two datasets contributed with genotypic information: 
Goiania for genes IL6, TNFSF8, LRRK2, and ENSG00000235140 and 
Bauru for TLR1 and NOD2, all previously studied in these 
population samples.

2.3. System development

The system was created as a BN using Shell NETICA (Norsys 
Software Corporation) (77) with a customized dynamic interface 
considering the number of variables in the database. The system was 
designed to operate with complete or partial information, which is of 
critical importance considering the translational bias of the proposal 
and the fact that several leprosy centers may not have access to all the 
information included, particularly the molecular genetic data. The 
system loads a spreadsheet in which columns and lines refer to the 
variables and records, respectively. Each variable (column) is related 
to one node of the BN. The variables comprise demographic, clinical, 
laboratory, and genetic data (markers). For each one of the databases, 

two groups were formed randomly to create the network: the test file, 
with 30% of patients, and the training file, with 70% of patients, both 
stored in an Excel file format.

The system’s performance was assessed by its accuracy, sensitivity, 
specificity, and negative and positive predictive values. The patient’s 
predicted outcome was defined by the class with higher risk, as 
estimated by the system. Predictive values were calculated using the 
prevalence of occurrence of reversal reactions observed for the studied 
population samples. The feature “importance” was also measured 
using the F1 score, which is the harmonic mean between positive 
predictive value (PPV) and sensitivity. The F1 score was calculated 

accordingly to the equation F score PPV sensitivity
PPV sensitivity1 2= ∗

∗
+

 using 
Python 3.7.9.

3. Results

Table 1 summarizes information on age, gender, and clinical form 
of leprosy according to the R&J classification system for T1R, T2R and 
non-reactional leprosy patients groups of all population samples. The 
mean age at diagnosis ranged from 40 to 59 years old, and males were 
consistently more frequent than females across all four population 
samples. Leprosy clinical form most frequently observed was BT (479, 
33%) followed by BL (379, 26.1%), LL (346, 23.8%), BB (134, 9.2%), 
and TT (100, 6.9%). For the combined sample, 51% were non-reactional 
leprosy patients, 25.9 and 23.1% developed T1R or T2R, respectively. 
As expected, T1R was observed more often in BT + BB + BL cases, and 
T2R occurred more often in BL and LL individuals (Table 1).
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Our strategy for variable selection led to the inclusion of 34 
demographic, clinical, laboratory, and genetic parameters 
(Supplementary Table S1) related to the occurrence of LR in the 
population samples (Table 2). Since the initial set of variables was not 
the same across the four datasets – thus, the variables selected by the 
two-step process and validated by the specialists were not necessarily 
the same – the prediction system was designed to include all variables 
selected in each population sample. Detailed information about the 
distribution of the included variables across the four different datasets 
is available in Supplementary Table S2.

The risk-prediction system was developed to allow the use of 
each of the four databases individually as a reference, as well as to use 
a single, combined dataset, thus favoring customization and 
facilitating the inclusion of new data sets. The system – named 
SEPAREH (from Portuguese: Sistema Especialista Para Avaliação de 
Risco de Estado Reacional em Hanseníase; in English: Specialist 
System for Evaluation of Risk of Occurrence of Reactional States in 
Leprosy) is designed to present a friendly graphical user interface 
(Figure  2), which allows the primary care professional to use it 
intuitively. Variation of the patient’s risk of developing one of the two 
types of LR is shown in real time, as each available clinical and/or 

genetic information is included in the interface. The platform can 
be accessed for free at https://orfeu.ppgia.pucpr.br/separeh.1

The overall sensitivity and specificity of the system, as estimated 
using the combined dataset of 1,450 patients, was 79.3% (95% CI 
73.9–84.7) and 86.2% (95% CI 81.6–90.8), respectively. Accuracy 
reached 82.7% (95% CI 79.2–86.3), and positive and negative 
predicted values were 85.1% (95% CI 80.2–90.1) and 80.6% (95% CI 
75.5–85.7), respectively.

To assess the importance of each of the variables individually, 
modeling was carried out after removing one at a time, and the 
impact on system performance was measured through changes in 
sensitivity, specificity, and F1. As summarized in Figure 3, the three 
attributes exerting the highest impact were R&J classification, 
combined genetic markers, and histological index. Interestingly, the 
highest estimates of accuracy, sensitivity, specificity, and both 
negative and positive predictive values were observed for the Bauru 
and the Goiania datasets, for which genotypic data was available, 
even higher than what was observed for the combined dataset of 
much larger sample size (the only exception being the positive 
predictive value for Bauru: 82.7% vs. 85.1% for the combined dataset) 
(Table 3).

4. Discussion

As an outcome of contact with its causative agent, leprosy is 
controlled by multiple environmental and socioeconomic factors and 
innate characteristics of both the host and pathogen. The specific 
contribution of each of these factors to the risk of developing leprosy 
and its endophenotypes is widely unknown. Today, LRs constitute a 
significant cause of disabilities associated with leprosy; thus, predicting 
patients at higher risk of developing LR at the time of leprosy diagnosis 
may help prevent permanent neural impairment. However, an 
accurate estimate of this risk demands analyzing a very complex set of 
variables, which is difficult – if not impossible – to perform by an 
unassisted primary healthcare professional. Here we present an easy-
to-use, flexible, and automated system that identifies leprosy patients 
at increased risk of developing LR based on clinical, socio-economical, 
laboratory, and genetic data. Patients at high risk are candidates for 
close monitoring during and after treatment, aiming to prompt the 
management of these aggressive events, minimizing the likelihood of 
permanent disabilities. Our platform translates basic scientific data 
into a direct application that may immediately impact leprosy patients’ 
quality of life and leprosy control programs’ effectiveness.

The three features that exerted the highest impact on the system’s 
performance were the R&J classification, the histological index, and 
the combined effect of the genetic markers (Figure 3). The R&J class 
is a well-accepted major risk factor for reversal reactions (7, 13, 21, 
22, 37, 40, 41). As expected, simulations confirm that patients in the 
tuberculoid pole of the spectrum tend to have a higher chance of 
developing no reversal reaction (98% ~ when the classification is TT). 
As clinical form moves towards borderline, the probability of a T1R 
rises from <1 to 53%~ when the category is BB and, finally, patients 

1 The access to the platform is limited to HTTPS protocol. In case of difficulty 

accessing the platform, please certify whether HTTPS is being used.

TABLE 2 Demographical, clinical, laboratory, and genetic variables 
selected in the study.

Data Variable informationa

Socio-demographic

Sex

Age group

Ethnicity

Clinical

Multidrug therapy

First signs and symptoms

Ridley-Jopling classification

Number of skin lesions

Type of lesion

Color of lesion

Sensibility testing

Laboratory

Bacilloscopic index

Histological index

PGL-1

Genetic

IL6 markers (4)

NOD2 marker (1)

TLR1 markers (2)

TNFSF8 markers (4)

ENSG00000235140markers (4)

LRRK2 markers (3)

Family History

First degreeb

Second degreec

Contactd

aSelf-report in years since noticing the early signs and symptoms of leprosy.
bFather, mother, child, and sibs affected by leprosy.
cCousins, nephews, uncles/aunts, grandparents, and grandchildren affected by leprosy.
dClose household contact affected by leprosy.
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FIGURE 2

SEPAREH interface.

FIGURE 3

Top 5 most essential features measured in relative gain using sensitivity, specificity, and the F1 score.

at the lepromatous pole have a higher risk of developing T2R – more 
specifically, 61%~ when the type is LL. The second top-three 
parameter impacting the system is the histological index. An index 
equal to 2+ increases the risk of T1R to 56%~; values higher than 5+ 
shift the risk towards T2R – 45%~ when the histological index is 6+. 
This behavior is expected since an increase in the histological index 
is highly correlated with a higher bacterial load and, consequently, a 

move toward the lepromatous pole of the disease. A histological 
index higher than 5+ is also a well-known risk factor for developing 
T2R (38, 39). Finally, genetic data seems critical to improving the 
system’s performance, which suggests that understanding the true, 
exact nature of LR depends on the description of the underlying 
genetic mechanisms.
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We are aware of the study’s limitations: we have had limited access 
to genetic information across the population samples; including 
genotypic data for additional, known LR susceptibility genes would 
likely positively impact the system’s performance. In addition, the 
heterogeneity of the databases, originally obtained for independent 
studies of distinct designs, prevented a comprehensive analysis of the 
performance of the system, which we  understand was yet quite 
remarkable, likely due to the ability of Bayesian methods to estimate 
risk using all available – even if partial – information. This is important 
considering that not all leprosy centers across the globe will have access 
to molecular data of all the patients; in these cases, the platform can 
still help estimate the risk of LR using only the clinical/laboratory and 
demographic data with fair sensitivity and specificity, as observed for 
the Fortaleza and Manaus datasets (Table 3). Of note: the heterogeneity 
of the dataset is known to enhance the quality of a trained model, since 
it tends to improve the generalization capturing a more comprehensive 
understanding of the problem and its nuances. Thus, the inclusion of 
diverse datasets is a known strategy to improve the performance of 
machine learning models. For example, in the field of Random Forests, 
the use of diverse datasets has been explored as a method to enhance 
the model’s accuracy and robustness (78). This principle extends to 
various domains, including computer vision (79), and conversational 

AI (80). For a comprehensive evaluation and refining of the system, 
datasets enrolled prospectively with these specific purposes will 
be necessary.

5. Conclusion

We produced SEPAREH as an easy-to-use, online, free-access 
system that identifies leprosy patients at higher risk of developing 
LR. We  believe that SEPAREH can be  useful to help primary 
healthcare services to establish a protocol for patient follow-up 
dedicated to improving early diagnosis and prevention of the 
devastating consequences of untreated LR. Ultimately, risk assessment 
of LR for individual patients may be of potential positive impact on 
the prevention of permanent disabilities, the quality of life of the 
patients, and upon leprosy control programs.
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TABLE 3 Results obtained for each population sample.

Population 
sample

Two-by-two contingency Results 95% CI

Combined

NRLP LR Total Sensitivity = 79.3% 73.9–84.7%

NRLP 187 45 232 Specificity = 86.2% 81.6–90.8%

LR 30 172 202 PVP = 85.1% 80.2–90.1%

Total 217 217 434 PVN = 80.6% 75.5–85.7%

Accuracy = 82.7% 79.2–86.3%

Goiania

NRLP LR Total Sensitivity = 85.7% 76.5–94.9%

NRLP 59 8 67 Specificity = 89.4% 82.0–96.8%

LR 7 48 55 PVP = 87.3% 78.5–96.1%

Total 66 56 122 PVN = 88.0% 80.3–95.8%

Accuracy = 87.7% 81.9–93.5%

Bauru

NRLP LR Total Sensitivity = 82.7% 72.4–93.0%

NRLP 51 9 60 Specificity = 85.0% 76.0–94.0%

LR 9 43 52 PVP = 82.7% 72.4–93.0%

Total 60 52 112 PVN = 85.0% 76.0–94.0%

Accuracy = 83.9% 77.1–90.7%

Fortaleza

NRLP LR Total Sensitivity = 78.1% 68.6–87.6%

NRLP 62 16 78 Specificity = 71.3% 61.8–80.8%

LR 25 57 82 PVP = 69.5% 59.5–79.5%

Total 87 73 160 PVN = 79.4% 70.5–88.4%

Accuracy = 74.3% 67.6–81.1%

Manaus

NRLP LR Total Sensitivity = 77.8% 58.6–97.0%

NRLP 18 4 22 Specificity = 78.3% 61.4–95.1%

LR 5 14 19 PVP = 73.7% 53.9–93.5%

Total 23 18 41 PVN = 81.8% 65.7–97.9%

Accuracy = 78.0% 65.4–90.7%

LR, leprosy reactions; NRLP, non-reactional leprosy patients; PPV, positive predictive value; NPV, negative predictive value; CI, confidence interval.
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