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Objectives: Gliomas and brain metastases (Mets) are the most common brain 
malignancies. The treatment strategy and clinical prognosis of patients are 
different, requiring accurate diagnosis of tumor types. However, the traditional 
radiomics diagnostic pipeline requires manual annotation and lacks integrated 
methods for segmentation and classification. To improve the diagnosis process, 
a gliomas and Mets computer-aided diagnosis method with automatic lesion 
segmentation and ensemble decision strategy on multi-center datasets was 
proposed.

Methods: Overall, 1,022 high-grade gliomas and 775 Mets patients’ preoperative 
MR images were adopted in the study, including contrast-enhanced T1-weighted 
(T1-CE) and T2-fluid attenuated inversion recovery (T2-flair) sequences from 
three hospitals. Two segmentation models trained on the gliomas and Mets 
datasets, respectively, were used to automatically segment tumors. Multiple 
radiomics features were extracted after automatic segmentation. Several 
machine learning classifiers were used to measure the impact of feature selection 
methods. A weight soft voting (RSV) model and ensemble decision strategy based 
on prior knowledge (EDPK) were introduced in the radiomics pipeline. Accuracy, 
sensitivity, specificity, and the area under the receiver operating characteristic 
curve (AUC) were used to evaluate the classification performance.

Results: The proposed pipeline improved the diagnosis of gliomas and Mets 
with ACC reaching 0.8950 and AUC reaching 0.9585 after automatic lesion 
segmentation, which was higher than those of the traditional radiomics pipeline 
(ACC:0.8850, AUC:0.9450).

Conclusion: The proposed model accurately classified gliomas and Mets patients 
using MRI radiomics. The novel pipeline showed great potential in diagnosing 
gliomas and Mets with high generalizability and interpretability.
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1. Introduction

Gliomas and brain metastases (Mets) are the most common brain 
malignancies with high cancer-related mortality (1, 2). Gliomas account 
for more than 50% of the overall tumors in the central nervous system 
(CNS) and make up 81% of total CNS malignancies with a median 
survival of ∼12–15 months (3–5). Mets with multiple enhancing lesions 
are frequent, and the incidence of Mets ranges from 10 to 40% in adult 
cancer patients (6, 7). The size and number of Mets determine patients’ 
subsequent treatment and management. Therefore, the accurate 
diagnosis of patients with brain tumor types will significantly impact the 
treatment strategy and clinical prognosis of patients.

Among many imaging techniques, magnetic resonance imaging 
(MRI) sequences (1) are well-suited for brain tumor diagnosis (8, 9). 
Contrast-enhanced T1-weighted (T1-CE) sequence and T2-fluid 
attenuated inversion recovery (T2-flair) sequence (10, 11) are relatively 
easier to acquire that can reflect tumor structural information. 
Radiologists read MRI images and initially determine the presence 
and specific location of brain tumors. However, it is time-consuming 
for radiologists to read too many MRI slices. Moreover, manually 
reading greatly depends on the radiologists’ expertise, which has 
interpretation bias and carries the risk of missing and misdiagnosing 
tumors. Therefore, an effective computer-aided diagnosis (CAD) 
technique with high diagnosis accuracy is much needed (12).

Radiomics is an emerging method that can extract features from the 
region of interest (ROI) in images of different modalities. Using machine 
learning algorithms, quantitatively analyzing molecular and genetic 
changes implicated in medical images can predict tumor type, grade, and 
so on. In the previous study (8, 9, 13–17), Tateishi (14)classified gliomas 
and Mets based on texture features from T1-CE, T2, and ADC on 127 
total patients and got the best performance of 0.92 AUC. Liu (16) et al. 
extracted radiomics features from T1-CE of 268 patients and gave the 
best results in terms of accuracy (0.85) and AUC (0.93). Priya (17) et al. 
obtained T1, T1-CE, T2, FLAIR, and ADC from 60 patients with gliomas 
and 60 patients with Mets. They found that the LASSO classifier reached 
the best result of accuracy (0.892), AUC (0.953), sensitivity (0.887), and 
specificity (0.897) based on the shape, texture, and first-order features. 
These related works have corroborated the potential benefit of radiomics-
based methods for the differentiation of gliomas and Mets.

Machine learning and optimization methods have also made 
progress in natural and medical image analysis (18–23). For example, 
in the field of brain tumor diagnosis, Pugalenthi (18) et al. enhanced 
the tumor section based on Social Group Optimization (SGO) 
algorithm-assisted Fuzzy–Tsallis thresholding. Rinesh (19) et  al. 
proposed the combination of k-based clustering processes to locate 
the tumor in hyperspectral imaging. The value of k is determined 
using the firefly algorithm. The optimization processes reduced the 
manual calculation for finding K’s optimal value to segment the brain 
regions. Gopal (20) et al. proposed a majority voting-based ensemble 
algorithm to optimize the overall performance of brain tumor grading. 
Ahmadi (21) et  al. performed a PSO algorithm to optimize the 
gradient descent algorithm during brain tumor classifier training.

However, these previous works (8, 9, 13–17) used manual or 
semiautomatic methods for ROI segmentation, which was labor-intensive 
and possessed potential bias. Furthermore, they were based on a single 
center usually lacking external validation, and the obtained data were not 
large enough. Finally, some advanced MRI sequences or other functional 
sequences (24) had poor clinical applicability in some primary hospitals.

Our main contributions are summarized as follows. First, an 
integrated gliomas and Mets CAD pipeline was proposed, including 
two improved segmentation models and the radiomics-based 
classifier, which could reduce the cost of manual annotation in the 
traditional radiomics pipeline. Second, an ensemble decision strategy 
based on prior knowledge (EDPK) was introduced in the pipeline to 
reduce the impact of automatic segmentation uncertainty on final 
classification performance and improve diagnostic accuracy. Finally, 
the more accessible T1-CE and T2-flair sequences were obtained from 
three hospitals in the study, which were reliable, clinically applicable, 
and could help radiologists in the diagnostic process.

The remaining sections of the article are structured as follows: A 
detailed description of all the materials and methods including MRI 
acquisition, feature extraction, feature selection, model construction, 
and our EDPK strategy is presented in Section 2. The results of brain 
tumor classification and verification procedures are presented in 
Section 3. The discussion is provided in Section 4. Finally, the 
conclusion is added in Section 5.

2. Materials and methods

Figure 1 summarizes the different steps adopted in this study.

2.1. MRI acquisition

The present study included a total of 1,022 gliomas and 775 Mets 
patients from three hospitals under approval by the institutional 
review boards (IRBs). The enrolled patients met the inclusion criteria: 
(a) diagnosis of high-grade gliomas or Mets and (b) all MR scans were 
performed before initiating treatment. The exclusion criteria were as 
follows: (a) image artifacts or incomplete images and (b) a history of 
other CNS diseases.

These MR images were preoperatively scanned with 
SimensVerio3.0 T, GE750W3.0 T and obtained complying with 
clinical criteria and protocol. All images were in Neuroimaging 
Informatics Technology Initiative (NIfTI) format after the data were 
desensitized. The protocol included the T1-CE and T2-flair sequence. 
According to the same annotation protocol (annotated by two 
resident radiologists, reviewed by one attending radiologist), 
experienced radiologists used open-source ITK-SNAP (version 3.2, 
http://www.itksnap.org/pmwiki/pmwiki.php) (25) software to 
delineate ROI including the edema, the necrotic, and the enhancing 
tumor area. The whole ROI was the combination of these regions and 
was merged for subsequent feature extraction.

2.2. Image preprocessing

Image preprocessing was performed to standardize images. First, 
the N4 bias field correction (26) was performed to reduce the 
low-frequency intensity non-uniformity. All T1-CE sequences 
acquired during the same session were registered to the T2-flair 
sequence using ANTsPy1 package (27). Then to ensure the physical 

1 https://github.com/ANTsX/ANTsPy
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space consistency of each voxel in different images, all images were 
resampled to 1 × 1 × 1 mm3 voxel size using the Simple Insight 
Segmentation and Registration Toolkit (SimpleITK, https://github.
com/SimpleITK/SimpleITK) package (28). To reduce the effect of 
differences in image intensity, intensity normalization was applied to 
all MRI images with the Z-score normalization method (29) using the 
mean and standard deviation for the entire brain area.

2.3. Tumor region of interest segmentation

The annotation of the tumor ROI is the preparation for tumor 
classification. It was difficult to segment glioma and Mets lesions by 
only one segmentation model; thus, two segmentation models were 
implemented in the pipeline. The structure of the improved 
segmentation model is detailed in Supplementary Figure S1. Two 
models were based on revised U-net (30) architecture, incorporating 
the DenseNet (31) and self-attention (32) and used T1-CE and T2-flair 
images with sizes of 160 × 160 × 16 as network inputs. The glioma 
segmentation model yielded three regions including enhancing tumor, 
necrotic tumor, and peritumoral edema. The Mets segmentation 
model yielded two regions including enhancing tumor and peritumoral 
edema. These regions were compatibly applied to both MRI sequences 

(T1-CE and T2-flair). The whole ROI was the combination of these 
regions and was merged for subsequent quantitative feature extraction. 
The result of the automatic lesion segmentation is shown in Figure 2.

2.4. Radiomics feature extraction

Features were automatically extracted using the Pyradiomics 
package (33) from the whole ROI. Two filters, Wavelet transform and 
Laplacian of Gaussian (LoG) with two sigma levels (3.0 and 5.0), were 
used during the feature extraction. Three kinds of images were used 
to extract these features: shape features, first-order features, or high-
order texture features. Shape features described the three-dimensional 
size and shape of the ROI, which were independent of the gray-level 
intensity distribution. First-order features described the distribution 
of voxel intensities within the ROI. High-order texture features can 
reflect heterogeneity within a lesion and be extracted by using the 
gray-level co-occurrence matrix (GLCM), gray-level dependence 
matrix (GLDM), gray-level run length matrix (GLRLM), and gray-
level size zone matrix (GLSZM).

A total of 960 features from each sequence, which included 14 
shape features, 198 first-order features (18 were from original images, 
36 were from LoG images, 144 were from wavelet images), and 748 

FIGURE 1

Workflow of our study. MRI images of 1797 brain tumor patients were collected from three hospitals. Lesion segmentations were performed 
automatically using deep learning model. The ensemble decision strategy based on prior knowledge was included in the radiomics pipeline.
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high-order features (68 were from original images, 136 were from LoG 
images, 544 were from wavelet images), were obtained.

2.5. Feature preprocessing

Before feature selection, all extracted features were standardized 
using the Z-score normalization method, uniformly converting the 
magnitudes of different features into the same magnitude to ensure 
consistency. For each feature vector, the mean and standard deviation 
were calculated (in training sets) and then normalized using Z-score 
normalization, which consists of subtracting each feature vector from 
the mean followed by division by the standard deviation. For Z-score 
normalization, the mean and standard deviation were calculated for 
the training set and then applied to the testing set. Features’ correlation 
was evaluated using Pearson’s correlation.

2.6. Feature selection and classification

In this study, the Mann–Whitney U-test was implemented to 
choose features with statistical differences (value of p <0.05) and remove 
the feature with the worst univariate predictive power. Then, several 
different combinations were tested by cross-combination of three 
feature selectors and six classifiers. The Least Absolute Shrinkage and 
Selection (LASSO) (34), Mutual Information (MI) (35), and Recursive 
Feature Elimination Random Forest (RFE-RF) (36) were investigated 
for feature selection and reduction based on the radiologist-delineated 
ROI. Feature preprocessing and selection were performed on training 
sets and then applied to testing sets. LASSO uses the L1 norm as a 
penalty term to change the unimportant regression coefficients to zero 

to eliminate variables. MI was calculated between the radiomics feature 
and its category. Then, the features were sorted according to MI and the 
top n features were selected according to validation performance. 
RFE-RF calculates the feature importance of sub-radiomics features set 
recursively. The Gini index was used to measure the contribution of 
features based on the contribution of each feature on each tree in the 
Random Forest. Features with high contribution were selected.

The selected features were used as the input of several ML 
classifiers, including Gaussian Naïve Bayes (GNB) (37), Extreme 
Gradient Tree (XGBoost) (38), logistic regression (LR) (39), Random 
Forest (RF) (40), and Support Vector Machine (SVM) (41) with two 
different kernels: polynomial kernel (SVM-Poly) and radial basis 
function (SVM-RBF). Classification algorithms were optimized 
during the training process using the Grid Search method. The best 
models were chosen by one standard deviation rule in 10-fold cross-
validation and then evaluated on the test or external validation sets. 
Hyperparameter values of each best model used in the classification 
task are shown in Supplementary Table S4.

After that, the important radiomics feature sets and classifier 
combinations were obtained. The Pearson coefficient (42) was used to 
measure the correlation between selected features. The feature 
correlation analysis was visualized by the heat map of feature 
correlation coefficients. Moreover, the feature importance was 
visualized by the bar chart and SHAP model. We implemented these 
feature selection methods and classification algorithms using the 
SciPy library2 and Scikit-learn Machine Learning library (43).3

2 https://scipy.org/

3 https://scikit-learn.org/stable/

FIGURE 2

Result of lesion automatic segmentation. (A) Result of gliomas: green label indicates enhancing tumor, yellow indicates peritumoral edema, and red 
indicates necrotic tumor area. (a), (d), and (g) were original MRIs; (b), (e), and (h) were ground truth; (c), (f), and (i) were the results of the segmentation 
model of gliomas. (B) Result of Mets: red label indicates peritumoral edema and green indicates enhancing tumor. (a), (d), and (g) were original MRIs; 
(b), (e), and (h) were ground truth; (c), (f), and (i) were the results of the segmentation model of Mets.
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2.7. Ensemble decision strategy based on 
prior knowledge

In the EDPK strategy, a weight soft voting model (RSV model) 
was developed by combining the two best-performing classifiers based 
on the classification performance and using the Grid Search method 
to search optimal hyperparameters.

Two preprocessed MRI sequences of each patient were put into 
the glioma and Mets segmentation models, respectively, and two 
segmentation results were obtained with post-processing. EDPK 
strategy was made according to the lesion number in the two 
segmentation results (44), which could adaptively determine the 
tumor ROI and the weight in the RSV model. Figure 1 depicts the 
proposed EDPK strategy, which is also explained in Algorithm 1. 
Based on prior knowledge, the set number was set to 3  in 
this study.

Algorithm 1 Ensemble decision strategy based on prior knowledge (EDPK)

Input:

Automatic segmentation resultsPredict_mask G andPredict_mask M

Output:

Post-processing results:MaskG andMaskM

The lesion number in the MaskG:LG

The lesion number in the MaskM:LM

Final mask set

Classifier weight � � ��� �1 2,

1: Remove small false positive lesions in Predict_mask G and Predict_mask M and 

obtain post-processing results MaskG and MaskM

2: Calculate the lesion number LG, LM of MaskG, and MaskM, respectively

3: Number = Max (LG, LM)

4: if Number < set number:

5: � �1 2�

Combine MaskG and MaskM into Mask

Final mask set = {Mask}

6: else:

7: Adaptively adjust weights

Final mask set = {MaskG, MaskM}

8:Return Final mask set and Classifier weight

2.8. SHAP analysis

In traditional feature importance analysis, important features can 
be seen, but the influence of features on prediction results cannot 
be seen. Shapley Additive Explanations (SHAP) (45) can reflect the 
influence of the features predicted by each sample through SHAP 
value and show the positive and negative influence.

For each predicted sample, the model generates a predicted value, 
and the SHAP value is the value assigned to each feature in the sample.

 y y f x f x f xi base i i ik� � � � � � � ��� � �1 2

f xij� � is the SHAP value of xij, which is the contribution of the 
jth feature in the ith sample to the final predicted value. When 
f xij� � � 0, it indicates that the feature improves the predicted value 

and has a positive effect. Otherwise, it indicates that this feature 
reduces the predicted value and has a negative effect.

3. Results

3.1. Dataset

Overall, 1,797 patients were included in this study and randomly 
divided into training (n = 1,278), validation (n = 319), and testing sets 
(n = 200). The details of patients’ distribution are shown in 
Supplementary Table S1. The training set from gliomas was used to 
train the glioma segmentation model, and the training set from Mets 
was used to train the Mets segmentation model. The validation set was 
used for tuning the model parameters during the training process. The 
testing set was used for the final model performance evaluation.

3.2. Performance with the addition of the 
clinical feature

Based on the radiologists-delineated ROI, 960 radiomics features 
(14 shape features, 198 first-order features, and 748 high-order 
features) were extracted. The number of features extracted from 
different image types is shown in Supplementary Table S3, and the 
details of the extracted features are summarized in 
Supplementary Table S2. First, 873 features were coarsely selected by 
the Mann–Whitney U-test and further filtered using LASSO.

According to clinical experiences, the lesion number helped 
distinguish gliomas and Mets. To verify it, the experiment was 
conducted using a Random Forest classifier. The result is shown in 
Table 1. The incorporation of the lesion number resulted in some 
improvement in the model classification performance. Therefore, the 
lesion number is added to the feature set in subsequent 
comparison experiments.

3.3. Comparison of the classification 
performance of different combinations

Supplementary Figure S2 shows the correlation of radiomics 
features after LASSO feature selection in the training set, and 
Supplementary Figures S3, S4 show the correlation of radiomics 
features after MI and RFE-RF feature selection. In the heat map, a 
lower color saturation indicated a lower correlation between features. 
The heat map showed that the correlations between feature pairs were 
reduced after applying the LASSO selection.

TABLE 1 Results of the RF classifier before and after incorporating the 
lesion number into the feature set.

Features Label ACC AUC SEN SPE

57 features 0 0.8834 0.9571 0.8834 0.9044

1 0.9044 0.9571 0.9044 0.8834

57 features, 

lesion number

0 0.8912 0.9705 0.8860 0.9387

1 0.9069 0.9705 0.9387 0.8860

Label 0 represents brain metastases; Label 1 represents gliomas.
The bold values indicate the highest results.
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Figure 3 provides the classification indices of (a) ACC and AUC and 
(b) SEN and SPE for different combinations, respectively, in the testing 
set. More detailed results are presented in Supplementary Tables S5–S9 
for different combinations. The better-performing model for features 
selected by LASSO and MI was SVM using the RBF kernel function, 

with an average AUC of 0.9671 and an accuracy of 0.9043. The best-
performing model for features selected by LASSO and RFE-RF was 
Random Forest, with an average AUC of 0.9713 and an accuracy of 
0.9118. However, the combination of the two feature selection methods 
slightly reduced the classification performance of the classifier compared 

FIGURE 3

Heatmap of ACC, AUC, sensitivity, and specificity for cross-combination of feature selections and different classifiers. (A) ACC and AUC and 
(B) sensitivity and specificity.
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to features filtered using only LASSO, and the best-performing model 
for 2-class brain tumor classification was RF, with an average AUC of up 
to 0.9705 and an accuracy of up to 0.9131 based on the radiomics 
features selected by LASSO.

3.4. Classification performance of our model

To combine the advantages of classifiers with good classification 
performance, an RSV model was formed and a grid search method 
was used to determine the parameters of each model. Several 
radiomics features selected by LASSO and the lesion number were 
used to test the classification performance. Table  2 shows the 
classification performance of the RSV model with different weight 
settings and other classifiers, in which all evaluation metrics of the 
RSV model were higher than those when using the SVM model alone, 
indicating that the RSV model can improve the classification 
performance of the 2-class brain tumor.

The ROC curve and AUC of different classifiers based on LASSO 
feature selection in the testing set are shown in Figure 4. Our RSV 
model (the red line) was the closest to the upper left corner, with a 
slightly higher sensitivity and lower false positive rate than other 
models. All evaluation metrics of our RSV model were higher than 
other classifiers, and the best classification performance the RSV 
model achieved was with an ACC reaching 0.9144 and AUC reaching 
0.9736. ROC curve and AUC of different models based on other 
combinations of feature selection and classifiers are shown in 
Supplementary Figures S8, S9.

The performance of the classifier can further be quantified in 
terms of a calibration plot. The calibration curve of the classifier is 
shown in Figure  5. The dashed line is the reference of perfect 
calibration; thus, the closer the calibration curve of the model is to 
the diagonal dashed line, the more accurate the model’s predictive 
diagnosis is. It can be seen that the RSV model (the red line) is closer 
to the diagonal dashed line illustrating better predictive performance.

3.5. The performance of the proposed 
EDPK strategy

To validate the effectiveness of the EDPK strategy proposed in the 
study, radiomics features were extracted from automatic segmentation 
results; features with excellent performance were selected, and the 

proposed RSV model was used as the classifier. The classification 
performance under different segmentation precision is shown in Table 3. 
Compared with the results of other state-of-the-art segmentation 
models, two automatic segmentation models had higher dice coefficients 
on the testing data of gliomas and Mets, which proved the effectiveness 
of the two segmentation models. In addition, it could be seen that the 
RSV model added to the EDPK strategy had achieved the highest 
classification accuracy, AUC, sensitivity, and specificity. Through the 
EDPK strategy, the classification performance of the weighted soft 
voting ensemble model proposed in the study was further improved.

The classification performance of the RSV model with different 
weights is given in Table 4. It can be seen that the introduction of the 
EDPK strategy in RSV can achieve relatively high values in terms of 
accuracy, AUC, sensitivity, and specificity, indicating that the EDPK 
strategy was effective and interpretable through the results of 
automatic segmentation for different decision processing.

3.6. Feature importance analysis and SHAP 
explanation

The importance of radiomics features selected by LASSO is 
visualized using a bar chart in Supplementary Figure S5. A larger value 
in the bar chart indicated greater importance in diagnosing gliomas 
and Mets. It could be seen that “shape-Flatness,” “shape-Maximum3D-
Diameter,” and “shape-Sphericity” were important radiomics features 
from the original image. The Mutual Information of features selected 
after MI and the importance of features selected after RFE-RF are 
shown in Supplementary Figures S6, S7.

In Figure 6, the distribution of four important features: lesion 
number, shape-Maximum3D-Diameter, shape-sphericity, and shape-
Flatness in two tumor types is shown in a boxplot, respectively. It 
could be  seen that gliomas and Mets were roughly normally 
distributed in these features and there were fewer outliers in the 
distribution of these four features.

The SHAP explainable model took the absolute value of the SHAP 
value of each feature as the importance of the feature. Figure 7 shows 
the importance of the top 20 features in the process of tumor type 
prediction. The vertical location showed the feature’s importance. It 
could be seen that the lesion number had the highest feature importance.

In Figure 8, the SHAP values of the top 20 important features are 
plotted for each sample. The y-axis represents the features arranged by 

TABLE 2 Classification performance of different classifiers on 2-class brain tumors in the testing set.

Features Model ACC AUC SEN SPE

57 features + NL LR(L1) 0.9055 0.8693 0.9055 (0.8756, 0.9338) 0.9038 (0.9338, 0.8756)

GNB 0.8237 0.9035 0.8237 (0.8446, 0.8039) 0.8248 (0.8039, 0.8446)

SVM (poly) 0.9018 0.9582 0.9018 (0.8756, 0.9265) 0.9003 (0.9265, 0.8756)

SVM (RBF) 0.9043 0.9654 0.9043 (0.8601, 0.9461) 0.9019 (0.9461, 0.8601)

RF 0.9131 0.9705 0.9131 (0.8860, 0.9387) 0.9174 (0.9387, 0.8860

XGBoost 0.8942 0.8870 0.8942 (0.8782, 0.9093) 0.8933 (0.9093, 0.8782)

RSV (1:1) 0.9144 0.9730 0.9144 (0.8990, 0.9289) 0.9135 (0.9289, 0.8990)

RSV (2:1) 0.9144 0.9736 0.9144 (0.8938, 0.9338) 0.9132 (0.9338, 0.8938)

RSV (2:3) 0.9068 0.9709 0.9068 (0.8938, 0.9191) 0.9061 (0.9191, 0.8938)

RSV (4:3) 0.9144 0.9731 0.9144 (0.8964, 0.9314) 0.8995 (0.9314, 0.8964)

The bold values indicate the highest results.
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importance, and the x-axis represents the SHAP value of each feature. 
Each point represents a sample, and the sample size is stacked 
vertically. The figure shows important features and the influence range 
of these features on all samples.

To understand how a single feature affected the output of the 
model, taking the lesion number as an example, the SHAP value of 
this feature was compared with the SHAP value of the feature of all 
samples in the data set, and the results are shown in Figure 9. Each 
point represents a sample, the x-axis is the lesion number, and the 
y-axis is the SHAP value of the feature. It could be seen that “Original_
Shape_Maximum2DDiameterColumn” is the characteristic variable 
that interacts with the number of lesions. The fluctuations in the 
vertical direction indicate the interactions between the two features.

Figure 10 shows the contribution of features to the predicted 
value in the prediction process of four samples in the form of a 
waterfall plot.

4. Discussion

In this study, an integrated gliomas and Mets CAD pipeline, 
including the improved automatic segmentation model and the 
radiomics-based classifier, was proposed. Moreover, an ensemble 
decision strategy based on prior knowledge strategy (EDPK) was 

introduced in the pipeline to improve the performance of the 
traditional radiomics-based method.

Radiomics is an emerging medical image analysis method that can 
convert images into quantitative data. The radiomics features extracted 
from brain MRI can capture information on heterogeneous details 
between tumor locations, which helps radiologists make a fast and 
correct decision on the tumor type. Previous relevant studies have 
shown the great significance of radiomics features in predicting tumor 
types (8, 9, 14–17, 47); however, those studies were mainly based on 
small datasets from a single-center application, which limited the 
CAD performance and multi-center applications. In addition, manual 
segmentation or semiautomatic methods for tumor segmentation 
limited the model’s robustness. Furthermore, it was a challenge to 
segment Mets lesions due to their size and shape (48). The comparison 
between prior works and our novel pipeline is shown in Table 5.

Given the above issues, first, the effectiveness of several 
combinations of feature selection methods and classifiers was validated 
in the traditional radiomics pipeline and the importance of adding the 
clinical feature (lesion number) was demonstrated. Then, to interpret 
the results of the model by analyzing the importance of selected features, 
the bar chart and the SHAP model were used to visualize the importance 
of features. The top three radiomics features from the original MRI that 
contributed most to classifying gliomas and Mets were “shape-Flatness,” 
“shape-Maximum3D-Diameter,” and “shape-Sphericity” from the 

FIGURE 4

ROC curve and AUC of different models based on 58 features (lesion number  +  57 radiomics features). The different colored lines represented the 
classification performance of the model in the testing set.
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original image. “shape-Flatness” shows the relationship between the 
largest and smallest principal components in the ROI shape. “shape-
Maximum3D-Diameter” feature is a measure of the largest pairwise 

Euclidean distance between tumor surface mesh vertices. “shape-
Sphericity” calculates the ratio of the perimeter of the tumor region to 
the perimeter of a circle with the same surface area as the tumor region. 
The RSV model and LASSO selection achieved the best classification 
performance with an ACC of 0.9144 and AUC of 0.9736, based on the 
radiologist-delineated ROI.

Then, an integrative gliomas and Mets CAD method with 
automatic lesion segmentation and radiomics-based classification was 
developed. The diagnostic performance of our method was validated 
on the testing set and measured by accuracy, sensitivity, specificity, and 
AUC. For automatic brain tumor segmentation, two segmentation 
models for gliomas and Mets were trained separately due to the 
challenge of segmenting the Mets lesion. Both two models introduced 
the DenseNet (31) and Self-Attention (32) mechanisms based on the 
U-net (30) architecture. The Self-Attention mechanism was beneficial 

FIGURE 5

Calibration plot of different classifiers. The y-axis is fraction of positive, and the x-axis is predicted value. The different colored lines indicate the 
calibration curves for the different models. The dashed line is the reference line that a classifier would be like. Our model (the red line) is closer to the 
diagonal dashed line.

TABLE 3 Classification performance under different segmentation precision in the testing set.

Segmentation precision Classifier ACC AUC SEN SPE

Dice_G = 0.8286

Dice_M = 0.6588

(Swin unetr (46))

RSV model 0.8500 0.9269 0.8500 0.8500

RSV model with EDPK strategy 0.8700 0.9528 0.8700 0.8700

Dice_G = 0.8451, Dice_M = 0.8463(Our two 

models)

RSV model 0.8850 0.9450 0.8850 0.8850

RSV model with EDPK strategy 0.8950 0.9585 0.8961 0.8961

Dice_G = 1, Dice_M = 1

(Radiologists delineated)

RSV model 0.9144 0.9736 0.9144 0.9132

Dice_G: the whole tumor dice in the glioma segmentation model. 
Dice_M: the whole tumor dice in the brain metastases segmentation model. 
Dice_G = 1, Dice_M = 1 means the whole ROI delineated by radiologists.
The bold values indicate the highest results.

TABLE 4 Classification performance of the RSV model with different 
weights based on the automatic segmentation result.

Weight in 
RSV model

ACC AUC SEN SPE

1:1 0.8600 0.9335 0.8600 0.8600

2:1 0.8850 0.9450 0.8850 0.8850

3:1 0.8600 0.9427 0.8600 0.8600

EDPK strategy 0.8950 0.9585 0.8961 0.8961

The bold values indicate the highest results.
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FIGURE 7

Feature importance-based SHAP in the brain tumor classification. The color represents the tumor type (red: brain metastases, blue: glioma).

FIGURE 6

Boxplot showing the distribution of the important feature for two tumor types: (A) lesion number, (B) shape-Maximum3D-Diameter, (C) shape-
sphericity, and (D) shape-Flatness. The y-axis represented the box plots of the values of the feature, while the x-axis represented two tumor types.
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in capturing the internal correlation of features, solving the long-
distance dependency problem, and improving the segmentation 
precision. The dense convolution was conducive to training deeper 

network structures and enhancing feature propagation and feature 
reuse. Finally, the glioma segmentation model yielded three segmented 
regions, and the Mets segmentation model yielded two segmented 

FIGURE 8

SHAP value of top 20 features. The color represents the feature value (red high, blue low).

FIGURE 9

Feature dependence of the lesion number. The y-axis represents the SHAP value of the number.
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TABLE 5 Comparison between prior studies and our novel pipeline.

Author PN Modality AS FS Feature Best performance

Tateishi et al. (14) 127 (G:73 M:53) Single 

center

T1-CE, T2, ADC No n/a Histogram and Texture SVM AUC: 0.92

Dong et al. (15) 120 (G:60 M:60) Single 

center

T1, T1-CE T2 No ComBat 

harmonization 

method

Shape, First-order, 

Texture,

Agreement of all five models ACC:0.94, 

AUC SEN:1, SPE:0.89

Liu et al. (16) 268 (G:140 M:128) 

Single center

T1-CE No Boruta selection Shape, First-order, 

Texture, Wavelet 

transform, LoG

Random Forest ACC: 0.85 AUC: 0.97

Priya et al. (17) 120 (G:60 M:60) Single 

center

T1, T1-CE, T2, 

FLAIR, ADC

No LASSO and elastic 

net

Shape, First-order, 

Texture

LASSO ACC:0.892 AUC:0.953

de Causans et al. 

(47)

180 (G:92 M:88) Single 

center

T1-CE No Yeo–Johnson 

scaling feature

Shape, First-order, 

Texture

LogReg ACC: 0.80 SEN:0.887 SPE:0.897

Ours 1777 (G: 1002 M:755) 

Six centers

T1-CE, T2-flair No Mann–Whitney 

U-test, LASSO+ 

MI, LASSO+RFE_

RF

Shape, First-order, High-

order Texture, Wavelet 

transform, LoG,Lesion 

number

RSV model ACC:0.9144 AUC:0.9736 

SEN:0.9144 SPE:0.9132

Ours with EDPK Yes RSV model with EDPK ACC:0.8950 

AUC:0.9585 SEN:0.8961 SPE:0.8961

G, gliomas; M, brain metastasis; n/a, not available; FS, feature selection method; PN, patient number; AS, automatic segmentation.
The bold values indicate the highest results.

regions. For tumor segmentation, we have calculated dice coefficients, 
PPV, and sensitivity for segmentation in the whole tumor region, 
tumor core, and enhancing tumor region, as specified in 
Supplementary Table S12. Compared with the results of other state-
of-the-art segmentation models, our two automatic segmentation 
models had higher dice coefficients (Table 3) on the testing data of 
gliomas and Mets. These regions were compatibly applied to all two 
MRI sequences (T1-CE and T2-flair). The ROI was the combination 
of these regions and was merged for subsequent quantitative 
feature extraction.

Moreover, an EDPK strategy was introduced in the pipeline to 
reduce the impact of automatic segmentation uncertainty on final 
classification performance and improve accuracy in the clinical 
diagnostic process. For each test case, two automatic segmentation 
results were obtained after post-processing and the EDPK strategy 
adaptively determined the ROI used to extract features and the 
weights in our RSV model based on the lesion number. In the current 
study, the EDPK strategy demonstrated better performance in 
differentiating gliomas and Mets with ACC of 0.8950, and AUC of 
0.9585  in the testing set and could improve the classification 

FIGURE 10

Waterfall plot of single sample prediction. The y-axis represents the feature name, the gray number next to the feature name is the feature value, and 
the number on the figure represents the feature contribution to the prediction result. (A), (B), (C), and (D) are predictions for four samples, respectively.
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performance of the RSV model under different lesion 
segmentation precision.

In brief, the input of our pipeline in the testing stage only requires 
two conventional brain MRI sequences (T1-CE, T2-flair), which even 
could be  clinically implemented in resource-limited institutions. 
Moreover, it will give the tumor ROI segmentation results and the 
predicted tumor type diagnosed in real time.

5. Conclusion

In conclusion, radiomics methods have shown great potential in 
the field of brain tumor diagnosis, and the combinations of feature 
selection methods and classifiers were validated in the traditional 
radiomics pipeline. The proposed computer-aided method for 
diagnosing gliomas and Mets with automatic lesion segmentation 
and EDPK strategy improved the automatic lesion segmentation and 
diagnosis performance and even could be clinically implemented in 
resource-limited institutions. However, the current study collected 
only traditional MRI sequences and did not involve more sequences. 
Moreover, the ensemble decision strategy can only find a local 
optimal result. In future, combining multiple methods could solve the 
global optimum problem, by further expanding sample size, 
incorporating updated segmentation and classification methods in 
the pipeline to optimize the diagnostic method, and conducting more 
multi-center prospective studies.

Data availability statement

The original contributions presented in the study are included in 
the article/Supplementary material, further inquiries can be directed 
to the corresponding authors.

Ethics statement

Ethical review and approval was not required for the study on 
human participants in accordance with the local legislation and 
institutional requirements. Written informed consent from the 
participants was not required to participate in this study in accordance 
with the national legislation and the institutional requirements.

Author contributions

LY and ZY contributed to the conception and design of the study, 
data analysis and interpretation, and manuscript writing. DG 
contributed to get the administrative support and provide the study 

materials and review of manuscript. LZ and LS contributed to the 
collection and assembly of data. All authors contributed to the article 
and approved the submitted manuscript.

Funding

This study was supported by the National Natural Science 
Foundation of China (8237071280), “Clinical Medicine Research Pilot 
Project” of Shanghai Medical College of Fudan University 
DGF501022/015, Fudan University (gyy_yc_2020–8), Greater Bay 
Area Institute of Precision Medicine (Guangzhou), Fudan University 
(21618) and (KCH2310094), Shanghai Hospital Development Center 
(SHDC2020CR3020A), the Medical Engineering Joint Fund of Fudan 
University, Shanghai Municipal Commission of Science and 
Technology (22TS1400900, 23S31904100, 22ZR1409500), Shanghai 
Municipal Health Commission Project No.201940221, Shanghai Chest 
Hospital Project of Collaborative Innovation No. YJXT20190210Z, 
and Interdisciplinary program of Shanghai Jiaotong University No. 
YG2021QN123.

Acknowledgments

The authors thank the radiologists who participated in the 
data labeling.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fmed.2023.1232496/
full#supplementary-material

References
 1. El-Dahshan E-SA, Mohsen HM, Revett K, Salem A-BM. Computer-aided diagnosis 

of human brain tumor through mri: a survey and a new algorithm. Expert Syst Appl. 
(2014) 41:5526–45. doi: 10.1016/j.eswa.2014.01.021

 2. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee 
WK, et al. The 2016 World Health Organization classification of tumors of the central 
nervous system: a summary. Acta Neuropathol. (2016) 131:803–20. doi: 10.1007/
s00401-016-15

 3. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects 
of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on 
survival in glioblastoma in a randomized phase III study: 5-year analysis of the EORTC-
NCIC trial. LancetOncol. (2009) 10:459–66. doi: 10.1016/S1470-2045(09)70025-7

 4. Johnson DR, O’Neill BP. Glioblastoma survival in the United States before and 
during the temozolomide era. J Neuro-Oncol. (2012) 107:359–64. doi: 10.1007/
s11060-011-0749-4

https://doi.org/10.3389/fmed.2023.1232496
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fmed.2023.1232496/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmed.2023.1232496/full#supplementary-material
https://doi.org/10.1016/j.eswa.2014.01.021
https://doi.org/10.1007/s00401-016-15
https://doi.org/10.1007/s00401-016-15
https://doi.org/10.1016/S1470-2045(09)70025-7
https://doi.org/10.1007/s11060-011-0749-4
https://doi.org/10.1007/s11060-011-0749-4


Yu et al. 10.3389/fmed.2023.1232496

Frontiers in Medicine 14 frontiersin.org

 5. van den Bossche WB, Vincent AJ, Teodosio C, Koets J, Taha A, Kleijn A, et al. 
Monocytes carrying GFAP detect glioma, brain metastasis and ischaemic stroke, and 
predict glioblastoma survival, brain communications. Brain Commun. (2021) 3:caa215. 
doi: 10.1093/braincomms/fcaa215

 6. Proescholdt MA, Schödel P, Doenitz C, Pukrop T, Höhne J, Schmidt NO, et al. The 
Management of Brain Metastases—Systematic Review of neurosurgical aspects. Cancers. 
(2021) 13:1616. doi: 10.3390/cancers13071616

 7. Bartelt S, Lutterbach J. Brain metastases in patients with Cancer of unknown 
primary. J Neuro-Oncol. (2003) 64:249–53. doi: 10.1023/A:1025621819250

 8. Xi Y-B, Kang X-W, Wang N, Liu TT, Zhu YQ, Cheng G, et al. Differentiation of 
primary central nervous system lymphoma from high-grade glioma and brain metastasis 
using arterial spin labeling and dynamic contrast-enhanced magnetic resonance 
imaging. Eur J Radiol. (2019) 112:59–64. doi: 10.1016/j.ejrad.2019.01.008

 9. Bette S, Huber T, Wiestler B, Boeckh-Behrens T, Gempt J, Ringel F, et al. Analysis 
of fractional anisotropy facilitates differentiation of glioblastoma and brain metastases 
in a clinical setting. Eur J Radiol. (2016) 85:2182–7. doi: 10.1016/j.ejrad.2016.10.002

 10. Bergin PS, Fish DR, Shorvon SD, Oatridge A, deSouza NM, Bydder GM. Magnetic 
resonance imaging in partial epilepsy: additional abnormalities shown with the fluid 
attenuated inversion recovery (FLAIR) pulse sequence. J Neurol Neurosurg Psychiatry. 
(1995) 58:439–43. doi: 10.1136/jnnp.58.4.439

 11. Onishi S, Amatya VJ, Kolakshyapati M, Takano M, Yonezawa U, Taguchi A, et al. 
T2-FLAIR mismatch sign in dysembryoplasticneuroepithelial tumor. Eur J Radiol. 
(2020) 126:108924. doi: 10.1016/j.ejrad.2020.108924

 12. Petrujkić K, Milošević N, Rajković N, Stanisavljević D, Gavrilović S, Dželebdžić 
D, et al. Computational quantitative MR image features – a potential useful tool in 
differentiating glioblastoma from solitary brain metastasis. Eur J Radiol. (2019) 
119:108634. doi: 10.1016/j.ejrad.2019.08.003

 13. Kunimatsu A, Kunimatsu N, Yasaka K, Akai H, Kamiya K, Watadani T, et al. 
Machine learning-based texture analysis of contrast-enhanced MR imaging to 
differentiate between glioblastoma and primary central nervous system lymphoma[J]. 
Magn Reson Med Sci. (2019) 18:44–52. doi: 10.2463/mrms.mp.2017-0178

 14. Abidin AZ, Dar I, D'Souza AM, Lin EP, Wismüller A. Investigating a quantitative 
radiomics approach for brain tumor classification[C]//medical imaging 2019: 
biomedical applications in molecular, structural, and functional imaging. SPIE. (2019) 
10953:36–45. doi: 10.1117/12.2512995

 15. Dong F, Li Q, Jiang B, Zhu X, Zeng Q, Huang P, et al. Differentiation of 
supratentorial single brain metastasis and glioblastoma by using peri-enhancing oedema 
region–derived radiomic features and multiple classifiers[J]. Eur Radiol. (2020) 
30:3015–22. doi: 10.1007/s00330-019-06460-w

 16. Liu Z, Jiang Z, Meng L, Yang J, Liu Y, Zhang Y, et al. Handcrafted and deep 
learning-based Radiomic models can distinguish GBM from brain metastasis. J Oncol. 
(2021) 2021:5518717:1 pages, 2021–10. doi: 10.1155/2021/5518717

 17. Priya S, Liu Y, Ward C, le NH, Soni N, Pillenahalli Maheshwarappa R, et al. 
Machine learning based differentiation of glioblastoma from brain metastasis using MRI 
derived radiomics. Sci Rep. (2021) 11:10478. doi: 10.1038/s41598-021-90032-w

 18. Pugalenthi R, Rajakumar MP, Ramya J, Rajinikanth V. Evaluation and classification 
of the brain tumor MRI using machine learning technique. J Control Eng Appl 
Informatics. (2019) 21:12–21.

 19. Rinesh S, Maheswari K, Arthi B, Sherubha P, Vijay A, Sridhar S, et al. 
Investigations on brain tumor classification using hybrid machine learning 
algorithms. J Healthcare Engineering. (2022) 2022:2761847:1 pages, 2022–9. doi: 
10.1155/2022/2761847

 20. Tandel GS, Tiwari A, Kakde OG. Performance optimisation of deep learning 
models using majority voting algorithm for brain tumour classification. Comput Biol 
Med. (2021) 135:104564. doi: 10.1016/j.compbiomed.2021.104564

 21. Ahmadi M, Dashti Ahangar F, Astaraki N, Abbasi M, Babaei B. FWNNet: 
presentation of a new classifier of brain tumor diagnosis based on fuzzy logic and the 
wavelet-based neural network using machine-learning methods[J]. Comput Intell 
Neurosci. (2021) 2021:8542637. doi: 10.1155/2021/8542637

 22. Malakar S, Ghosh M, Bhowmik S, Sarkar R, Nasipuri M. A GA based hierarchical 
feature selection approach for handwritten word recognition. Neural Comput & Applic. 
(2020) 32:2533–52. doi: 10.1007/s00521-018-3937-8

 23. Bacanin N, Stoean R, Zivkovic M, Rashid TA, Petrovic A, Bezdan T. Performance 
of a novel chaotic firefly algorithm with enhanced exploration for tackling global 
optimization problems: application for dropout regularization. Mathematics. (2021) 
9:2705. doi: 10.3390/math9212705

 24. Wang S, Kim S, Chawla S, Wolf RL, Knipp DE, Vossough A, et al. Differentiation 
between glioblastomas, solitary brain metastases, and primary cerebral lymphomas 
using diffusion tensor and dynamic susceptibility contrast-enhanced MR imaging[J]. 
Am J Neuroradiol. (2011) 32:507–14. doi: 10.3174/ajnr.A2333 (2011)

 25. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 
3D active contour segmentation of anatomical structures: significantly improved 
efficiency and reliability. NeuroImage. (2006) 31:1116–28. doi: 10.1016/j.
neuroimage.2006.01.015

 26. Tustison NJ, Avants BB, Cook PA, Yuanjie Zheng , Egan A, Yushkevich PA, et al. 
N4itk: improved N3 bias correction. IEEE Trans Med Imaging. (2010) 29:1310–20. doi: 
10.1109/TMI.2010.2046908

 27. Avants BB, Song G. Advanced normalization tools (ANTS). Insights Journal. (2009) 
365:361–35.

 28. Lowekamp BC, Chen DT, Ibáñez L, Blezek D. The design of SimpleITK. Front 
Neuroinform. (2013) 7:45. doi: 10.3389/fninf.2013.00045

 29. Fei N., Gao Y., Lu Z., Xiang T., "Z-score normalization, Hubness, and few-shot 
learning," (2021) IEEE/CVF International Conference on Computer Vision (ICCV), 
2021, pp. 142–151, doi: 10.1109/ICCV48922.2021.00021

 30. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical 
image segmentation In: International conference on medical image computing and 
computer-assisted intervention. MICCAI 2015. Cham: Springer (2015)

 31. Iandola F, Moskewicz M, Karayev S, Girshick R, Darrell T, Keutzer K. Densenet: 
Implementing efficient convnet descriptor pyramids. arXiv preprint arXiv:1404.1869. 
(2014). doi: 10.48550/arXiv.1404.1869

 32. Shaw P, Uszkoreit J, Vaswani A. Self-attention with relative position 
representations[J]. arXiv preprint arXiv:1803.02155. (2018)

 33. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, et al. 
Computational radiomics system to decode the radiographic phenotype. Can Res. 
(2017) 77:e104–7. doi: 10.1158/ 0008-5472 Can-17-0339

 34. Kukreja SL, Löfberg J, Brenner MJ. A LEAST absolute SHRINKAGE and selection 
operator (lasso) for nonlinear system identification. IFAC Proc Volumes. (2006) 
39:814–9. doi: 10.3182/20060329-3-AU-2901.00128

 35. Doquire G, Verleysen M. Mutual information-based feature selection for 
multilabel classification. Neurocomputing. (2013) 122:148–55. doi: 10.1016/j.
neucom.2013.06.035

 36. Chen Q, Meng Z, Liu X, Jin Q, Su R. Decision variants for the automatic 
determination of optimal feature subset in RF-RFE. Genes. (2018) 9:301. doi: 10.3390/
genes9060301

 37. Ren J, Lee SD, Chen X, Kao B, Cheng R, Cheung D. “Naive bayes classification of 
uncertain Data”. (2009) Miami Beach, FL, USA: Ninth IEEE International Conference 
on Data Mining, pp. 944–9. doi: 10.1109/ICDM.2009.90

 38. Chen X, Huang L, Xie D, Zhao Q. EGBMMDA: extreme gradient boosting 
machine for MiRNA-disease association prediction. Cell Death Dis. (2018) 9:3. doi: 
10.1038/s41419-017-0003-x

 39. Bagley SC, White H, Golomb BA. Logistic regression in the medical literature: 
standards for use and reporting, with particular attention to one medical domain. J Clin 
Epidemiol. (2001) 54:979–85. doi: 10.1016/S0895-4356(01)00372-9

 40. Breiman L. Random forests. Mach Learn. (2001) 45:5–32. doi: 
10.1023/A:1010933404324

 41. Hearst MA, Dumais ST, Osuna E, Platt J, Scholkopf B. Support vector machines. 
IEEE Intelligent Sys Appl. (1998) 13:18–28. doi: 10.1109/5254.708428

 42. Sedgwick P. Pearson’s correlation coefficient. BMJ. (2012) 345:e4483. doi: 10.1136/
bmj.e4483

 43. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-
learn: machine learning in Python, Pedregosa. JMLR. (2011) 12:2825–30. doi: 10.48550/
arXiv.1201.0490

 44. Guo Y, Feng J, Jiao B, Cui N, Yang S, Yu Z. A dual evolutionary bagging for class 
imbalance learning. Expert Syst Appl. (2022) 206:117843. doi: 10.1016/j.
eswa.2022.117843

 45. Lundberg S, Lee SI. A unified approach to interpreting model predictions. arXiv 
preprint arXiv. (2017) 1705.07874, 2022

 46. Hatamizadeh A, Nath V, Tang Y, Yang D., Roth H. R., Xu D. Swin unetr: Swin 
transformers for semantic segmentation of brain tumors in mri images[C]//international 
MICCAI Brainlesion workshop. Springer, Cham, (2022): 272–284.

 47. de Causans A, Carré A, Roux A, Tauziède-Espariat A, Ammari S, Dezamis E, et al. 
Development of a machine learning classifier based on radiomic features extracted from 
post-contrast 3D T1-weighted MR images to distinguish glioblastoma from solitary 
brain metastasis. Front Oncol. (2021) 11:638262. doi: 10.3389/fonc.2021.638262

 48. Hsu DG, Ballangrud Å, Shamseddine A, Deasy JO, Veeraraghavan H, Cervino L, 
et al. Automatic segmentation of brain metastases using T1 magnetic resonance and 
computed tomography images[J]. Phys Med Biol. (2021) 66:175014. doi: 
10.1088/1361-6560/ac1835

https://doi.org/10.3389/fmed.2023.1232496
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://doi.org/10.1093/braincomms/fcaa215
https://doi.org/10.3390/cancers13071616
https://doi.org/10.1023/A:1025621819250
https://doi.org/10.1016/j.ejrad.2019.01.008
https://doi.org/10.1016/j.ejrad.2016.10.002
https://doi.org/10.1136/jnnp.58.4.439
https://doi.org/10.1016/j.ejrad.2020.108924
https://doi.org/10.1016/j.ejrad.2019.08.003
https://doi.org/10.2463/mrms.mp.2017-0178
https://doi.org/10.1117/12.2512995
https://doi.org/10.1007/s00330-019-06460-w
https://doi.org/10.1155/2021/5518717
https://doi.org/10.1038/s41598-021-90032-w
https://doi.org/10.1155/2022/2761847
https://doi.org/10.1016/j.compbiomed.2021.104564
https://doi.org/10.1155/2021/8542637
https://doi.org/10.1007/s00521-018-3937-8
https://doi.org/10.3390/math9212705
https://doi.org/10.3174/ajnr.A2333 (2011)
https://doi.org/10.1016/j.neuroimage.2006.01.015
https://doi.org/10.1016/j.neuroimage.2006.01.015
https://doi.org/10.1109/TMI.2010.2046908
https://doi.org/10.3389/fninf.2013.00045
https://doi.org/10.1109/ICCV48922.2021.00021
https://doi.org/10.48550/arXiv.1404.1869
https://doi.org/10.1158/ 0008-5472 Can-17-0339
https://doi.org/10.3182/20060329-3-AU-2901.00128
https://doi.org/10.1016/j.neucom.2013.06.035
https://doi.org/10.1016/j.neucom.2013.06.035
https://doi.org/10.3390/genes9060301
https://doi.org/10.3390/genes9060301
https://doi.org/10.1109/ICDM.2009.90
https://doi.org/10.1038/s41419-017-0003-x
https://doi.org/10.1016/S0895-4356(01)00372-9
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1109/5254.708428
https://doi.org/10.1136/bmj.e4483
https://doi.org/10.1136/bmj.e4483
https://doi.org/10.48550/arXiv.1201.0490
https://doi.org/10.48550/arXiv.1201.0490
https://doi.org/10.1016/j.eswa.2022.117843
https://doi.org/10.1016/j.eswa.2022.117843
https://doi.org/10.3389/fonc.2021.638262
https://doi.org/10.1088/1361-6560/ac1835

	A brain tumor computer-aided diagnosis method with automatic lesion segmentation and ensemble decision strategy
	1. Introduction
	2. Materials and methods
	2.1. MRI acquisition
	2.2. Image preprocessing
	2.3. Tumor region of interest segmentation
	2.4. Radiomics feature extraction
	2.5. Feature preprocessing
	2.6. Feature selection and classification
	2.7. Ensemble decision strategy based on prior knowledge
	2.8. SHAP analysis

	3. Results
	3.1. Dataset
	3.2. Performance with the addition of the clinical feature
	3.3. Comparison of the classification performance of different combinations
	3.4. Classification performance of our model
	3.5. The performance of the proposed EDPK strategy
	3.6. Feature importance analysis and SHAP explanation

	4. Discussion
	5. Conclusion
	Data availability statement
	Ethics statement
	Author contributions

	 References

