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The core idea behind precision medicine is to pinpoint the subpopulations that 
differ from one another in terms of disease risk, drug responsiveness, and treatment 
outcomes due to differences in biology and other traits. Biomarkers are found 
through genomic sequencing. Multi-dimensional clinical and biological data are 
created using these biomarkers. Better analytic methods are needed for these 
multidimensional data, which can be accomplished by using artificial intelligence 
(AI). An updated review of 80 latest original publications is presented on four main 
fronts—preventive medicine, medication development, treatment outcomes, and 
diagnostic medicine—All these studies effectively illustrated the significance of 
AI in precision medicine. Artificial intelligence (AI) has revolutionized precision 
medicine by swiftly analyzing vast amounts of data to provide tailored treatments 
and predictive diagnostics. Through machine learning algorithms and high-
resolution imaging, AI assists in precise diagnoses and early disease detection. AI’s 
ability to decode complex biological factors aids in identifying novel therapeutic 
targets, allowing personalized interventions and optimizing treatment outcomes. 
Furthermore, AI accelerates drug discovery by navigating chemical structures and 
predicting drug-target interactions, expediting the development of life-saving 
medications. With its unrivaled capacity to comprehend and interpret data, AI 
stands as an invaluable tool in the pursuit of enhanced patient care and improved 
health outcomes. It’s evident that AI can open a new horizon for precision 
medicine by translating complex data into actionable information. To get better 
results in this regard and to fully exploit the great potential of AI, further research 
is required on this pressing subject.
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Introduction

Today’s health care has a growing emphasis on personalized treatments. Precision medicine, 
often known as personalized medicine, is a data-driven approach that seeks to enhance clinical 
results by individually configuring treatments for each patient, given a patient’s state (consisting 
of covariate history, demographics, genetic makeup, diagnostic test findings, etc.). For example, 
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type 2 diabetic patients are usually started on the drug metformin (1), 
however different people may react differently to the same treatment. 
Scientists are now beginning to comprehend that genetics might 
contribute to the variability in response to drug treatment, explaining 
why every patient responds to treatment differently (2). With precision 
medicine, such knowledge of genetic changes aids clinicians in 
selecting a treatment strategy that is ideal for each patient in terms of 
their well-being and desired outcome. It also presents the chance to 
activate other fields of research that more effectively target the 
disease (3).

The study of developing computational technologies that, like 
people, are capable of performing tasks like sensing, learning, 
reasoning, and taking action led to the development of the field of 
artificial intelligence (AI), which was first recognized in the 1960s by 
researchers in the engineering and cognitive sciences. Early AI 
systems mainly depended on guidelines created by experts to mimic 
how humans would approach these activities. As research on 
numerical techniques incorporating ideas from computers, 
optimization, and statistics to automatically “train” programs for 
executing certain tasks by processing data began, a subfield of artificial 
intelligence (AI) known as machine learning (ML) has also evolved.

Artificial intelligence has made significant strides in the field of 
medicine. For instance, Esteva et al. (4) and Hekler et al. (5) employed 
clinical imaging data to create classification models to help doctors 
diagnose skin cancer, skin lesions, and psoriasis in the field of visually 
focused specialties like dermatology (6, 7). A deep convolutional 
neural network (DCNN) model was specifically trained by Esteva 
et  al. (4) utilizing 129,450 pictures to categorize images as either 
keratinocyte carcinoma or seborrheic keratosis; and malignant 
melanoma or benign nevus.

Using examples from recent research, we hope to present a clear, 
understandable, and technologically accurate picture of machine 
learning (ML), which is frequently referred to as artificial intelligence 
(AI) in the medical literature, as it exists today and what it can do for 
health and medicine.

Methodology

Study design

To provide the best available scientific evidence related to our 
topic, we conducted a systematic review (SR) of original articles.

Search strategy

This review was conducted in accordance with the Preferred 
Reporting Items for systematic reviews and meta-analysis 
(PRISMA) and is reported according to the PRISMA statement 
2020. Relevant articles were obtained by searching: PubMed; 
Google Scholar, and PLOS One. In all these databases, we applied 
filters to reliably identify original articles and searched these 
databases from 2011 to 16th November 2021. Keywords for the 
investigation were identified using the contributing authors’ 
knowledge and we used Boolean search: (Artificial Intelligence OR 
Machine Learning OR Deep learning) AND (Precision Medicine). 
Searches were supplemented by hand searching and retrieval of any 

additional articles fulfilling the inclusion criteria that were cited in 
the reference list.

Inclusion criteria

Published studies fulfilling the following criteria were included: 
(1) Study design: original articles were included only. (2) Only those 
articles were included which were published between 2011 to 16th 
May 2023. (3) Only those studies were included that successfully 
highlighted the role of AI in precision medicine on four major 
grounds, i.e., preventive medicine, drug development, treatment 
outcome, and diagnostic medicine.

Exclusion criteria

All those studies were excluded: (1) study design: Knowledge, 
attitude, and prevalence (KAP) or cross-sectional studies. (2) Studies 
that were unpublished or non-peer-reviewed. (3) Studies that were 
close-access. (4) Full text was available in languages other than 
English. (5) Studies that highlighted the role of AI in precision 
medicine in domains other than preventive medicine, drug 
development, treatment outcomes, and diagnostic medicine.

Data extraction

The screening of the studies was conducted by four independent 
reviewers to assess whether the studies would be satisfied according 
to inclusion criteria after reading titles, abstracts, and full texts. 
H. Arksey and L. O’Malley’s methodological framework was used for 
the inclusion of selected studies according to the eligibility criteria. 
After study selection, data was extracted and documented on an Excel 
sheet. Grey literature was excluded and duplicated articles were also 
removed. Extracted articles were visually tabulated using the PRISMA 
flow diagram 2020 as shown in Figure 1.

Results

We included more than 81 studies in our review under the 
following four headings and have described notable studies in the text. 
The studies are described further in Table 1 and in the discussion 
section of the review.

Preventive medicine

In the field of preventive medicine, several studies were 
identified that utilized AI algorithms for various applications. Wu 
et al. (9) conducted a study in Taiwan with 56 patients, employing 
a random forest algorithm to characterize TMAO productivity from 
carnitine challenge for personalized nutrition and microbiome 
signature discovery (9). Another method to predict glomerular 
filtration rate (GFR) was developed by Marshall et al. (13) using 
evolving connectionist systems (ECOS), which are cutting-edge 
computing structures that can be trained to produce precise results 
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from a given set of input variables. Abedi et al. (10) developed a 
novel screening tool using an Artificial Neural Network (ANN) to 
differentiate acute cerebral infarction from stroke mimics (10). In 
order to classify speech samples produced by children with 
developmental disorders (DD) and normally developing (TD) 
children, Mencattini et al. (14) investigated the potential application 
of a precision approach to the construction of a statistical learning 
algorithm. Brennan et al. (11) evaluated the usability and accuracy 
of the MySurgeryRisk algorithm for preoperative risk assessment. 
These studies demonstrate the potential of AI algorithms in 
improving risk assessment and personalized screening tools in 
preventive medicine.

Drug development

Several studies focused on drug development utilized AI 
algorithms for predicting drug sensitivity and identifying therapeutic 
targets. Ott et  al. (21) used various algorithms to develop an 
immunogenic personal neoantigen vaccine for melanoma patients 
(21). A unique adaptive graph model incorporating mechanisms of 
attention called spaCI was proposed by Tang et al. (26) to decode the 
cell-to-cell contacts from SCST profiles. The active ligand-receptor 
(L-R) signaling axis across adjoining cells is identified by spaCI, which 
takes into account both the geographical placements of cells and their 
gene expression profiles. SpaCI has outperformed currently known 
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PLOS ONE n=174
Google Scholar n=337
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Records removed before 
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FIGURE 1

PRISMA flowchart (8).
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TABLE 1 Studies extracted.

# Study 
name

Location No. of patients AI algorithm Application

Preventive medicine

1 Wu et al. (9) Taiwan 56 Random forest Characterization of TMAO productivity from 

carnitine challenge for the facilitation of 

personalized nutrition and microbiome 

signatures discover

2 Abedi et al. (10) Tennessee and 

greece

428 Artificial neural network (ANN) Novel screening tool for the recognition of 

ACI and differentiation of ACI from stroke 

mimics at the initial examination.

3 Brennan et al. 

(11)

Florida, USA 150 MySurgeryRisk algorithm To assess the usability and accuracy of the 

MySurgeryRisk algorithm for preoperative 

risk assessment using a simulated workflow 

for the real-time, intelligent, decision support 

platform.

4 Marshall et al. 

(13)

Australia and 

New Zealand

178 Neuro-fuzzy inference system (DENFIS) Evolving connectionist system (ECOS) versus 

algebraic formulas for prediction of renal 

function from serum creatinine

5 Mencattini et al. 

(14)

France 102 Support vector machine (SVM), dynamic 

feature selection, multiple linear regression

A precision approach aimed at classifying 

samples of speech produced by children with 

developmental disorders (DD) and typically 

developing (TD) children.

6 Steele et al. (1) England 80,000 Cox models, random forests, and elastic net 

regression

Prognostic modeling from data in electronic 

health records (EHR) using machine-learning 

approaches in coronary artery disease

7 Romero-Rosales 

(15)

Mexico 5,220 Genetic algorithms, LASSO, and step-wise Use of machine learning models in Improving 

Alzheimer’s disease prediction

8 Saha (16) Australia 77 MRI-based deep learning CNN model Application of deep learning in predicting 

motor outcomes in preterm infants from 

early brain MRI

9 Lu et al. (17) Scotland 25 Bayesian hierarchical vector autoregressive 

(VAR) model

Prediction of patient health outcomes using 

Bayesian hierarchical vector autoregressive 

model

10 Popov et al. (18) Russia Dataset consisted of 392 

disease-associated and 154 

benign point mutations 

located in 64 

transmembrane proteins

BorodaTM Prediction of disease-associated mutations in 

the transmembrane regions of proteins with 

known 3D structure.

11 Parikh (6) USA 110,000 (Density-based clustering) technique A machine learning approach to identify 

distinct subgroups of veterans at risk for 

hospitalization or death.

12 Weng et al. (2) UK 378,256 Random forest, logistic regression, gradient 

boosting machines, neural networks

Can machine learning improve 

cardiovascular risk prediction using routine 

clinical data?

13 Stuckey et al. (3) USA 512 The cPSTA System Cardiac phase space tomography: a novel 

method of assessing coronary artery disease 

utilizing machine learning

14 Karpati (12) Israel 60,423 “traj” R package, “NbClust” algorithm (R 

package), and K-means clustering

Patient clusters based on HbA1c trajectories: 

a step toward individualized medicine in type 

2 diabetes

15 Zhao et al. (19) USA 1,693 Support Vector Machine (SVM) Exploration of machine learning techniques 

in predicting multiple sclerosis disease course

(Continued)
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TABLE 1 (Continued)

# Study 
name

Location No. of patients AI algorithm Application

16 Baydoun et al. 

(4)

Lebanon 30 MATLAB-based tool and algorithm High precision digitization of paper-based 

ECG records: a step toward machine learning

17 Kim et al. (7) Korea 24,269 Random forest classifiers, support vector 

machines, gradient-boosted decision trees 

(XGBoost), and artificial neural networks

Predicting participation in cancer screening 

programs with machine learning

18 Blasco et al. (20) Europe 512 Biosigner algorithm A pharmacometabolomics approach in a 

clinical trial of ALS: Identification of 

predictive markers of progression

Drug development

1 Ott et al. (21) USA 10 Various algorithms (not distinctly 

mentioned)

An immunogenic personal neoantigen 

vaccine for patients with melanoma

2 Li et al. (22) USA The cancer cell line 

encyclopedia (CCLE) 400 

cell lines.

Mixture regression model-based method Drug sensitivity prediction with high-

dimensional mixture regression.

3 Miranda et al. 

(23)

Brazil 987 cell lines in the 

genomics of drug 

sensitivity in cancer 

database

Five classification algorithms and four 

regression algorithms representing diverse 

methodologies, including tree-, probability-, 

kernel-, ensemble-, and distance-based 

approaches

Predicting drug sensitivity of cancer cells 

based on DNA methylation levels

4 Fang et al. (24) China CCLE dataset. Quantile regression forest A quantile regression forest-based method to 

predict drug response and assess prediction 

reliability

5 Vitali et al. (25) Italy Genes from 104 cases of 

primary TNBC

Boolean Networks (BNs) A network-based data integration approach 

to support drug repurposing and multi-target 

therapies in triple negative breast cancer

6 Tang et al. (26) USA seqFISH+ data of mouse 

cortex and the NanoString 

CosMx Spatial Molecular 

Imager (SMI) data of 

non-small cell lung cancer 

samples

spaCI Deciphering spatial cellular communications 

through adaptive graph model

Treatment outcome

1 Bartlett et al. 

(27)

USA 184 ComBat Pretreatment and early-treatment cortical 

thickness are associated with SSRI treatment 

response in major depressive disorder

2 Albizu et al. (28) USA 14 Support vector machine (SVM) learning 

algorithm

Machine learning and individual variability 

in electric field characteristics predict tDCS 

treatment response

3 Nguyen et al. 

(29)

USA Crossover trial Crossover generalized outcome weighted 

learning

Estimating individualized treatment regimes 

from crossover designs

4 Rajpurkar et al. 

(30)

USA 518 Transparent reporting of a multivariable 

prediction model

Evaluation of a machine learning model 

based on pretreatment symptoms and 

electroencephalographic features to predict 

outcomes of antidepressant treatment in 

adults with depression

5 Tomalin et al. 

(31)

USA 266 Seven different machine-learning methods 

were selected from the R suite “caret” 

(glmnet, nnet, pls, pam, rf, svmLinear)

Early quantification of systemic inflammatory 

proteins predicts long-term treatment 

response to Tofacitinib and Etanercept

(Continued)
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TABLE 1 (Continued)

# Study 
name

Location No. of patients AI algorithm Application

6 Webb et al. (32) USA 216 Machine learning with a Personalized 

Advantage Index (PAI)

Personalized prediction of antidepressant v. 

placebo response: evidence from the 

EMBARC study

7 Kazemipoor 

et al. (33)

Malaysia 70 Adaptive neuro-fuzzy inference (ANFIS) 

method.

Appraisal of adaptive neuro-fuzzy computing 

technique for estimating anti-obesity 

properties of a medicinal plant

8 Yoon et al. (34) South Korea 89 training +60 test sets Penalized logistic regression, penalized 

discriminant analysis, and various other 

algorithms

Use of radiomics to predict the efficacy of 

immunotherapy by deciphering tumor 

microenvironment

9 Bradley et al. 

(35)

United 

Kingdom

77 studies Bayesian network Prediction of prognostic outcomes after 

pancreatic adenocarcinoma resection using 

AI

10 Huang et al. (36) USA 60 human cancer cell lines 

(NCI-60)

Support vector machine (SVM) algorithm Prediction of response to cancer drug therapy 

using open-source machine learning 

algorithm

11 Lind et.al (37) USA Genomics of Drug 

Sensitivity in Cancer 

(GDSC) project

Random forest classification models Prediction of drug activity against cancerous 

cells using machine learning

12 Kaissis et al. (38) Germany 55 Gradient-boosted-tree algorithm A machine learning algorithm predicts 

molecular subtypes in pancreatic ductal 

adenocarcinoma with differential response to 

gemcitabine-based versus FOLFIRINOX 

chemotherapy

13 Kleinerman 

et al. (39)

USA 10,000 Differential Prototypes Neural Network 

(DPNN

Application of Novel Deep Machine Learning 

model in the selection of depression 

treatment

14 Mirchi et al. (40) Canada 28 Perceptron The virtual operative assistant; artificial 

intelligence tool for simulation-based training 

in surgery and medicine

15 Christie et al. 

(41)

USA 1,494 SuperLearner Dynamic multi-outcome prediction after 

injury.

16 Ramella et al. 

(42)

Italy 91 Ensemble learning method A radiomic approach for adaptive

radiotherapy in NSCLC

17 Sharma et al. 

(43)

India – 1. Multi-task deep neural network

2. Multi-task kernel learning

3. Hierarchical Bayesian model

Intelligent chatbot for prediction and 

management of stress.

18 Sheikhalishahi 

et al. (44)

Italy 73,000 BiLSTM model and 1-layer artificial neural 

network

Benchmarking machine learning models on 

multi-center eICU critical care dataset.

19 McCoy et al. 

(45)

USA 3,634 Natural language processing Differences among Research Domain Criteria 

score trajectories by Diagnostic and Statistical 

Manual categorical diagnosis during inpatient 

hospitalization

20 Jiang et al. (46) USA 6,726 Causal modeling with internal layers 

(CAMIL), and treatment feature interactions 

(TFI)

A clinical decision support system learned 

from data to personalize treatment 

recommendations for preventing breast 

cancer metastasis

21 Lin et al. (47) USA 35,334 Recurrent neural networks (RNN) with long 

short-term memory (LSTM)

Analysis and prediction of unplanned 

intensive care unit readmission using 

recurrent neural networks with long short-

term memory

(Continued)
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TABLE 1 (Continued)

# Study 
name

Location No. of patients AI algorithm Application

22 Merali et al. (48) Canada 757 Random forest, support vector machine, 

logistic regression, simple decision tree, and 

artificial neural network (ANN) model

Using a machine learning approach to predict 

outcomes after surgery for a +degenerative 

cervical myelopathy

23 Jiang et al. (49) USA SKMEL-2 and HS294T 

cell lines

Generalized linear model (GLM) Network assessment of demethylation 

treatment in melanoma: differential 

transcriptome-methylome and antigen profile 

signatures

24 Panda (50) India – Endo microrobots, geminoids, nanobots Use of robots in dentistry: a fact or a fiction

Diagnostic medicine

1 Kline et al. (51) USA 60 Automated deep learning approach using a 

convolutional neural network

Automatic semantic segmentation of kidney 

cysts in MR images of patients affected by 

autosomal-dominant polycystic kidney 

disease

2 Wang et al. (52) China 240 Region-based convolutional neural network Evaluation of rectal cancer circumferential 

resection margin using faster region-based 

convolutional neural network in high-

resolution magnetic resonance images

3 Gates et al. (53) Texas, USA 23 Random forest,13 support vector machines, 

and neural network classifiers

Imaging-based algorithm for the local 

grading of glioma

4 Wang et al. (54) China 539 Radiomic nomogram Intratumoral and peritumoral radiomics 

analysis for preoperative Lauren classification 

in gastric cancer

5 Nielson et al. 

(55)

USA 586 Topological data analysis (TDA) Uncovering precision phenotype-biomarker 

associations in traumatic brain injury using 

topological data analysis

6 Ko et al. (56) Taiwan 1742 Supervised machine learning (SML) Clinically validated machine learning 

algorithm for detecting residual diseases with 

multicolor flow cytometry analysis in acute 

myeloid leukemia and myelodysplastic 

syndrome

7 Gastel et al. (57) Netherland and 

USA

440 abdominal magnetic 

resonance images

Automated segmentation artificial deep 

neural network

Automatic measurement of kidney and liver 

volumes from MR images of patients affected 

by autosomal dominant polycystic kidney 

disease

8 Zhang et al. (58) China 215 Convolutional neural network constructed 

based on Single Shot MultiBox Detector 

(SSD)

Real-time gastric polyp detection using 

convolutional neural networks

9 Lim et al. (59) Korea 69 Deep learning-based semantic segmentation 

network.

Reproducibility of automated habenula 

segmentation via deep learning in major 

depressive disorder and normal controls with 

7 Tesla MRI

10 Mokhtari et al. 

(60)

USA 66 Dynamic brain networks Dynamic fMRI networks predict success in a 

behavioral weight loss program among older 

adults

11 Lyra et al. (61) Germany, 

Australia

6 Deep learning-based algorithm A deep learning-based camera approach for 

vital sign monitoring using thermography 

images for ICU patients

12 de Jong et al. 

(62)

Netherland 285 in a single center; 223 

patients included in a 

multicenter

CT-based radiomics Applicability of a prognostic CT-based 

radiomic signature model trained on

Stage I-III non-small cell lung cancer in stage 

IV non-small cell lung cancer

(Continued)
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TABLE 1 (Continued)

# Study 
name

Location No. of patients AI algorithm Application

13 Dekhil et al. (63) USA 283 Automated autism diagnosis system Using resting-state functional MRI to build a 

personalized autism diagnosis system

14 Badgujar et al. 

(64)

India UniProt database and the 

NCBI database

Computational analysis using in silico tools Computational analysis of high-risk SNPs in 

human CHK2 gene responsible for hereditary 

breast cancer: a functional and structural 

impact

15 Bahado-Singh 

et al. (65)

USA 24 late-onset AD

(LOAD) and 24 

cognitively healthy 

subjects.

Artificial Intelligence (AI) methodologies 

including Deep Learning (DL) followed by 

Ingenuity Pathway Analysis (IPA)

Artificial intelligence and leukocyte

Epigenomics: evaluation and prediction of 

late-onset Alzheimer’s disease

16 Kim et al. (66) Korea Test dataset (100 cases) 

and another dataset (399 

cases).

Four machine learning algorithms: C5.0, 

random forest (RF), support vector machine 

(SVM), and k-nearest neighbor (KNN).

Development of machine learning models for 

diagnosis of glaucoma

17 Lynch et al. (67) USA 358 LASSO machine-learning The effect of neighborhood social

environment on prostate cancer development 

in black and white men at high risk for 

prostate cancer

18 Keek et al. (68) Netherland 444 Cox proportional hazards regression and 

random survival forest (RSF).

Computed tomography-derived radiomic 

signature of head and neck squamous cell 

carcinoma (peri)tumoral tissue for the 

prediction of locoregional recurrence and 

distant metastasis after concurrent 

chemoradiotherapy

19 Rieg et al. (69) Germany 10,646 White-box machine learning Demonstration of the potential of white-box 

machine learning approaches to gain insights 

from cardiovascular disease 

electrocardiograms

20 Gaudelet et al. 

(70)

UK, Spain, 

France

4,788 Neural network-based data–integration 

framework

Unveiling new disease, pathway, and gene 

associations via multi-scale neural network

21 Maggio et al. 

(71)

Italy 498 CDRP (Concatenated Diagnostic-Relapse 

Prognostic) architecture

Distillation of the clinical algorithm improves 

prognosis by multi-task deep learning in 

high-risk neuroblastoma

22 Takahashi et al. 

(72)

Japan 177 The deep neural network (DNN) Automated system for diagnosing 

endometrial cancer by adopting deep-

learning technology in hysteroscopy

23 Jiang et al. (73) China 7,909 microscopic images Convolutional neural networks with small 

SE-ResNet module

Breast cancer histopathological image 

classification using convolutional neural 

networks with a small SE-ResNet module

24 Szpiech et al. 

(74)

USA Component analysis of 29 

cancers

Non-negative matrix factorization and 

principal component analysis

Prominent features of the amino acid 

mutation landscape in cancer

25 Kundu et al. (75) India, South 

Korea

5,856 chest X-ray images Convolutional neural network models: 

GoogLeNet, ResNet-18, and DenseNet-121.

Pneumonia detection in chest X-ray images 

using an ensemble of deep learning models

26 Araújo et al. (76) Brazil 84 Support vector machine (SVM) algorithm Finding reduced Raman spectroscopy 

fingerprint of skin samples for melanoma 

diagnosis through machine learning

(Continued)
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approaches in comparison tests on both simulation data and actual 
SCST datasets.

In Triple Negative Breast Cancer, which has a little-known biology 
and lacks defined molecular targets, Vitali et al. (25) used network-
based modelling to support repurposing of drugs and multi-target 
treatments. Li et al. (22) employed a mixture regression model-based 
method to predict drug sensitivity using the Cancer Cell Line 
Encyclopedia (CCLE) dataset (22). Sofia P. For the purpose of 
forecasting drugs reactions, Fang et al. (24) developed a three-step 
quantile regression forest (QRF) technique and applied it to the Cell 
Line Encyclopaedia (CCLE) dataset. Miranda et al. (23) used diverse 
classification and regression algorithms to predict drug sensitivity 
based on DNA methylation levels (23). These studies highlight the role 
of AI algorithms in advancing drug development by facilitating 
personalized treatment strategies and predicting drug response.

Treatment outcome

In the domain of treatment outcomes, numerous studies utilized 
AI algorithms to predict treatment responses and assess patient 
outcomes. Bartlett et  al. (27) employed the ComBat algorithm to 
associate cortical thickness with selective serotonin reuptake inhibitor 
treatment response in major depressive disorder (27). Using 
information from a 2×2 crossover research, Nguyen et al. (29) offered 
a method for calculating the ideal individualized treatment regime 
(ITR). Albizu et  al. (28) used a Support Vector Machine (SVM) 
algorithm to predict transcranial direct current stimulation (tDCS) 
treatment response based on electric field characteristics (28). With 
the goal of developing predictive models, Tomalin et al. (31) calculated 
longitudinal profiles for 92 inflammatory and 65 cardiovascular-
related proteins from the blood of psoriasis patients at baseline and 

TABLE 1 (Continued)

# Study 
name

Location No. of patients AI algorithm Application

27 Goetz et al. (77) USA Five first-year medical 

students and three fourth-

year medical students 

were recruited, along with 

four first-year engineering 

graduate students and 

three fourth-year com-

puter/data science 

graduate students.

– Perceptions of virtual primary care 

physicians: a focus group study of medical 

and data science graduate students

28 Guijo-Rubio 

et al. (78)

Spain United Network for Organ 

Sharing database

Multilayer Perceptron (MLP), Random Forest 

(RF), Gradient Boosting (GB) or Support 

Vector Machines (SVM), among others.

Statistical methods versus machine learning 

techniques for donor-recipient matching in 

liver transplantation

29 Schaack et al. 

(79)

Germany 371 Machine-learning-based solutions like 

decision tree (DT), random forest (RF), 

support vector machine (SVM), and deep-

learning neural networks (DNNs).

Comparison of machine-learning 

methodologies for accurate diagnosis of 

sepsis using microarray gene expression data

30 Gennatas et al. 

(80)

USA 235 Logistic regression (generalized linear model, 

GLM), classification, and regression trees 

(CART), logistic regression with elastic net 

regularization (GLMNET), support vector 

machines (SVM) with a radial basis kernel, 

MediBoost Tree-Structured Boosting, 

random forest (RF) and gradient boosting 

machine (GBM)

Preoperative and postoperative prediction of 

long-term meningioma outcomes

31 Maulucci et al. 

(81)

Italy 26 Decision-Support-System (DSS) Phase separation of the plasma membrane in 

human red blood cells as a potential tool for 

diagnosis and progression monitoring of type 

1 diabetes mellitus

32 Singh et al. (82) USA 10,936 Random forests (the Weill Cornell model). Comparing a novel machine learning method 

to the Friedewald formula and Martin-

Hopkins equation for low-density lipoprotein 

estimation

33 Dai et al. (83) Taiwan 649 Convolutional neural networks Assessing the severity of positive valence 

symptoms in initial psychiatric evaluation 

records: Should we use convolutional neural 

networks?
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4 weeks after receiving tofacitinib or etanercept treatment. Following 
tofacitinib or etanercept treatment, they were able to correctly predict 
the 12-week clinical endpoint for psoriasis, revealing a robust 
predictive protein signature that included well-known psoriasis 
markers like IL-17A and IL-17C, highlighting the potential for 
biologically significant response predictions using blood protein data. 
These studies demonstrate the potential of AI algorithms in predicting 
treatment outcomes and personalizing therapeutic interventions.

Diagnostic medicine

Several studies focused on diagnostic medicine and utilized AI 
algorithms for automated analysis and classification. Kline et al. (51) 
developed an automated deep-learning approach using a convolutional 
neural network to segment kidney cysts in MR images of patients with 
autosomal-dominant polycystic kidney disease (51). Wang et al. (52) 
evaluated rectal cancer resection margins using a region-based 
convolutional neural network (52). E.D.H. Gates et al. (53) utilized 
random forest, support vector machines, and neural network 
classifiers to develop an imaging-based algorithm for the local grading 
of glioma (53). Topological data analysis (TDA), a machine-learning 
method, was used by Nielson et al. (55) in traumatic brain injury 
(TBI) patients to discover data-driven patterns in patient outcomes 
and identify potential indicators of recovery. These studies 
demonstrate the potential of AI algorithms in improving diagnostic 
accuracy and automating image analysis in various medical conditions.

Discussion

Our findings revealed literature elaborating on the use of artificial 
intelligence in various aspects of precision medicine, upgrading the 
clinical tools in diagnostic and preventive medicine, drug 
development, and treatment outcomes.

Preventive medicine

In conducting this review, we  looked at the literature that 
elaborated on the use of machine learning and artificial intelligence 
techniques in preventative medicine.

In cardiovascular diseases
An English study described the use of machine learning models 

to forecast patient mortality in coronary artery disease using 
information taken from electronic medical records. Over 82,000 
patients’ data were included in the study. Without any prior data 
processing, machine learning techniques surpassed traditional models 
in prognosis prediction. Elastic net Cox regression yielded a C-index 
of 0.801 as opposed to a conventional Cox model’s 0.793 (1). Many 
individuals who would benefit from preventative care cannot 
be identified using current methods for predicting cardiovascular risk, 
while others undergo needless intervention. By taking advantage of 
the complex relationships between risk factors, machine learning gives 
the chance to increase accuracy. In order to compare four machine 
learning algorithms with the established CVD risk algorithm advised 
by the American Heart Association/American College of Cardiology 
(ACC/AHA), Weng et al. (2) used 378,256 healthy patients. Their 

prospective cohort study found that neural networks had the highest 
predictive value. According to the study’s findings, machine learning 
considerably increases the accuracy of cardiovascular risk prediction, 
allowing doctors to identify more patients who could benefit from 
preventive care while avoiding the needless treatment of others (2).

Cardiac Phase Space Tomography Analysis (cPSTA), which uses 
elastic net method-based machine-learned linear models, analyses 
thoracic phase signals to find specific mathematical and tomographic 
features associated with the presence of flow-limiting CAD without 
any radiation risk, according to a study done to compare the diagnostic 
accuracy of cPSTA and coronary angiography in patients with chest 
pain (3).

Heart disease diagnosis often relies heavily on electrocardiograms 
(ECGs). However, the majority of illness patterns are based on 
outdated information and inaccurate stepwise algorithms. In order to 
improve the detection of advanced T-wave shape and spatial QRS-T 
angle, a study investigated the application of advanced machine 
learning in the form of a MATLAB-based tool and algorithm that 
converts a printed or scanned format of the ECG into a digital ECG 
signal. In the investigation, 30 ECG-scanned curves were used. When 
the results were validated using signals from various records, each of 
which had a 1,000-data-point interval and contained at least four 
heartbeats, they showed very high correlation values for several 
common ECG parameters, including PR intervals of 0.984 +/−0.021, 
QRS intervals of 1+/− SD, QT intervals of 0.981 +/− 0.023, and RR 
intervals of 1 +/− 0.001. The study found that existing paper or 
scanned ECGs can yield digital ECG signals with greater than 95% 
accuracy. This enables the use of historical ECG signals in machine 
learning algorithms to recognize heart disease trends and assist in the 
diagnosis and prognostic assessment of individuals with 
cardiovascular disease (4).

In allergic medicine
A study published in the United  States reported the 

implementation of machine learning models in the identification of 
food allergy (FA) biomarkers and possible epigenetic targets for the 
disease using DNA methylation data achieved perfect classification 
accuracy on completely hidden test cohorts by using subset analysis 
of 18-featured potential CpG biomarkers. This was done to address 
the worrying limitation of laboratory tests not being able to distinguish 
between people who have FA and those who are merely sensitized to 
foods. The excellent accuracy on a huge number of hidden data 
permutations, where the samples in the training, cross-validation, and 
hidden sets were repeatedly randomly assigned, served as additional 
proof of the effectiveness of these machine learning classifiers and the 
18 CpGs. Seven of the 13 genes were previously linked to FA, and 
many of the FA-discriminating genes discovered in this study were 
highly related to the immune system (5).

In public health hospital management
Population health management systems have placed a strong 

emphasis on identifying those who are at high risk for imminent 
hospitalization or mortality. Due to the inclusion of a limited number 
of variables in the prior literature, the previous studies faced a lot of 
heterogenicity in generalizing high-risk people. Care Assessment 
Needs (CAN) score is a commonly used VA model that predicts a 
patient’s percentile risk of hospitalization or death at 1 year, and it was 
recently utilized in cross-sectional research to identify high-risk 
Veterans. Patient-level data was broken down into 119 unique 
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variables, including sociodemographic characteristics, comorbidities, 
medications, vitals, labs, and prior utilization. This was the largest 
study to date that used ML clustering approaches to divide a 
population into subgroups based on their potential for harm (6). In 
another investigation, researchers in South Korea utilized a variety of 
machine learning models to foretell how many people will show up 
for cancer screenings. These included RF classifiers, SVM, gradient-
boosted decision trees, and artificial neural networks (ANN). Using 
stratified cluster sampling, a total of 24,269 people (10,611 homes) 
took part in the survey. Area under the Receiver Operating 
Characteristics (AUC-ROC), Average Precision (Area under the 
Precision-Recall curve), and Accuracy were selected as the three 
measures of precision. Nonetheless, there was a little uptick in 
participation from 50.1% in 2015 to 55.6% in 2019. The paper’s 
primary flaw was that it relied on self-reported data from the Korea 
National Health and Nutrition Examination Survey (7). In a pilot 
study, the efficacy of a My Surgery Risk algorithm to predict 
postoperative complications was more accurate (AUCs ranged from 
0.64 to 0.85) as compared to the initial physicians’ risk assessments 
(AUCs ranged between 0.47 and 0.69) with greater AUCs for predicted 
absolute risks for all complications (p  < 0.002 each) except 
cardiovascular. This real-time intelligent technology projected 
postoperative problems with the same or higher accuracy as our 
sample of physicians (11). AI has made several fascinating advances 
recently, one of which is a virtual doctor. A group of future doctors 
and data scientists thought this idea was brilliant since it would save 
money and would be  very accurate. However, participants were 
hesitant to share mental health issues and indicated worries about data 
privacy and responsibility in the event of a misdiagnosis while 
interacting with virtual artificial intelligence physicians (77). By 
analyzing a patient’s previous occurrences, the Bayesian Hierarchical 
Vector Autoregressive Model (VAR) was able to forecast the patient’s 
medical and psychological states with greater accuracy than any other 
VAR model (17).

In diabetes mellitus
To account for the diversity within the community of persons with 

type 2 diabetes, new recommendations from the American Diabetes 
Association and the European Association for the Study of Diabetes 
advocate developing customized objectives. Current recommendations 
do not address how to include glycemic level trajectories when 
describing individual risk, despite evidence suggesting that glycemic 
fluctuation over time is a significant independent risk factor for death. 
Karpati et al. (12) used unsupervised machine learning on longitudinal 
HbA1c trajectories to identify clusters of patients with distinct risks 
for diabetes-related complications, suggesting that these clusters can 
serve as the foundation for developing individualized models to 
personalize glycemic targets. Using a random forest model, they were 
able to reliably reconstruct the three distinct distributions of HbA1c 
trajectories among 60,423 patients: stable (n = 45,679), falling (6,084), 
and rising (8,660) trends. Results from the clinical relevance analysis 
showed a J-shaped connection between HbA1c levels and the risk for 
outcomes (12).

In neuroscience and neurodevelopmental 
disorders

A study looked at the efficacy of machine learning in estimating 
Multiple Sclerosis (MS) progression and found that the popular linear 

Support Vector Machine (SVM) technique performed just slightly 
better than the gold standard of logistic regression (LR), with an 
accuracy rate of 64% vs. 62%. When initial MRI data, such as T2 lesion 
volume and BPF, were incorporated, the total accuracy increased to 
68% for LR and 70% for SVM (19). The use of a machine learning 
algorithm using Genome-wide association studies (GWAS) for early 
detection of Alzheimer’s disease revealed that the LASSO model was 
most effective in predicting Alzheimer’s disease out of the three 
learning models while another study showed the use of ANN to be a 
diagnostic tool for the recognition of Acute Cerebral Ischemia (ACI) 
and distinguishing it from stroke cases in the Emergency department 
with an average sensitivity and specificity of ANN for the diagnosis of 
ACI based on the 10-fold cross-validation analysis of 80.0% (95% 
confidence interval, 71.8–86.3) and 86.2% (95% confidence interval, 
78.7–91.4), respectively (10, 15). A multidrug clinical trial to 
demonstrate the use of a pharmacometabolomic approach in 
predicting the progression of Amyotrophic lateral sclerosis (ALS) 
revealed that multidrug treatment modifies different metabolic 
pathways and metabolic features provided by these analyses regarding 
the specific mechanism of action of these drugs has effects for the 
development of other drugs in ALS and other neurodegenerative 
disorders (20). Assuming that acoustic features of vocal production 
cannot be  efficiently used as a direct marker of Developmental 
Disorders (DD), a study from 2018 looked into the possibility of 
applying a precision strategy for the development of a statistical 
learning algorithm with the goal of classifying samples of speech 
produced by children with DD and typically developing (TD) 
children (14).

In microbiology and genetics
The use of AI in the field of preventative genomics was 

demonstrated in another study. Using machine learning, researchers 
were able to develop a technique called BorodaTM (Boosted 
Regression trees for Disease-Associated mutations in Trans Membrane 
proteins) that can distinguish between pathogenic and nonpathogenic 
point mutations in the Transmembrane regions of proteins with 
known 3D structure (18).

Human health can be significantly impacted by the ability of gut 
microbiota to create atherogenic trimethylamine N-oxide (TMAO) 
from carnitine by decomposing meals and medicines containing this 
compound. Two obligate anaerobes, E. timonensis, and I. massiliensis, 
were discovered as possible significant actors for converting carnitine 
to TMA in the human gut using an oral carnitine challenge test 
(OCCT) utilized as a method to detect gut microbial signatures and 
promote individualized carnitine ingestion (9).

In nephrology
The study demonstrates that the performance of evolving 

connectionist systems (ECOS) for GFR prediction may be enhanced 
somewhat by extra regression studies before clinical usage in various 
populations and that ECOS are more accurate than Algebraic formulas 
in ordinary clinical practice. In order to facilitate future prospective 
multicenter research, we  have created a Web-based version of 
GFRDENFIS; it is hoped that the resulting computational models will 
help researchers better understand the biological mechanisms that 
regulate renal function and provide new strategies for preventing or 
treating renal disease. Results showed that machine intelligence might 
be implemented with more precision than such algebraic formulae (13).
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In oncology
A Prognostic Bayesian network was utilized to provide 

personalized pre-operative predictions of post-resection 12-month 
survival rates and post-operative prognosis updates in patients with 
pancreatic ductal cancer; 77 papers were incorporated in the creation 
of the network. Accepting up to four missing data points in the sample 
resulted in an AUC of 0.7 (p value: 0.001; 95% CI 0.589–0.801) for 
pre-operative forecasts. When tested on a dataset with up to 6 missing 
pre-operative data points and 0 missing post-operative data points, an 
AUC of 0.8 (p value: 0.000; 95% CI:0.710–0.870) was attained for post-
operative prognostic updating. In the case when up to two data points 
were absent from the post-operative validation dataset, the AUC was 
reduced to 0.7 (p = 0.000; 95% CI:0.667–0.818). A tool like this has the 
potential to be  extremely useful in improving the quality of 
collaborative decision-making in clinical practice, and with further 
development, it may even provide a means of delivering individualized 
precision medicine (35).

Drug development

Based on our review of the available literature, we learned that AI 
has already been put to use in the cancer medication discovery 
process. For Triple Negative Breast Cancer, the most effective multi-
target medicines were identified by in vitro research that examined the 
use of network-based modeling inside a unique bioinformatics 
pipeline to incorporate data from diverse sources (25).

Predictive biomarkers can identify patients who have been 
affected by treatments and are a major driving force behind the 
creation of potent medicines. The average treatment impact in the 
general population is given importance in traditional randomized 
clinical trials (RCTs), therefore this conventional technique requires 
personalization and re-designs, as there is insufficient scientific 
support for the assumption that treatment efficacy correlates with 
homogeneity in the targeted group. Before beginning phase III trials, 
there must be a promising candidate signature, which adds a great deal 
of complexity. To deal with this issue, Freidlin and Simon (84) 
suggested the adaptive signature design (ASD), which involves 
dividing patients into training and validation sets for the development 
and confirmation of a predictive classifier in a single (pivotal) 
experiment. The MAGE-A3 immunotherapeutic effectiveness has 
recently been tested in patients with stage IIIB or IIIC melanoma in 
the adjuvant context, with disease-free survival being the goal (85).

For Triple Negative Breast Cancer, the most effective multi-target 
medicines were identified by in vitro research that examined the use 
of network-based modeling inside a unique bioinformatics pipeline to 
incorporate data from diverse sources (25).

Another study demonstrated the creation of a neoantigen 
vaccination with the capacity to not only increase the size of 
preexisting neoantigen-specific T cell populations but also to generate 
a wider repertoire of new T cell characteristics in patients with cancer. 
Out of a total of 97 neoantigens, vaccine-induced polyfunctional 
CD4+ and CD8+ T cells targeted 60 and 16%, respectively (21).

We found three studies demonstrating the use of artificial 
intelligence methods for drug sensitivity and response, which are an 
essential part of precision medicine. One of them demonstrated how 
to apply a mixture regression to assess the population heterogeneity 
and feature selection for each of the subpopulations, both of which are 

crucial in drug sensitivity prediction. The model was estimated 
utilizing the imputation-conditional consistency method, and 
encouraging findings showed that the mixture regression model 
significantly improved upon its predecessors in terms of predicting 
drug sensitivity and feature selection (22). In the second article, the 
Cell Line Encyclopaedia (CCLE) dataset was modeled using genomic 
parameters such as baseline gene expressions, mutation status, and 
copy number variations, and a three-step quantile regression forest 
(QRF) technique was presented to predict drug responses. It improved 
upon previously known methods for identifying medication 
responses. The method achieved a better accuracy level for detecting 
drug response as compared to the already available tools. The 
approach not only gave a good ‘point’ prediction but also provided an 
interval prediction of the drug response (24). In the third study, 
researchers evaluated the cytotoxic effects of eight different anti-
cancer medications by analyzing the DNA methylation patterns of 987 
different cell lines included in the Genomics of Drug Sensitivity in 
Cancer (GDSC) database. They compared five different categorization 
algorithms and four different regression strategies. The feasibility of 
identifying clinical responses for human tumors based on models 
developed from cell lines was assessed using data from the Cancer 
Genome Atlas. In general, the algorithms were unable to determine 
any patterns that accurately predicted the outcomes for the patients. 
However, the major drawbacks of this study were that the researcher 
only concentrated on DNA methylation profiles in isolation and did 
not include other types of molecular features which could have also 
likely modified treatment responses. Secondly, the treatment-response 
data was mis-proportioned, meaning that not all response classes 
included an equal number of patients. Therefore, the next research 
might investigate how class differences affect how well a model 
performs (23).

Treatment outcome

Treatment responses and outcomes based on individualized 
differences are the main focus of precision medicine. We extracted 24 
articles elaborating on the use of AI techniques for improving 
treatment outcomes in precision medicine.

The use of AI in neuropsychiatric precision medicine and their 
treatment outcomes were evaluated in seven articles. The first study 
showed the use of Establishing Moderators and Biosignatures of 
Antidepressant Response in Clinical Care (EMBARC) to inspect 
pre-treatment and early treatment changes in brain structure 
occurring within the first week of selective serotonin reuptake 
inhibitor (SSRI) and placebo treatment in patients with major 
depressive disorder (MDD) and found that bilaterally, rostral ACC 
cortical thickness (CT) alterations in the first week of treatment were 
associated with the eventual change in symptom severity during a trial 
of sertraline, while RMF pre-treatment CT, and CT and volume 
alterations in the first week of treatment were associated with the 
change in symptom severity during the placebo trial (27). The second 
study was a randomized controlled trial that compared cognitive 
therapy (CT) and interpersonal psychotherapy (IPT) for the treatment 
of depression by using the Personalized Advantage Index (PAI) to 
predict results for patients. Identified a minor difference (2.7 points 
on the BDI-II) in mean depression severity between patients advised 
to get CT and those recommended to receive IPT when PAI was 
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present; however, this difference was observed only in patients 
recommended to receive CT (86). There was another trial study that 
compared the effectiveness of 8 weeks of sertraline versus placebo for 
adults suffering from depression. This study used machine learning in 
conjunction with a PAI index to create individualized treatment plans 
for patients suffering from major depressive episodes on the basis of 
endophenotype profiles mixed with clinical and demographic factors 
discovered that older patients and those with smaller impairments in 
cognitive control displayed better results to SSRI (32). The fourth 
study involved the use of machine learning models constructed via 
using classification-regression trees (CRT) and support vector 
machines (SVM) and GWAS data to evaluate duloxetine (SSRI) 
response and outcomes in patients with MDD showed that the models 
were characterized by a favorable sensitivity but specificity remained 
satisfactory at best (87).

Evidence from the fifth study demonstrated the use of machine 
learning in the form of gradient-boosted decision trees (GBDTs) to 
accurately determine acute improvement in individual depressive 
symptoms with antidepressants based on pre-treatment depression 
symptom scores and electroencephalography (EEG) revealed 
prejudiced presentation for identifying improved performance in 
specific symptoms reflected in high C index scores of 0.8 or higher on 
12 of 21 clinician-rated symptoms (30). The sixth article showed 
Super-learning (SL) as a methodology to combine all the prediction 
algorithms and produce a final model for predicting the treatment 
outcome of Substance Use Disorder (SUD) using data from 99,013 
SUD treatment patients. The area under the receiver operating 
characteristics curve (AUC) for all the algorithms was between 0.793 
and 0.820, while SL was found to be superior to all but one of the 
algorithms. The study also aimed to introduce SL methodology to 
analysts and practitioners (88). The seventh article proposed the 
development of an AI application “Chatbot” using neural network and 
machine learning techniques to train the data in the application, guess 
the most accurate level of stress, and allow it to ask questions from the 
user/patient and using the answers to estimate the stress level and its 
management individualized for every user/patient (43). All these 
studies denote that AI models and algorithms can be used as a way 
forward in the treatment of depression, stress, and other 
neuropsychiatric disorders.

Predicting the pattern of readmission to the Intensive Care Unit 
(ICU) and creating an effective discharge decision-making support 
system for physicians and ICU experts were both featured in an article 
as examples of machine learning approaches. A key factor in ICU 
readmissions was found to be the LSTM-based solution’s capacity to 
identify significant volatility and instability among ICU patients. Also, 
compared to conventional models, the AUC for ML models predicting 
ICU readmissions was 0.791 (95% CI, 0.782–0.800), and their 
specificity was 0.742 (95% CI, 0.718–0.766) (47) while another study 
proposed a public benchmark suite to address four areas of critical 
care, namely mortality prediction, estimation of length of stay, patient 
phenotyping and risk of decompensation and compared the 
performance of both clinical models as well as baseline and deep 
learning models using electronic Intensive Care Unit (eICU) dataset 
of around 73,000 patients (44). A study used a natural language 
processing tool to obtain estimates of 5 Research Domain Criteria 
(RDoC) domains from the admission note and discharge summary, 
and then used linear regression to determine the change in each 
symptom domain during admission, finding that worsening of 
symptoms was the least common outcome in negative symptoms 

(0.4%) while greatest in cognitive symptoms (25.8%). The study was 
conducted on a retrospective cohort derived from an inpatient 
psychiatry unit at a large teaching hospital (45).

An essential aim of Precision medicine is the creation of optimal 
and individualized treatment regimens and results in cancer therapy, 
and four papers addressed this topic. In the first piece, we saw how a 
machine learning technique called Support Vector Machine (SVM) 
may be used in conjunction with a more traditional recursive feature 
elimination (RFE) method to predict a patient’s unique reaction to a 
medicine based on their gene expression profiles. The National Cancer 
Institute panel’s information on gene expression and medication 
response was utilized to develop patient-specific predictive models. A 
wide range of cancer cell lines had their responses to drugs accurately 
predicted by the models (36). Another study looked at how well 
machine learning algorithms could identify pancreatic 
adenocarcinoma molecular subtypes using radiomic characteristics, 
how well each subtype would respond to gemcitabine vs. 
FOLFIRINOX chemotherapy, and how long patients would live after 
treatment ended. With the use of immunochemical staining for the 
marker KRT81, subtypes of pancreatic ductal carcinoma were 
established in a total of 55 individuals. Machine learning was used to 
train 70% of the patient data in order to predict the remaining patient 
subtypes. Sensitivity, specificity, and ROC-AUC were all found to 
be statistically significant at 0.90 STDEV 0.7, 0.92 STDEV 0.11, and 
0.93 STDEV 0.07. Even though the KRT81 subtype’s patients fared 
better in response to gemcitabine-based chemotherapy, their median 
overall survival was lower (38). A CDSS learned from data that 
recommends the optimal treatment decisions based on a patient’s 
features to prevent breast cancer metastasis was proposed in another 
article (DPAC: Clinical Decision Support System for Making 
Personalized Assessments and Recommendations Concerning Breast 
Cancer Patients). The analysis used a 5-fold cross-validation analysis 
to evaluate the chances of patients who followed DPAC’s advice to 
become metastasis-free within 5 years with those who did not. Yet 
DPAC advised that many node-negative individuals’ risks of metastasis 
were raised by treatment. This debate underlined the need to finalize 
DPAC in order to provide the highest quality patient-specific therapy 
recommendations (46). In 2018, researchers in the United States set 
out to confirm the widespread impact of epigenetic treatment, learn 
more about the role played by melanoma’s metastatic states, and assess 
the effectiveness of epigenetic therapy in melanoma cells of varying 
metastatic potential at the systems level. The results showed that 
treatment with DAC methylation with 5-Aza-2′-deoxycytidine of 
melanoma cells strongly affected early melanoma advancement by 
reactivating many genes and can be  useful to halt cancer at 
pre-metastatic stages (49).

Machine learning algorithms in the form of novel methods like 
finite element models (FEM) and SVM algorithms were able to classify 
transcranial direct current stimulation (tDCS) treatment responders 
and non-responders with 86% accuracy based on patterns of current 
characteristics. The study provided the first evidence that pattern 
recognition analyses of MRI-derived tDCS current models can 
provide individual prognostic classification of tDCS treatment 
response with significant accuracy (28). Blood levels of 92 
inflammatory and 65 cardiovascular disease proteins in psoriasis 
patients were measured before and after 4 weeks of therapy with 
Etanercept or tofacitnib using machine learning techniques such as 
bagging and ensembles. According to the canonical effectiveness goal 
for psoriasis, PASI75, patients were classified as responders if their 
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PASI dropped by 75% or more after 12 weeks of therapy, and as 
non-responders otherwise. While other blood classifiers were knocked 
by simple models trained using Psoriasis Area Severity Index scores, 
the W0 classifier for tofacitnib greatly exceeded the predictions 
generated using merely the PASI score and indicated some potential 
advantage in a clinical scenario (31).

The application of an Adaptive neuro-fuzzy Inference System 
(ANFIS) technique to estimate the anti-obesity properties of a 
medicinal plant using SPSS analysis showed While the body weight, 
body fat percentage, and body mass index (BMI) of individuals in the 
CE group decreased significantly relative to the placebo group, there 
were still drawbacks to the models, such as the fact that they are quite 
demanding in terms of calculation time (33). An ML algorithm called 
Super Learner was used to evaluate precision medicine in trauma and 
to uncover patient-specific modifiable variables crucial to the 
trajectory of the patient for various major outcomes following severe 
trauma in 1494 critically injured patients. This study concluded that 
ML algorithms can help to transform data of trauma patients into 
real-time, dynamic decision-making support based on the algorithm’s 
excellent cross-validation prognostication of death, multi-organ 
failure, transfusion across multiple post-injury time points, and good 
prediction of acute respiratory distress syndrome and venous 
thromboembolism (41).

After applying ML approaches to the problem of predicting the 
outcomes of patients undergoing degenerative cervical myelopathy 
(DCM), a post hoc study showed that the RF and SVM models were 
superior to the LR, DT, and ANN models. The model found that 
pre-operative disease severity, duration of DCM symptoms, age, BMI, 
and smoking status were all predictive of worse surgical outcomes 
(48). Positive outcomes have been observed from using AI-enabled 
dental robots. Patients’ CT scans are used by robotic implant systems 
such as Dental Nanobots, the Geminoids family of robots, Endo 
Microbots, and Yomi, which have been approved by the FDA. Bone 
surface milling, hole drilling, deep saw osteotomy cuts, plate selection 
for osteosynthesis, and preoperative planning for orthognathic 
surgery have all benefited from robotic technology for some time (50).

Diagnostic medicine

In diagnostic oncology

Sixteen papers were chosen to provide context for AI and ML’s 
role in diagnostic oncology.

Gliomas
Estimating the local glioma grade according to the WHO grading 

system by using a multiclass machine learning model trained on 
preoperative image data and spatially specific tumor samples revealed 
that random forest was the best algorithm tested and clinical imaging 
data can predict pathological grading of the tumor with higher 
accuracy (53).

Gastric cancer
The use of radiomics in preoperative prognostic prediction in 

diagnostic oncology was demonstrated in four articles. First of them 
used a radiomic nomogram for preoperative prediction of the Lauren 
classification in gastric cancer (GC) by combining intratumoral, 

peritumoral, and partial clinical information and revealed that it 
incorporated the combined radiomic signature, age, CT T stage, and 
CT N stage and outperformed the other models with a training AUC 
of 0.745 and a validation AUC of 0.758. The nomogram showed 
promising results in distinguishing the Lauren diffuse type from the 
intestinal type, which is necessary for a practical therapeutic 
approach (54).

Non-small cell lung cancer (NSCLC)
The other three articles studied the use of radiomic features on 

non-small cell lung cancer (NSCLC). The first one aimed to validate 
the use of a CT-based radiomic signature in prognostic value of stage 
IV NSCLC patients and concluded that the signature does have 
satisfactory performance in predicting prognosis but not as high as for 
stage I-III patients, while the second study used radiomics to extract 
valuable features from diagnostic imaging to characterize tumour 
pathology of NSCLC and to guide personalized treatment in a study 
on 91 stage III NSCLC patients and 230 textural features extracted 
from the CT images using an ensemble learning method to classify the 
data into adaptive or non-adaptive during chemo radiotherapy on the 
basis of starting CT stimulation and showed promising results (AUC 
0.82), while in the third article, Yoon et al. (34) explored radiologic 
phenotyping using a radiomics approach to assess the immune 
microenvironment in NSCLC using Single-sample gene set 
enrichment analysis on two independent NSCLC cohorts (training 
dataset comprised 89 NSCLCs and the test set included 60 cases of 
lung squamous cell carcinoma and adenocarcinoma) with the final 
model on the test set having an AUC of 0.684, it was concluded that 
radiomics approach can be used to interrogate an entire tumour in a 
noninvasive manner and provide added diagnostic value to identify 
the immune microenvironment of NSCLC, in particular, Th2 cell 
signatures (34, 42, 62).

Squamous cell carcinoma
In contrast to the aforementioned statement, a study that used 

Cox proportional hazards regression and random survival forest 
(RSF) as ML methods to evaluate the use of radiomic features derived 
from contrast-enhanced CT images to predict overall survival (OS), 
locoregional recurrence (LRR) and distant metastases in stage III and 
IV head and neck squamous cell cancer (HNSCC) patients treated 
with chemo radiotherapy found that the peritumoral radiomics based 
prediction models performed poorly in predicting OS, LRR, and 
DM (68).

Leukemias
Another article demonstrated the application of SML and AI 

approach to develop an algorithm by combining GMMbased 
phenotype representation with support vector machine (SVM) 
supervised model trained on a huge number of Multicolor flow 
cytometry (MFC) data can rapidly classify specimens with a high 
accuracy rate of detecting Minimal residual disease (MRD) post-
chemotherapy in patients of acute myeloid leukemia (AML) and 
Myelodysplastic syndrome (MDS) (56).

Rectal cancer
Automatic image recognition took only 0.2 s after introducing a 

faster region-based convolutional neural network trained on high-
resolution MRI to diagnose any circumferential resection margin in 
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rectal cancer. This algorithm had a higher accuracy of 0.932, sensitivity 
of 0.838, and specificity of 0.956 (52).

Breast cancer
The CHK2 protein is a tumor-suppressor gene with a high 

vulnerability risk of developing hereditary breast cancer, and 
researchers in India used computational analysis to uncover nsSNPs 
which are harmful to the structure and/or function of this protein. 
SIFT, Align GVGD, SNAP-2, PROVEAN, Poly-Phen-2, PANTHER, 
PhD-SNP, MUpro, iPTREE-STAB, Consurf, InterPro, NCBI 
Conserved Domain Search tool, ModPred, SPARKS-X, RAMPAGE, 
Verify-3D, FT Site, COACH, and PyMol were used for the analysis. 
Seven of the 78 projected functionally most important SNPs in the 
human CHK2 gene. Researchers also found that changing the serine 
to phenylalanine at codon 415 represents a significant alteration in the 
native CHK2 protein, which might lead to its dysfunction and, 
ultimately, cancer (64).

Breast carcinoma histopathology images were automatically 
classified into benign, malignant, and 8 subtypes using an improved 
convoluted neural network consisting of a convolutional layer, a small 
SE-ResNet module, and a fully connected layer, which achieved the 
same performance with fewer parameters than the older models. 
Accuracy ranged from 98.87 to 99.34% for the binary classification, 
and from 90.67 to 99.34% for the multiclass classification. The study 
also utilized the Gauss error scheduler, a unique learning rate 
scheduler that removes the need for the user to manually adjust the 
learning rate parameter for the Stochastic Gradient Descent (SGD) 
method, thus improving the decision-making ability of 
radiologists (73).

Prostate cancer
The impact of Neighbourhood socioeconomic (nSES) factors in 

precision medicine for prostate cancer development was studied by 
calculating model-based nSES exposure scores and revealed that the 
5-year predicted probability of prostate cancer was greater in men 
with a high nSES score and noses a later time to diagnosis (67).

Neuroblastoma
To enhance prognostic prediction in high-risk patients with 

neuroblastoma, Maggio et al. (71) presented a clinical approach called 
Concatenated Diagnostic-Relapse Prognostic (CDRP) for multi-task 
deep learning. The interpretability analysis of the model demonstrated 
that the SEQC-NB data may be naturally ordered for illness severity 
on a manifold and that this new feature space can be defined by using 
only one layer of the CDRP-N. While SEQC-NB training yields no 
discernible benefit, CDRP increases Matthews Correlation Coefficient 
(MCC) in validation for the Overall Survival (OS) endpoint and is the 
first model to improve on the High-Risk cohort, to the best of our 
knowledge (EFSHR, OSHR). Cross-validation on TGt for the HR 
tasks confirms the superiority of the CDRP-N and CDRP-A + CDRP-N 
architectures, with CDRP-N embedding linked to increased severity. 
These results were achieved using the TARGET-NB dataset (71).

Endometrial tumors
Implementation of a deep neural network (DNN)-based 

automated system using deep earning method to evaluate the presence 
of endometrial tumors from hysteroscopy images was studied on 177 
patients with hysteroscopy history and classified into 5 groups- those 
with a normal endometrium, uterine myoma, endometrial polyp, 

atypical endometrial hyperplasia (AEH), and endometrial cancer, 
respectively. The results revealed that the diagnostic accuracy for 
endometrial cancer was 80, 89, and 90% using the traditional method, 
continuity analysis, and combined three neural networks, 
respectively (72).

Skin cancer
By analyzing the well-known “Raman biological fingerprint 

region” (800–1800 cm-1), we were able to train a machine learning 
model to use Raman skin human tissue spectra in distinguishing 
between malignant Melanoma (ME) and benign Melanocytic Nevus 
(MN) with a high level of accuracy (AUC 0.98, 95% CI 0.97–0.99). 
Importantly, they used a miniaturized spectral range (896–1,039 cm-1) 
to create a high-performance model (AUC 0.97, 95% CI 0.95–0.98), 
demonstrating that only a single and reduced fragment of the 
biological fingerprint Raman region was necessary to differentiate 
benign versus malignant skin lesions, thereby paving the way for a 
much more exclusive Raman spectrometer for a faster cancer 
diagnosis (76).

Similar mutations
A group of algorithms, Non-negative Matrix Factorization, and 

principal component analysis of 29 cancers revealed six amino acid 
mutation signatures with Glu > Lys and Arg > His mutations being the 
most notable characteristics of identified mutation signatures, while 
Sample-level analysis revealed that some cancers are heterogeneous, 
others are largely dominated by one type of mutation. Based on data 
from the P53 database, they found that the frequencies of p53 
mutation in colorectal, head and neck, pancreatic, stomach, breast 
cancer, and liver are 43, 42, 34, 32, 22 and 31%, respectively (74).

In diagnostic radiology

Four articles included in the review discussed the advancement of 
artificial intelligence and ML techniques in diagnostic radiology. Total 
kidney volume (TKV) and total liver volume (TLV) were measured in 
patients with autosomal dominant polycystic kidney disease 
(ADPKD) using a deep learning-based fully automated segmentation 
method (57), and a fully automated method for semantic segmentation 
of kidney cysts from MR images of patients with ADPKD was studied 
(51). Promising results were found in both studies, with the methods 
accurately detecting modifications in these parameters as correctly as 
manual tracing (interclass correlation coefficients, 0.998 and 0.996, 
respectively) with low bias and high precision (<0.1%2.7% for TKV 
and − 1.6%3.1% for TLV); this was comparable with inter-reader 
variability of manual tracing (<0.13.5% for TKV and − 1.5%4.8% for 
TLV), while the algorithm used in second study also accurately 
segmented renal cysts from kidney tissue without user intervention.

Successfully predicting which patients would succeed or fail 
18 months after the start of behavioral weight loss treatment by using 
a higher-order SVD (HOSVD) in conjunction with machine learning 
applied to pre-treatment functional brain networks generated from 
functional magnetic resonance imaging (fMRI) yielded accurate 
results (>95% accuracy level). Those with BMIs below the median lost 
an average of 2.87 percent of their body weight (95% CI = 1.41 to 4.33) 
while those with BMIs above the median lost an average of 13.96 
percent (95% CI = 11.86 to 16.05) (60). Unlike previous studies using 
only 1 CNN model, this study proposed a Computer Aided Diagnosis 
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(CAD) system that used deep transfer learning to classify chest X-ray 
images into two classes: “Pneumonia” and “Normal.” The proposed 
system used an ensemble framework that took into account the 
decision scores derived from three Convolutional Neural Network 
(CNN) models to form a weighted average ensemble. These models 
were GoogLeNet, ResNet-18, and DenseNet-121. Using a five-fold 
cross-validation scheme, an evaluation of a single CNN model on two 
pneumonia chest X-ray datasets yielded an accuracy rate of 98.81%, 
sensitivity rate of 98.80%, precision rate of 98.82%, and f1-score of 
98.79% on the Kermany dataset, and an accuracy rate of 86.86%, 
sensitivity rate of 87.02%, precision rate of 86.89% on the RSNA 
challenge dataset (75).

Using deep machine learning techniques, Dekhil et al. (63) created 
an automated autism diagnostic system, paving the way for tailored 
medication for autism. The stacked autoencoder was fed the power 
spectral densities (PSDs) of time courses that corresponded to the 
spatial activation zones in order to construct a classifier using 
probabilistic support vector machines. Our machine-learning method 
achieved 90% sensitivity, specificity, and accuracy, using data acquired 
from the National Database of Autism Research (63).

In medical genetics and molecular 
pathology

Sepsis is a detrimental response of immunity against any infection 
of varying etiology. The detection of various prognostic and diagnostic 
biomarkers can aid in better diagnosis and treatment of septic patients. 
Around 170 biomarkers have been tested yet for use in sepsis. Schaack 
et al. (79) examined the predictive accuracy of Differential Expression 
(DE) analysis, Support Vector Machines (SVMs), Deep Neural 
Networks (DNNs), and other machine-learning approaches when 
applied to blood samples taken from patients with sepsis. In contrast 
to DE genes, which only demonstrated partial identification of 
samples (AUC >0.99 and > 0.96, respectively), deep learning 
approaches demonstrated outstanding diagnostic accuracy (79). 
Previous studies have demonstrated the existence of a spectrum of 
clinical phenotypes among septic patients, as well as a range of 
possible therapeutic approaches. Using a generalized estimating 
equation and k-means clustering to derive phenotypes, Kudo et al. 
(89) performed a secondary analysis of three multicenter registries to 
investigate the associations between thrombomodulin treatment and 
28-day and in-hospital mortality for each phenotype of sepsis with 
coagulopathy. The derivation cohort consisted of 3,694 patients, and 
from them, they were able to identify four distinct sepsis phenotypes. 
Organ dysfunction, increased mortality, and elevated levels of FDP 
and D-dimer were all characteristics of cluster dA (n = 323) patients 
with severe coagulopathy. The cluster dB showed considerable 
coagulopathy with severe illness. Disease severity was intermediate or 
mild in cluster dC, and low in cluster dD, both with or without 
coagulopathy. Among patients with cluster dA, thrombomodulin was 
related to a decreased risk of death throughout the course of 28 days 
(adjusted risk difference [RD]: 17.8% [95% CI 28.7 to 6.9%]) and 
while in the hospital (adjusted RD: 17.7% [95% CI 27.6 to 7.9%]) (89).

Red blood cell (RBC) membrane fluidity is affected by multiple 
factors related to chronic hyperglycemia, oxidative stress, and 
metabolic alterations triggered by absolute insulin deficiency, rather 
than the glycosylation of a single protein a, and has shown varying 
alterations in its fluid variability in patients with Type 1 diabetes 

mellitus (T1DM). Maulucci et  al. (81) conducted case–control 
research to further examine this. There was a total of 26 participants: 
18 with type 1 diabetes and 8 healthy controls. T1DM patients were 
divided into two groups: those without problems and with a shorter 
illness duration (15 years; n  = 11, group G1), and those with 
complications and a longer disease duration (>15 years; n = 7, group 
G2). Researchers employed functional two-photon microscopy to 
examine RBCs from type 1 diabetics and discovered fluidity maps at 
sub-micron scales, as well as a fluid split between fluid and stiff 
domains due to the effects of glycosylation and oxidation on 
membrane fluidity. Distinction patterns varied significantly between 
healthy individuals, people with G1, and those with G2. There was a 
statistically significant (p0.001) distinction between healthy, G1, and 
G2 patients, therefore a decision-support system (DSS) was built 
utilizing a machine learning technique to quantify the data and 
distinguish the fluidity patterns in RBCs. The primary drawback of 
this study was the small sample size and the possibility of bias in the 
examination of other environmental variables that may also affect 
membrane fluidity. Given that commercial image-based high-
throughput systems can analyze multiwall plates offering computer-
controlled, automated picture collection and processing. Once 
confirmed, this method showed the potential to be employed as a 
clinical test (81).

Topological data analysis (TDA), a machine learning technique 
used to discover natural sub-groups of Traumatic brain injury (TBI) 
patients, was recently studied by Nielson et al. (55), who found that it 
was able to identify a distinct diagnostic subgroup of patients with 
unfavorable outcome after mild TBI, whose outcomes were 
significantly predicted by the presence of specific genetic 
polymorphisms (SNP) in PARP1, which suggested that PARP1 may 
be a useful biomarker in estimating the patient trajectory in mild TBI 
patients. Extremely high rates of post-traumatic stress disorder 
(PTSD) and enrichment in the heterozygous allele of the PARP1 SNPs, 
which are associated with cellular responses to stress and DNA 
damage, were found in a large subpopulation of mild TBI subjects who 
recovered poorly and tended to deteriorate from 3 to 6 months after 
injury. Once the TBI syndromic space was established using the 
pre-selected CDEs, a full set of data for all patients was tackled to 
discover novel predictors of recovery after TBI, including several 
SNPs. This was accomplished by applying TDA to data from multiple 
CT and MR imaging and neuropsychological domains (55).

V66M mutation is the most common mutation in Brain-derived 
neurotrophic factor (BDNF) protein, damaging its structure and 
function and leading to many psychiatric disorders. In order to know 
the exact structural and functional effect of the mutation on BDNF 
protein, computational methodology was used via 9 algorithms for 
functional and structural prediction of the V66M mutation. 
PolyPhen-2 and SIFT predicted the V66M mutation to be deleterious, 
destabilizing by I-Mutant and Molecular dynamics (MD) analyses 
suggested that the mutation affects the essential motions, hydrogen-
bonding, and secondary structure at pre- and pro-domain of BDNF 
essential for the protein to maintain its function and activity while its 
flexibility and surface-to-volume ratio remain unaffected (90).

Leucocyte epigenomic biomarkers were investigated in case–
control research by Bahado-Singh et al. (65) to diagnose Alzheimer’s 
disease (AD) and provide light on its molecular pathophysiology. 
Twenty-four patients with late-onset Alzheimer’s disease (LOAD) and 
twenty-four controls had their DNA methylation profiles analyzed 
using the Infinium Methylation EPIC Bead Chip array. Using six 
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different AI methods, researchers were able to identify 171 unique 
genes in AD patients with substantially (FDR p0.05) differently 
methylated intragenic CpGs. As a result of employing 283,143 
intragenic and 244,246 intergenic/extragenic CpGs, all AI techniques 
were able to accurately predict AD (AUC 0.93). Genes such as CR1L 
and CTSV (abnormal cerebral cortex morphology), S1PR1 (central 
nervous system inflammation), and LTB4R were epigenetically 
modified (inflammatory response). Some of these genes have been 
connected to Alzheimer’s disease and other forms of dementia. Since 
there is evidence connecting poor cerebral blood flow, heart disease, 
and Alzheimer’s disease, it is intriguing to consider the role of the 
differentially methylated CTSV and PRMT5 (ventricular hypertrophy 
and dilation) genes (65).

Despite the enormous amount of information about gene-disease 
associations in the literature, the time-intensive curation procedure 
slows down the data extraction process. Bhasuran et al. (91) created 
an automatic extraction of gene-disease connections from the 
literature using joint ensemble learning to address this issue. After 
evaluation, the machine learning method delivered the expected 
results on the EUADR, GAD, CoMAGC, and PolySearch corpora of 
85.34, 83.93, 87.39, and 85.57% F-measure, respectively. In comparison 
to earlier existing methodologies, these new results produced 
improved F-measures (91).

Research has been conducted on computer-aided polyp detection 
in gastric gastroscopy throughout the past few decades. The majority 
of prior techniques for diagnosing gastrointestinal polyps relied on the 
texture, color, location, and elliptical feature shapes alone or in 
combination. These characteristics were, however, typically created by 
hand. In this recent study, Zhang et al. (58) evaluated the use of an 
improved Single Shot MultiBox Detector (SSD) architecture known as 
SSD-GPNet for detecting gastric polyps, recognizing real-time 
detection with 50 frames per second (FPS) using Titan V, and 
improving the mean average precision (mAP) of detection. They put 
forth fresh pooling techniques that were deployed on the feature 
pyramid network to recover lost relevant data from Max-Pooling 
layers. Additionally, three new pooling levels known as Second 
Max-Pooling (Sec Max-Pooling), Second Min-Pooling (Sec 
Min-Pooling), and Min-Pooling were created to reduce the possibility 
of reusing the information lost from the Max-Pooling layers. The 
outcomes demonstrated that SSD-GPNet outperformed standard SSD 
in small-sized gastric polyps, improving the mAP by 2.1%, 
demonstrating that SSD-GPNet could extract and recognize more 
features from images (58). The model’s main flaw was that it was 
trained using SSD-GPNet and had more parameters than was 
necessary, which led to a modest decline in time performance.

Though research has connected the limbic system of the brain’s 
habenula to numerous mental disorders, including Major Depressive 
Disorder (MDD), it is too small and has a low contrast for the human 
eye to distinguish on radiological scans. For this, 7 Tesla MRI imaging 
in a Korean study used an automated segmentation and Habenula 
volume estimation method. The approach was built on a semantic 
segmentation network powered by deep learning. The DNNs strategy 
for Habenula volume estimation in 7 MRI was demonstrably 
applicable and had potential for usage in mental neuroimaging 
investigations due to its high dice similarity coefficient (0.852) and 
reproducibility (59).

In their clinical study, Lyra et al. (61) evaluated deep learning 
(DL)--based real-time vital sign extraction utilizing contactless 

infrared thermography on a dataset of 26 ICU patients (IRT). The 
dataset was applied to the object detectors YOLOv4 and YOLOv4-
Tiny for training and validation. Head detection was used to quantify 
the body surface temperature (BST) trend, and chest movements were 
used to extract the respiratory rate (RR) using an optical flow (OF) 
method. A hold-out test dataset of 6 patients was used for validation, 
and the results showed good detector performance (0.75 intersections 
over union, 0.94 mean average Precision). The breathing rate was 
determined by an optical flow algorithm from the chest area. The trial 
produced encouraging findings for reliable label detection. The 
YOLOv4 model on the test dataset was found to have an IoU of 0.70, 
however, the small model displayed a superior IoU of 0.75. A mean 
absolute error of 2.69 bpm was found in the results (61).

The development of atherosclerotic heart disorders has been 
strongly linked to elevated levels of low-density lipoprotein cholesterol 
(LDL-C). It has been demonstrated that lowering LDL-C improves 
outcomes in both primary and secondary preventive populations. By 
comparing the method’s correlation to direct LDL-C with the Fried 
Ewald and Martin-Hopkins equations for LDL-C estimation, Singh 
et al (63) studied a machine learning (ML) approach using the RF 
model (the Weill Cornell model) to estimate Low-density lipoprotein 
cholesterol (LDL-C) from standard profiles. The Weill Cornell model 
had a correlation coefficient between estimated and measured LDL-C 
levels of 0.982, compared to 0.950 for Fried Ewald and 0.962 for the 
Martin-Hopkins approach. The TG > 500 and LDL-C 70 subgroups 
were stratified by LDL-C and TG values, and the Weill-Cornell model 
consistently performed better. The major limitation convenience 
sample of lipid profile data made at a solitary tertiary care facility in 
New York was used to build the Weill Cornell model. Although the 
Weill Cornell model had already undergone internal validation, 
external validation was still necessary to verify both the model’s 
generalizability and its accuracy across a variety of patient groups. The 
current analysis concentrated on creating and validating the model 
across a range of LDL-C and TG levels; however, it did not include 
patient-level analysis to ascertain the impact of specific clinical 
characteristics (such as ethnicity, the presence of kidney disease, the 
use of lipid-lowering drug therapies, etc.) on the performance of the 
model, opening the door for future research on the model (82).

Correct risk assessment and recommendation of the best 
treatment choices can be  made with the aid of individuals with 
psychiatric diseases who exhibit positive valence symptoms. In their 
study, Dai et al. (83) tested the effectiveness of several CNN models in 
predicting the intensity of positive valence symptoms in patients with 
psychiatric illnesses based on initial records of psychiatric evaluations. 
The records included question-and-answer pairs and unstructured 
text, with the latter being tokenized and normalized. Convolutional 
and max pooling layers were used in various configurations to 
automatically learn significant characteristics from various word 
representations. The results showed that normalization of the semi-
structured contents can increase the mean absolute error (MAE) 
among all CNN configurations to 0.785 and that the best CNN had an 
MAE of 0.539, supporting the hypothesis (83).

It can be difficult to diagnose glaucoma, particularly in the early 
stages. However, glaucoma can be treated early in order to prevent 
vision loss, if detected in the premature stages. Clinicians would 
benefit greatly from a machine-learning model that detects glaucoma 
more accurately. As a result, Kim et al. (66) evaluated four machine 
learning algorithms in their study to build a glaucoma prediction 
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model that could interpret features from the measurement of retinal 
nerve fiber layer (RNFL) thickness and visual field (VF) to diagnose 
the condition. These algorithms were C5.0, random forest (RF), 
support vector machine (SVM), and k-nearest neighbor (KNN). With 
classification accuracy of 0.98, sensitivity of 0.983, specificity of 0.975, 
and AUC of 0.979, the RF model outperformed the C5.0, SVM, and 
KNN models in terms of performance. The research could be viewed 
as a breakthrough in the understanding of the main ocular illnesses 
and their therapies using machine intelligence and precision 
medicine (66).

As Black-box ML approaches do not cover the area of cause-effect 
relationships in detail, Rieg et  al. (69) presented a white-box ML 
algorithm, which used a C5.0 model to categorize cardiovascular 
rhythms into four classes of (i) atrial fibrillation and atrial flutter, (ii) 
tachycardia (iii), sinus bradycardia and (iv) sinus rhythm based on five 
features (ventricular rate, RR-Interval variation, atrial rate, age and 
difference between longest and shortest RR-Interval) extracted from 
ECG data. The findings showed a generic tree structure that might 
provide each class with a different value to set it apart from ECG (69). 
One of this method’s drawbacks was that the model might become 
unstable if the database were modified. Additionally, linear 
relationships cannot be accurately represented by a decision tree (69).

The concept that the gene expression profile of a cell affected by a 
certain disease contains characteristic patterns linked to that disease 
and using these profiles to extract information for a better diagnosis 
and assessment was evaluated in a study by Gaudel et al. (70), who 
used multi-scale neural-network based framework that integrates 
gene expression data associated to diseases with gene–pathway 
information. Multiclass logistic regression (MLR), Random Forest 
(RF), Bernoulli Naive Bayes, and Support Vector Machine (SVM) 
algorithms were used to test the model’s classification performance, 
and they found that MLR and GPD performed better, or at least on 
par, with these competing methods when compared to RF, Naive 
Bayes (nB), and SVM classifiers, as measured by our three metrics. 
Given that MLR contained four times as many parameters than GPD, 
it might be said to be the most sophisticated neural network model. 
According to the study’s findings, employing biological knowledge to 
direct the layout of neural networks did not enhance classification 
performance when compared to MLR and only marginally improved 
it when compared to an RF classifier (70).

Conclusion

In today’s world, AI has become a crucial tool in different fields. 
The future of AI in healthcare setup is also promising, especially in the 

case of extremely demanding fields like precision medicine. High 
heterogeneity and variability encountered in personalized medicine, 
particularly in domains like preventive medicine, diagnostic medicine, 
drug design, and treatment outcome can be tackled with different ML 
algorithms as they can automatically uncover complex non-linear 
relationships from heterogeneous sources of data, thus providing 
superior output in prediction tasks. However, the broader acceptance 
of AI in medicine is hampered because of the dearth of standardized 
protocols between many datasets producing biases in medical data, 
which, if used to design novel algorithms, might be less accurate and 
challenging to be generalizable. Furthermore, with highly personalized 
information being available publicly, data privacy can be an important 
issue. That is why, the investment of more time, money, and skills is 
imperative to deal with these shortcomings of AI applications in 
precision medicine for its widespread adoption in healthcare setup.
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Glossary

BNs Boolean Networks

CCLE The Cancer Cell Line Encyclopedia

EHR electronic health records

SVM Support Vector Machine

ACI acute cerebral ischemia

ECOS Evolving connectionist system

DENFIS Neuro-fuzzy inference system

tDCS transcranial direct current stimulation

SVM Support Vector Machine

CCLE Cancer Cell Line Encyclopedia

ANN Artificial Neural Network

Prisma Preferred Reporting Items for Systematic Reviews and Meta-Analyses

DCNN deep convolutional neural network

ML machine learning

AI Artificial intelligence

CDRP Concatenated Diagnostic-Relapse Prognostic

KNN k-nearest neighbor

RF random forest

IPA Ingenuity Pathway Analysis

LOAD late-onset AD

SSD Single Shot MultiBox Detector

SML Supervised machine learning

TDA Topological data analysis

GLM Generalized Linear Model

LSTM Long Short-Term Memory

RNN Recurrent Neural Networks

TFI Treatment Feature Interactions

CAMIL Causal Modeling with Internal Layers

DPNN Differential Prototypes Neural Network

GDSC Genomics of Drug Sensitivity in Cancer

ANFIS adaptive neuro-fuzzy inference

PAI Personalized Advantage Index

ECOS evolving connectionist systems

OCCT oral carnitine challenge test

TMAO trimethylamine N-oxide

TD typically developing

DD Developmental Disorders

ALS Amyotrophic lateral sclerosis

GWAS Genome-wide association studies

LR logistic regression

MS Multiple Sclerosis

VAR Vector Autoregressive Model

AUC-ROC Area under the Receiver Operating Characteristics

CAN Care Assessment Needs

FA food allergy
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ECGs electrocardiograms

cPSTA Cardiac Phase Space Tomography Analysis

DSS Decision-Support-System

GBM gradient boosting machine

CART classification, and regression trees

DT, decision tree

GB Gradient Boosting

MLP Multilayer Perceptron

RFE recursive feature elimination

RDoC Research Domain Criteria

ICU Intensive Care Unit

SUD Substance Use Disorder

SL Super-learning

EEG electroencephalography

IPT interpersonal psychotherapy

CT cognitive therapy

CT cortical thickness

MDD major depressive disorder

SSRI serotonin reuptake inhibitor

EMBARC Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care

QRF quantile regression forest

CCLE Cell Line Encyclopaedia

T1DM Type 1 diabetes mellitus

DE Differential Expression

PSDs power spectral densities

CNN Convolutional Neural Network

CAD Computer Aided Diagnosis

ADPKD autosomal dominant polycystic kidney disease

MN Melanocytic Nevus

ME malignant Melanoma

SGD Stochastic Gradient Descent

OS Overall Survival

MCC Matthews Correlation Coefficient

nSES Neighbourhood socioeconomic

AML acute myeloid leukemia

MRD Minimal residual disease

NSCLC non-small cell lung cancer

DCM degenerative cervical myelopathy

GC gastric cancer

BMI body mass index

FEM finite element models

RNFL retinal nerve fiber layer

MAE mean absolute error

LDL-C low-density lipoprotein cholesterol

MDD Major Depressive Disorder

AD Alzheimer’s disease

BDNF Brain-derived neurotrophic factor
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PTSD post-traumatic stress disorder

SNP specific genetic polymorphisms

TBI Traumatic brain injury
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