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Background: Hepatocellular carcinoma (HCC) represents a complex ailment 
characterized by an unfavorable prognosis in advanced stages. The involvement 
of immune cells in HCC progression is of significant importance. Moreover, 
metastasis poses a substantial impediment to enhanced prognostication for 
HCC patients, with anoikis playing an indispensable role in facilitating the 
distant metastasis of tumor cells. Nevertheless, limited investigations have 
been conducted regarding the utilization of anoikis factors for predicting HCC 
prognosis and assessing immune infiltration. This present study aims to identify 
hepatocellular carcinoma-associated anoikis-related genes (ANRGs), establish a 
robust prognostic model for HCC, and delineate distinct immune characteristics 
based on the anoikis signature. Cell migration and cytotoxicity experiments were 
performed to validate the accuracy of the ANRGs model.

Methods: Consensus clustering based on ANRGs was employed in this 
investigation to categorize HCC samples obtained from both TCGA and Gene 
Expression Omnibus (GEO) cohorts. To assess the differentially expressed genes, 
Cox regression analysis was conducted, and subsequently, prognostic gene 
signatures were constructed using LASSO-Cox methodology. External validation 
was performed at the International Cancer Genome Conference. The tumor 
microenvironment (TME) was characterized utilizing ESTIMATE and CIBERSORT 
algorithms, while machine learning techniques facilitated the identification 
of potential target drugs. The wound healing assay and CCK-8 assay were 
employed to evaluate the migratory capacity and drug sensitivity of HCC cell 
lines, respectively.

Results: Utilizing the TCGA-LIHC dataset, we devised a nomogram integrating 
a ten-gene signature with diverse clinicopathological features. Furthermore, 
the discriminative potential and clinical utility of the ten-gene signature and 
nomogram were substantiated through ROC analysis and DCA. Subsequently, 
we devised a prognostic framework leveraging gene expression data from distinct 
risk cohorts to predict the drug responsiveness of HCC subtypes.

Conclusion: In this study, we  have established a promising HCC prognostic 
ANRGs model, which can serve as a valuable tool for clinicians in selecting 
targeted therapeutic drugs, thereby improving overall patient survival rates. 
Additionally, this model has also revealed a strong connection between anoikis 
and immune cells, providing a potential avenue for elucidating the mechanisms 
underlying immune cell infiltration regulated by anoikis.
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1. Introduction

Hepatocellular carcinoma (HCC) accounts for 90% of primary 
liver malignancies, rendering it the sixth most prevalent neoplasm on 
a global scale and the fourth leading cause of cancer-related mortality 
(1, 2). Aflatoxin exposure, hepatitis virus infection, excessive alcohol 
consumption, type 2 diabetes, and obesity are firmly established as 
risk factors associated with HCC (3, 4). The distinctive heterogeneity 
and aggressive behavior exhibited by HCC, coupled with its elevated 
recurrence rate, contribute to unfavorable prognoses and overall 
survival (OS) outcomes among patients (5–7). The emergence of 
metastatic lesions signifies a pivotal event in cancer advancement and 
continues to pose a substantial hindrance to achieving improved long-
term survival (8, 9). While multiple genes have been linked to the 
metastasis of HCC, their association with the prognosis of liver cancer 
remains uncertain.

The dissemination of cancer requires the dissociation of cells from 
the primary neoplasm, their viability during transit, extravasation, and 
establishment of secondary tumors at remote locations (10). The 
extracellular matrix (ECM) functions as a scaffold for cellular 
adhesion, instigates signal transduction, and governs essential cellular 
processes such as proliferation, migration, differentiation, and viability 
(11, 12). The acquisition of resistance against anoikis is considered a 
critical event in initiating and perpetuating metastasis (10, 13), which 
is also an obligatory prerequisite for both intrahepatic and extrahepatic 
dissemination of HCC. Upon detachment from the ECM, adherent 
cells undergo apoptosis, a process referred to as anokis (14). Malignant 
and highly invasive tumor cells employ diverse mechanisms to 
surmount anoikis and evade the primary site to establish distant 
metastases (15–17). While certain crucial functions of apoptosis in 
tumor advancement and metastasis have been elucidated (18–20), 
limited research has been conducted to explore the prognostic 
significance of genes associated with anoikis in HCC. Pseudouridine 
(Ψ) represents the initial post-transcriptional alteration identified and 
constitutes a prevalent RNA modification (21). Two distinct modes of 
pseudouridylation are observed, namely RNA-independent and 
RNA-dependent. The RNA substrate engages in the formation of 
complementary base pairs, enabling ncRNA recognition, while 
catalytic activity is conferred by DKC1 (22, 23). Pseudouridine 
synthases (PUS) represent a singular enzyme class responsible for 
catalyzing RNA-independent pseudouridylation, thereby obviating 
the necessity of RNA template strands (24). Certain instances involve 
RNA synthases, such as tRNA, exhibiting relatively restricted 
substrate specificities.

In this investigation, we integrated the GSE14520 and TCGA-
LIHC datasets comprising HCC tissues to explore the putative roles 
of ANRGs. Our aim was to construct an authenticated nomogram 
capable of prognostic prediction and clinical guidance, accomplished 
through the development of a scoring, namely “riskScore,” and the 
categorization of HCC patients according to ANRGs expression 
patterns. By categorizing patients with HCC based on cellular ANRGs 
expression, we successfully discerned distinct subgroups that exhibit 

associations with prognosis and immune infiltration. Employing the 
LASSO-Cox method, we  developed a predictive model for 
determining the riskScore related to anoikis. Furthermore, through 
the integration of clinicopathological characteristics, we devised a 
nomogram for comprehensive risk assessment. Furthermore, 
we investigated the associations between RNA modifications (Ψ) and 
the occurrence of anoikis, a programmed cell death process, in 
relation to the risk of HCC. The predictive accuracy of the nomogram 
was validated using time-dependent receiver operating characteristic 
(ROC) and decision curve analysis. Our results indicated a plausible 
correlation among anoikis, the immune microenvironment, and the 
prognostic outlook for individuals with HCC.

2. Materials and methods

2.1. Data and cell lines acquisition

On the TCGA data portal,1 which contains 374 LIHC and 50 
normal tissue samples, we found gene expression profiles and clinical 
information for our research, including TNM classification, age, 
gender, and overall survival. Additionally, we  obtained the ICGC 
dataset from https://icgc.org/, which comprised 240 HCC samples, 
and the GSE14520 dataset from the GEO database, which contained 
221 HCC samples. For analysis, only data that had all available clinical 
information were used (25, 26). To obtain a comprehensive set of 
genes associated with anoikis, we use the keywords “anoikis” to search 
ANRGs in Genecards website. Eventually, a total of 63 ANRGs were 
retrieved.2 HCC cell lines were all obtained from kmcellbank (No. 
KCB200507YJ; KCB200970YJ).

2.2. Consensus clustering with ANRGs

In order to identify distinctive expression patterns associated with 
regulators of anoikis, we conducted consensus clustering employing 
the K-means algorithm. The determination of cluster number and 
stability was accomplished using the “ConsensuClusterPlus” package 
(27–29). To validate the clustering outcomes, the UMAP algorithm in 
conjunction with the “ggplot2” R package was employed (30, 31).

2.3. GSVA analysis

The Gene Set Variation Analysis (GSVA) analysis was 
conducted employing the “GSVA” R package (32, 33) using the “c2.
cp.kegg.v7.4.symbols.gmt” dataset sourced from the MSigDB 

1 https://portal.gdc.cancer.gov/

2 https://www.genecards.org/
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database. The determination of statistical significance among 
subgroups was accomplished through the utilization of the 
adjusted p < 0.05, as provided by the “limma” package (34–36). 
Subsequent to this, a functional enrichment analysis was 
performed with the purpose of investigating the functional 
annotation and enrichment pathways pertaining to differentially 
expressed genes in hepatocellular carcinoma in relation to ANRGs. 
T The ClusterProfiler software was employed for the examination 
of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways (37). A statistical significance 
threshold of 0.05 was applied to determine the significance of 
the results.

2.4. LASSO regression analysis

Survival-associated genes were identified through univariate Cox 
regression analysis. To further refine the selection, LASSO regression 
analysis was conducted using the “glmnet” package in R, employing 
cross-validation to determine the optimal penalty regularization 
parameter (λ) (38). Subsequently, multivariate Cox regression 
modeling was applied to identify pivotal genes and estimate their 
corresponding coefficients. The ANRGs risk score was computed f for 
each patient was calculated using the formula: riskScore = e^ 
(0.149*FZD7 + 0.395*ADAMTS5 + 0.108*VNN2 + 0.268*MRPL9–
0.233*PPARGC1A + 0.111*EPO + 0.127*TSPAN13+ ANP32B*0.561–
0.524*TRAC +0.208*RAB328). The predictive performance of the 
model was assessed through the utilization of Kaplan–Meier curves as 
well as ROC curves.

2.5. Risk score and immune cell infiltration

The composition of infiltrating immune cells was assessed through 
the utilization of CIBERSORT and ssGSEA (39). The contrasting 
immune cell types between low-risk and high-risk HCC patients were 
examined via CIBERSORT.

2.6. Chemotherapy response

Protein-drug interactions were investigated through the 
utilization of Quartata Web (40). To assess the median inhibitory 
concentration (IC50) values of individual small molecule drugs, the 
“pRRophetic” R package was employed (41). Briefly, according to the 
expression levels of 10 ANRGs, HCC patients were divided into high-
risk and low-risk groups. Based on the expression patterns of these 
two groups, drug sensitivity differences between the high-risk and 
low-risk groups in HCC were evaluated using the drug sensitivity data 
from “pRRophetic.”

2.7. Nomogram

A nomogram was developed employing clinicopathological 
characteristics. Internal validation encompassed the use of calibration 
plots to evaluate the precision of the nomogram. In order to assess the 
predictive efficacy of the nomogram, the Time-C index was employed. 

Furthermore, DCA method was conducted to ascertain the clinical 
utility of the intervention (42).

2.8. Migration ability test

The ANRGs prognostic model was validated using Huh7 and 
HepG2 cell lines as experimental models. To evaluate the prognostic 
accuracy, wound healing assays were performed separately on Huh7 
cells exhibiting high-risk scores and HepG2 cells displaying low-risk 
scores. The migration rates were subsequently compared to determine 
the relative migration capabilities of these two HCC cell lines.

2.9. CCK-8 experiment

In order to validate the accuracy of ANRGs’ drug sensitivity 
predictions, we selected Erlotinib, which exhibited the most significant 
differences, for cell viability experiments. HepG2 and Huh7 cells were 
treated with various concentrations of Erlotinib for 36 h. Subsequently, 
10 μL of CCK-8 reagent was added, and the optical density (OD) at 
450 nm was measured using a spectrophotometer after a 2-h 
incubation period, representing the cell viability.

2.10. Statistical analysis

R software 4.1.3 was used to conduct the statistical analysis. 
Graphpad and Image J (version 9.4.0, 1.8.0) were used to analyze the 
experimental data. T-test was used to assess the difference between the 
two groups in the cell experiment. p < 0.05 were used to determine 
statistical significance.

3. Results

3.1. Genetic aberrations in HCC and 
differential expression of ANRGs

Among the 364 TCGA-LIHC samples analyzed, regulatory 
mutations associated with anoikis were identified in 231 samples, 
accounting for approximately 63.46% of the examined samples. 
Noteworthy, the highest mutation rates were observed in TP53 and 
CTNNB1 (Figure 1A). Moreover, we detected CNVs in 16 out of the 63 
ANRGs within TCGA-LIHC. Predominantly, these alterations 
manifested as copy number amplifications (Figure  1B), with 
modifications observed in 16 regulators across different chromosomes 
(Figure 1C). The expression profiles of the 63 identified regulators were 
subjected to analysis aimed at discriminating between normal and 
tumor samples obtained from patients diagnosed with HCC 
(Figure 1D). Among these regulators, 55 ANRGs exhibited statistically 
significant alterations. Notably, 49 of them exhibited elevated expression 
levels in HCC samples. To gain deeper insights into the association 
between these regulators and patient survival, a new cohort named 
“LIHC-GSE14520” was generated by integrating clinical data and gene 
expression data from the GEO and TCGA HCC datasets. Following the 
data analysis, we proceeded to construct a comprehensive network 
diagram utilizing the 51 identified regulatory factors (Figures 1E,F).
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3.2. Identification of HCC patterns through 
analysis of ANRGs

Two distinct regulatory patterns were identified through 
unsupervised clustering using ANRG expression levels. Cluster A 
comprised 220 cases, while cluster B comprised 371 cases 
(Figure 2A). UMAP dimensional reduction analysis validated the 

effective separation of the two clusters based on gene expression 
levels (Figure  2B). Remarkably, cluster B exhibited a superior 
survival advantage in comparison to cluster A (Figure 2C). It was 
also looked at how the cluster related to the clinicopathological 
traits. When compared to patients in cluster B, patients in cluster 
A had greater TNM stages (Figure  2D). 53 ANRG genes were 
found to be substantially different between the two clusters after 

FIGURE 1

Characteristics and differences of anoikis-related regulators in HCC. (A) Mutation profiles of 364 hepatocellular carcinoma samples from the TCGA-
LIHC cohort. Each waterfall plot represented mutational information for each anoikis-associated regulator. Corresponding colors were annotated at 
the bottom to indicate the different mutation types. The top bar graph showed the mutation burden. The numbers on the right side represented 
mutation frequencies, respectively. (B,C) Copy number variations (CNVs) in 16 of the 63 ANRGs in TCGA-LIHC. (D) The expressions of anoikis-related 
regulators between normal tissues (n = 50) and HCC tissues (n = 364) in TCGA-LIHC cohort (Wilcox test, *p < 0.05; **p < 0.01; ***p < 0.001). (E) Network 
diagram showed the correlations between the 51 regulatory significantly associated with OS. (F) Forrest plot of the univariate association of the 
significantly different genes with OS.
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FIGURE 2

Subgroups of liver cancer related by anoikis-related genes. (A) Consensus matrix for k = 2 was obtained by applying consensus clustering. (B) UMAP 
distinguished cluster A from cluster B based on the expression of ANRGs. (C) Overall survival of cluster A and cluster B (p < 0.001). (D) Heat map of 
clinicopathological features of the two subtypes using GSVA enrichment analysis. (E) Volcanic diagram of differentially expressed ANRGs. (F) Heat map 
of KEGG pathways of the two subtypes. (G) Volcanic diagram of differentially expressed genes (DEG) between cluster A and cluster B. (H) GSEA analysis 
of the most significantly enriched pathways in each of the two clusters, showing the top 5 enriched pathways in cluster A (left) and cluster B (right), 
individually. (I) GO analysis of cluster A vs. cluster B based on 266 upregulated genes obtained from panel (G). (J) Box plot showing the abundance of 
TME infiltrating cells between cluster A and cluster B (Wilcox test, *p < 0.05, **p < 0.01, ***p < 0.001).
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further gene expression analysis (Figure 2E). The top 50 differential 
KEGG pathways were shown to be substantially different across the 
two HCC clusters, according to our GSVA enrichment analysis 
(Figure 2F). 408 genes were found to be differentially expressed 
after the DEG analysis of the A-B cluster (Figure 2G). The most 
significantly enriched pathways were found in both clusters A and 
B by GSEA enrichment analysis (Figure 2H).

In a total of 266 genes exhibiting upregulation in cluster A were 
identified in comparison to cluster B, exhibiting a logFC >1 and p 
value <0.05. Subsequently, these genes were subjected to GO 
enrichment analysis (Figure  2I). The interplay between tumor 
occurrence and development is substantially influenced by the 
immune microenvironment. Analysis of the relative abundance of 23 
distinct subsets of immune cells within two subpopulations unveils 
conspicuous infiltration of MDSCs and Tregs in group A, which 
exhibits diminished rates of survival (Figure 2J).

3.3. Development and validation of ANRGs 
model

To streamline the clinical management of hepatocellular carcinoma 
(HCC), our objective was to construct a subtype-specific scoring 
system based on patient characteristics. To accomplish this, 
we performed univariate Cox regression analysis to identify a set of 312 
genes associated with survival. Subsequently, we  subjected these 
prognosis-related genes to consensus clustering analysis, resulting in 
the discovery of three distinct regulatory patterns (Figures  3A,B). 
Notably, principal component analysis (PCA) unveiled substantial 
expression discrepancies of the aforementioned genes among these 
three HCC subtypes (Figure 3C). Moreover, each subtype exhibited 
unique overall survival outcomes (Figure 3D), affirming the prognostic 
reliability of the identified genes. Additionally, a comparative 
examination of clinical parameters between clusters A and C revealed 
significant differences (Figure 3E). Importantly, among the 59 genes 
analyzed, a striking 53 ANRGs displayed significant variations across 
the three regulatory patterns (Figure 3F). To establish a measurable 
framework applicable to individual patients, a LASSO-Cox regression 
analysis was subsequently executed on the set of differentially 
expressed genes, leveraging the training cohort. Consequently, a total 
of 10 risk-associated genes were identified (Figure 4A). Utilizing these 
10 genes, a risk scoring system was devised for each HCC sample. 
Through Kaplan–Meier analysis, a noteworthy survival advantage was 
observed in the low-risk group compared to the high-risk group, as 
validated in both the training and test cohorts (Figures  4B,C). 
Furthermore, the derived risk score exhibited significant predictive 
value for 1-year, 3-year, and 5-year survival rates in HCC patients 
(Figures  4E,F). Ultimately, the ANRGs model was subjected to 
validation using an independent ICGC cohort (Figures 4D,G).

3.4. Immune infiltration

Through its function in immune evasion, TME, and particularly 
the immune system, is crucial to the development of malignancies. 
Notably, there were notable variations between clusters B and C in the 
riskScores of three clusters (Figures 4H,I). We next looked into the 
immunological infiltration between these groups, and the results 

revealed that cluster C had the highest levels of Tregs and macrophages 
M0 (Figure 4J). Additionally, we determined each patient’s relative 
number of various immune cells and rated HCC patients according to 
their riskScore values (Figure 4K). As expected, the high-risk group 
had much greater levels of macrophages M0 and M2 (Figure 4L). To 
explore variations in immune cell populations among different risk 
groups, we applied a screening criterion given the continuous nature 
of riskScore in our cohort. This screening approach enabled us to 
identify noteworthy changes specifically within macrophages and 
CD8 T cells (Figure 4M). Furthermore, employing t-SNE analysis on 
the dataset comprising differential expression profiles of immune cells, 
we observed a discernible segregation of samples into three distinct 
subgroups (Figure  4N). Furthermore, Moreover, the TME 
encompasses the extracellular matrix (ECM), a critical constituent 
that substantially influences the migratory capability, adhesion 
propensity, and angiogenic processes of neoplastic cells. In order to 
ascertain the tumor purity for individual specimens, we employed the 
“Estimate” R package to evaluate the stromal and immune cell scores. 
Remarkably, HCC patients classified as high-risk exhibited diminished 
immune cell quantities and elevated tumor purity levels compared to 
their low-risk counterparts (Figures 5A,B).

Tumor mutational burden (TMB) serves as a biomarker for 
immunotherapy in diverse solid malignancies. We  performed an 
analysis of TMB variations within distinct risk groups and clusters 
(Figure 5C). TMB exhibits predictive value for immune checkpoint 
inhibitor (ICI) efficacy, suggesting heightened responsiveness of high-
risk patients to ICI treatment. Additionally, cluster C may potentially 
derive greater benefits from ICI therapy compared to cluster B 
(Figures 5D,E). Moreover, cancer stem cells (CSCs) possess the capacity 
for self-renewal, differentiation, and contribute to HCC development 
and treatment resistance. A significant upregulation of mRNA-based 
stemness index (SI) was observed in the high-risk group (Figure 5F). 
Furthermore, a positive association between risk score and SI was 
noted, with cluster C displaying a more pronounced correlation relative 
to cluster B (Figure 5G). To identify potential therapeutic agents for the 
high-risk group, QuartataWeb Server was employed, considering the 
unfavorable prognosis linked to this subgroup (Figure 5H).

3.5. Prediction of drug response

A predictive model was developed to estimate the response of 
HCC patients to chemotherapeutic treatment, leveraging the notable 
variances in gene expression profiles observed across distinct risk 
categories. The pRRophetic software was used in our method to 
foresee variations in the susceptibility of tumors to anticancer drugs 
using gene expression data collected from various risk categories. The 
results of our investigation revealed a significantly elevated probability 
of response to axitinib in the high-risk group, whereas the low-risk 
group exhibited a greater propensity for responding to epothilone B 
(Figure 6).

3.6. Association between ANRGs and 
Pseudouridine (Ψ)

Upregulation of RNA modifiers is linked to the prognosis of 
tumor illnesses. rRNA, snoRNA, and snRNA are all modified during 
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the RNA pseudouridylation process. Through the investigation of 
the correlation between risk scores and the expression patterns of 
pseudouridylation genes (Figure 7A), as well as the comparative 
analysis of gene expression levels between high-risk and low-risk 
cohorts (Figure 7B), we have elucidated the possible involvement of 
in anoikis resistance in HCC patients. Our results reveal a robust 
association between genes involved in pseudouridylation and 
aberrantly expressed ANRGs, thereby implying a notable 

involvement of pseudouridylation in the prognostic implications for 
HCC patients’ survival outcomes (Figure 7C).

3.7. Establishing the HCC nomogram

We devised a nomogram to forecast the overall survival rate with 
the aim of exploring the therapeutic applications of riskScore in 

FIGURE 3

Subgroups of liver cancer related by new gene signature based on two anoikis-related clusters. (A,B) Consensus matrix for k = 3 was obtained by 
applying consensus clustering, according to CDF curve. (C) Principal component analysis (PCA) for the expression of DEGs to distinguish the three 
clusters in LIHC-GSE14520 cohort. (D) OS in the three clusters in LIHC-GSE14520 cohort. (E) Heat map of clinicopathological features of the three 
subtypes based on DEG. (F) ANRGs expression level between cluster A–C (Wilcox test, *p < 0.05, **p < 0.01, ***p < 0.001).
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FIGURE 4

Lasso analysis and Kaplan–Meier curve for the patients in the LIHC-GSE14520 and ICGC cohorts. (A) LASSO coefficient profiles of the 312 DEGs based 
on anoikis-related genes, and the super parameter (λ) was obtained based on the minimum standard with 10-fold cross-validation. (B–D) Kaplan–
Meier plot of high-risk and low-risk in LIHC-GSE14520 cohort and ICGC cohort, which represented training group (B), test group (C) from LIHC-
GSE14520 cohort and ICGC validation group (D), individually. (E–G) AUC time-dependent ROC curves for OS in training, test and validation cohort. 
(H) The level of “riskScore” in different clusters. (I) The Sankey diagram of the relationship between different clusters and living risk. (J) Immune 
infiltration between cluster B and cluster C. (K–M) Immune cell infiltration in different risk groups based on DEGs in the two ANRGs clusters. (N) The 
tSNE analysis demonstrated the differentiation between high and low risk groups.
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determining the prognosis of individuals afflicted with HCC 
(Figure  8A). The nomogram encompasses four autonomous 
prognostic factors, wherein riskScore and TNM classification play 
principal roles (Figure 8C). Verification of the model’s accuracy and 
the nomogram’s reliability was achieved through the application of the 
Schoenfeld Residuals Test and calibration curve analysis 
(Figures 8B,D). The predictive capacity of the integrated nomogram 
was found to be  significantly superior, as evidenced by the time-
dependent ROC curve analysis. The time-C index surpassed 0.7, 
affirming its robustness in forecasting (Figure  8E). Furthermore, 
decision curve analysis (DCA) corroborated that the nomogram 
represents the most precise approach to prognosticate HCC patients’ 
survival (Figure 8F). The cumulative hazard curve demonstrated a 
gradual escalation in the jeopardy of overall survival among patients 
exhibiting elevated scores in the nomogram (Figure  8G), thereby 
underscoring the significance of employing the nomogram in 
conjunction with risk scores derived from ANRGs as a potent 
approach to prognosticate patient outcomes in the realm of 
clinical application.

3.8. Migration ability between HCC cell 
lines in different risk scores

The predictive performance of the ANRGs prognostic model 
was assessed using Huh7 and HepG2 cell lines. To evaluate their 
migratory abilities, wound healing experiments were conducted 
on Huh7 cells exhibiting high-risk scores and HepG2 cells 
exhibiting low-risk scores. A comparative analysis of the migration 
rates between these two HCC cell lines was conducted. Our 
findings demonstrated a significantly diminished migration rate in 
HepG2 cells with low-risk scores in contrast to Huh7 cells with 
high-risk scores (p < 0.01; Figures 9A–C). These results suggest 
that a high-risk score is indicative of heightened metastatic 
potential in tumors, which may contribute, in part, to the 
unfavorable prognosis observed in HCC patients. These findings 
are consistent with the outcomes derived from our ANRGs 
prognostic model.

3.9. Validation of drug sensitivity in HCC 
cell lines

To evaluate drug sensitivity, the CCK-8 assay was employed. 
Higher absorbance values indicate stronger cellular viability, thus 
reflecting decreased sensitivity to the tested drug. We  observed 
differential sensitivity of HepG2 and Huh7 cells to Erlotinib at various 
concentrations (Figures 9D,E). Huh7 cells with higher risk scores 
exhibited greater sensitivity to Erlotinib, as evidenced by lower OD 
values, compared to HepG2 cells with lower risk scores. These findings 
align with our drug prediction outcomes, thereby affirming the 
reliability of the predictive model.

4. Discussion

Globally, HCC continues to be a particularly deadly kind of cancer 
(43). Given the intricate molecular pathways implicated, enhancing 

the prognosis of HCC patients through singular targeted pathways or 
drug interventions proves arduous. The major contributors to 
diminished survival rates among these patients are metastasis and 
postoperative recurrence. Although several genetic markers with 
predictive potential for HCC have been discovered (44–46), their 
count remains inadequate. Hence, there exists a pressing requirement 
to identify supplementary biomarkers exhibiting robust predictive 
efficacy to expand the pool of potential candidates.

Anoikis is a form of regulated cellular apoptosis triggered by the 
detachment of cells from the appropriate extracellular matrix, thereby 
disrupting integrin-mediated adhesion. This process serves as a vital 
mechanism in safeguarding tissue homeostasis and development by 
inhibiting the growth and attachment of dysplastic cells to unsuitable 
substrates (47). Dysregulation of anoikis, characterized by resistance 
to anchorage-dependent growth and epithelial-mesenchymal 
transition, has garnered considerable scientific interest owing to its 
implication in tumor progression and the metastatic dissemination of 
malignant cells. In HCC, multiple signaling cascades possess the 
capability to disrupt the phenomenon of anoikis resistance, 
consequently leading to the attenuation of tumor metastasis. 
Consequently, therapeutic intervention strategies targeting genes 
associated with anoikis have surfaced as a promising avenue for 
surmounting the advancement and metastatic potential of 
HCC. Employing a polygenic profiling approach, encompassing 
multiple genes, affords a comprehensive assessment of the intricate 
interplay among diverse factors governing tumor pathology and the 
acquisition of anoikis resistance. This innovative approach holds 
substantial promise in providing crucial insights into tumor biology, 
thereby furnishing indispensable support for clinical decision-making 
in the epoch of precision medicine within the domain of oncology (48).

In this investigation, the expression patterns of genes associated 
with HCC in relation to anoikis were initially ascertained (Figure 1D). 
Subsequently, a comprehensive screening was conducted to identify 
ANRGs that exhibit associations with the prognosis of HCC 
(Figures 1E,F). By employing KEGG and ssGSEA for further analysis, 
differential enrichment of pathways was discovered, indicating a 
potential influence of these anoikis-associated genes on the survival 
outcomes of HCC patients by modulating these pathways 
(Figures  2C,F,H). Leveraging the Lasso technique, we  successfully 
identified ten ANRGs as crucial genes for the prognostic model, 
enabling the categorization of HCC patients into high-risk and low-risk 
groups (Figure 4A). Immunotherapy and the advancement of cancer 
treatment rely heavily on the immune system (49). Moreover, the 
modulation of cytokine equilibrium significantly influences the 
progression of the disease (50). Ongoing investigations are currently 
focused on exploring the potential of exosome-based immunotherapy 
(51). In addition, the development of deep learning models is underway 
to predict the efficacy of immunotherapy (52). Within the TME, a 
diverse repertoire of chemokines and cytokines is generated by both 
immune and cancer cells, playing pivotal roles in regulating tumor 
progression and expansion. By utilizing the Cibersort software, 
we conducted an additional investigation into the immune infiltration 
patterns within the high-risk and low-risk cohorts (Figures 4K–M). This 
analysis revealed that the immunosuppressive phenotype characterizes 
this particular subgroup.We have identified a cohort of ten genes 
displaying robust associations with the risk of cancer (Figures 4B–D).

In the course of our investigation, a collection of eight genes 
displaying strong associations with cancer risk has been identified. 

https://doi.org/10.3389/fmed.2023.1232814
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Zhang et al. 10.3389/fmed.2023.1232814

Frontiers in Medicine 10 frontiersin.org

FIGURE 5

Characteristics and differences between different risk-groups in HCC. (A) The score of components in tumor microenvironment (Wilcox test, 
***p < 0.001). (B) Influence of tumor purity to risk score (Wilcox test, ***p < 0.001). (C–E) Mutation profiles of TCGA-LIHC cohort with different risk statue 
as well as cluster B and cluster C (Spearman test, p = 0.51; p = 0.0012). (F) Stemness Index in different risk groups (Wilcox test, p = 0.0011). (G) The 
relationship between stemness index and risk score in LIHC-GSE14520 cohort (Spearman test). (H) Potential targeting drugs prediction via 
QuartataWeb Server.
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Previous studies have established multiple connections between these 
genes and the growth and advancement of tumors. Notably, 
Arechederra M and co-authors have provided evidence showcasing the 
pivotal role of ADAMTSL5, a protein synthesized by liver cancer cells, 
in the formation of tumors. Targeting this gene effectively has 
demonstrated reductions in both in vitro and in vivo tumor growth 
(53). Furthermore, in the context of colorectal cancer, heightened 
expression of ADAMTS5 has emerged as a significant indicator of 
lymphatic infiltration and metastasis (54). According to research 
conducted on HCC cell lines, FZD7, which is overexpressed in gastric, 
esophageal, and HCC (55), directly interacts with Wnt signaling to 
activate the traditional Wnt/−linked protein pathway (56). Epithelial 
mesenchymal transition (EMT), which is triggered by this activation, 
encourages HCC to migrate and invade more widely (57). The FZD7/
Wnt axis may be  blocked to drastically reduce the production of 

tumor-related proteins and to slow the HCC development (58). 
Furthermore, FZD7 exhibits anti-apoptotic actions in HCC (59). 
Despite having received less attention in oncology research, MRPL9 
has been discovered to have an oncogenic characteristic in breast 
cancer (60). The VNN2 protein is essential for cell transendothelial 
migration and is linked to non-adhesive proliferation, which raises the 
possibility that it contributes to tumor anoikis resistance (61). VNN2 
was discovered to be up-regulated in a human metastasizing esophageal 
cancer cell line (T.Tn-AT1) in comparison to the parental 
non-metastasizing cell line (T.Tn), emphasizing its significance in 
metastasis (62). Rab32, on the other hand, is connected to mTORC1 
signaling and the stimulation of -catenin/TCF signaling and expressed 
in a variety of secretory epithelial cells (63). The proliferation, 
migration, and metastasis of esophageal squamous cell carcinoma 
(ESCC) cells have been demonstrated to be inhibited by suppression of 

FIGURE 6

Drug sensitivity between high-risk group and low-risk group.
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RAB23 expression but promoted by overexpression of RAB23 (64). 
Tetraubiquitin superfamily member TSPAN13, commonly known as 
NET-6, has been linked to a number of biological activities, including 
motility and metastasis (65). TSPAN13 expression has been 
demonstrated to be suppressed by certain miRNAs (66–68), which 
results in mesenchymal–epithelial transition (MET) and less tumor 
invasion and growth (69) The pleiotropic growth factor erythropoietin 
(EPO), on the other hand, has been shown to encourage the 
development of soft agar colonies in human hepatoma cells, indicating 
that it may play a part in conferring anoikis-resistance (70). Contrarily, 

PPARGC1A expression has been found to be downregulated in HCC, 
and in vitro and in vivo tests have demonstrated that upregulation of 
PPARGC1A can successfully prevent HCC cell invasion and migration 
by blocking the Wnt/−catenin/PDK1 axis and thereby inhibiting 
aerobic glycolysis (71).

Pseudouridine (Ψ) stands out as a prominent RNA 
modification and represents the inaugural post-transcriptional 
alteration to have been identified. Unlike methylation, Ψ exhibits 
irreversibility within mammalian systems (72). DKC1 assumes an 
indispensable role as a constituent of the telomerase complex, with 

FIGURE 7

Relationship between Anoikis and Pseudouridine (Ψ) in HCC. (A) The relationship between Ψ regulator and risk score in LIHC-GSE14520 cohort. 
(B) The expressions of Ψ regulators with different risk status (Wilcox test). (C) Correlation of ANRGs and Ψ regulators (Wilcox test, *p < 0.05; **p < 0.01; 
***p < 0.001).
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FIGURE 8

Identification and Verification of Nomograms. (A) A nomogram prediction ability at 1, 3, and 5 years. (B,D,E) Schoenfeld Residuals Test was performed to 
verify the validity of nomogram, and calibration plot for internal validation of the nomogram. Time C-index evaluated the predictive performance of 
nomogram at different times. (C) Forest plot summary of multivariable Cox regression analyses of the clinical features as well as risk score in the LIHC-
GSE14520 cohort. (F) DCA curves of the nomogram for 1-, 3- and 5- year OS in LIHC-GSE14520 cohort indicated the clinical decision-making benefits 
of this model. (G) Cumulative hazard curve represented the probability of survival over time progression.
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its participation being crucial in the post-transcriptional 
processing of precursor rRNA, thereby exerting a pivotal influence 
on the progression of tumor cells (73). During our investigation, 
we assessed the expression levels of DKC1, PUS1, and PUS7 among 
patients diagnosed with HCC, revealing a robust and significant 
correlation between pseudouridine and anoikis (Figure  7A). 
Significantly elevated expression of these genes was observed in the 
high-risk cohort (Figure 7B), implying a vital contribution of Ψ in 
the advancement of HCC and its metastatic dissemination. 
Furthermore, our correlation analysis has provided preliminary 
evidence suggesting a plausible association between Ψ and anoikis 
in the context of HCC (Figure 7C).

Sample classification using established gene expression 
characteristics is a widely employed methodology (74, 75). In our 
study, we utilized a comparable strategy to classify HCC patients by 
analyzing the expression profiles of cellular regulators associated with 
anoikis, in conjunction with clinicopathological indicators 
(Figure 8A). Our results revealed substantial differential expression 
of these regulators among distinct subgroups, and their expression 
patterns were associated with diverse prognoses, substantiating the 

effectiveness of our ten-gene signature in discerning patient 
outcomes. This signature holds the potential to aid clinicians in 
formulating personalized therapeutic approaches. Furthermore, the 
decision curve analysis indicates that the nomogram constructed 
using the ten-gene signature could yield long-term advantages for 
hepatocellular carcinoma patients (Figure 8F).

Finally, to validate the reliability of the ANRGs model, we conducted 
wound healing assay and CCK-8 assay to examine the migration ability 
and drug sensitivity of different risk-scored HCC cell lines, HepG2 and 
Huh7. We observed that the migration ability of the high-risk Huh7 
cells was significantly higher than that of the low-risk-scored HepG2 
cells (Figures 9A–C), which partly explains the poor prognosis of high-
risk HCC patients. Furthermore, Huh7 cells exhibited a significantly 
higher response to Erlotinib compared to HepG2 cells (Figures 9D,E), 
confirming the accuracy of our drug prediction (Figure 6).

Although our riskScore model and the corresponding 
nomogram demonstrate enhanced predictive efficacy, the cellular 
heterogeneity implies that investigating the influence of ANRGs on 
hepatocellular carcinoma advancement and prognosis at the 
individual cell level could provide heightened precision. 

FIGURE 9

Wound healing assay. (A) Migration ability detected via wound healing assay. (B,C) Results of migration ability between HepG2 and Huh7 cell lines. (D,E) 
Drug sensitivity to Erlotinib in HCC cell lines.

https://doi.org/10.3389/fmed.2023.1232814
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Zhang et al. 10.3389/fmed.2023.1232814

Frontiers in Medicine 15 frontiersin.org

Furthermore, the utilization of a restricted dataset in this 
investigation necessitates the inclusion of a more extensive sample 
size to adequately calibrate the predictive model.

5. Conclusion

Our investigation has devised a signature composed of ten 
genes and accompanying nomograms, which hold potential utility 
for clinicians in the individualized selection of chemotherapy 
regimens for patients with HCC. The ten-gene signature, intricately 
linked to anoikis, exhibits remarkable efficacy in prognosticating 
the survival outcomes of HCC patients. Additionally, the 
nomogram derived from this predictive model holds promise as a 
valuable tool for healthcare professionals in formulating 
personalized treatment strategies within clinical contexts. Future 
explorations into the molecular underpinnings of resistance to 
anoikis hold significant clinical implications, with the potential to 
provide a novel precision medicine approach for HCC.
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