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Dissecting contributions of
individual systemic inflammatory
response syndrome criteria from
a prospective algorithm to the
prediction and diagnosis of sepsis
in a polytrauma cohort

Roman Schefzik*, Bianka Hahn and Verena Schneider-Lindner

Department of Anesthesiology and Surgical Intensive Care Medicine, Medical Faculty Mannheim,

Heidelberg University, Mannheim, Germany

Background: Sepsis is the leading cause of death in intensive care units (ICUs), and

its timely detection and treatment improve clinical outcome and survival. Systemic

inflammatory response syndrome (SIRS) refers to the concurrent fulfillment of

at least two out of the following four clinical criteria: tachycardia, tachypnea,

abnormal body temperature, and abnormal leukocyte count. While SIRS was

controversially abandoned from the current sepsis definition, a dynamic SIRS

representation still has potential for sepsis prediction and diagnosis.

Objective: We retrospectively elucidate the individual contributions of the SIRS

criteria in a polytrauma cohort from the post-surgical ICU of University Medical

Center Mannheim (Germany).

Methods: We used a dynamic and prospective SIRS algorithm tailored to the

ICU setting by accounting for catecholamine therapy and mechanical ventilation.

Two clinically relevant tasks are considered: (i) sepsis prediction using the first

24 h after admission to our ICU, and (ii) sepsis diagnosis using the last 24 h

before sepsis onset and a time point of comparable ICU treatment duration for

controls, respectively. We determine the importance of individual SIRS criteria

by systematically varying criteria weights when summarizing the SIRS algorithm

output with SIRS descriptors and assessing the classification performance of the

resulting logistic regression models using a specifically developed ranking score.

Results: Our models perform better for the diagnosis than the prediction task

(maximum AUROC 0.816 vs. 0.693). Risk models containing only the SIRS

level average mostly show reasonable performance across criteria weights, with

prediction and diagnosis AUROCs ranging from 0.455 (weight on leukocyte

criterion only) to 0.693 and 0.619 to 0.800, respectively. For sepsis prediction,

temperature and tachypnea are the most important SIRS criteria, whereas the

leukocytes criterion is least important and potentially even counterproductive. For

sepsis diagnosis, all SIRS criteria are relevant, with the temperature criterion being

most influential.

Conclusion: SIRS is relevant for sepsis prediction and diagnosis in polytrauma, and

no criterion should a priori be omitted. Hence, the original expert-defined SIRS

criteria are valid, capturing important sepsis risk determinants. Our prospective

SIRS algorithm provides dynamic determination of SIRS criteria and descriptors,

allowing their integration in sepsis risk models also in other settings.
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1. Introduction

Sepsis (1) is the leading cause of death in intensive care

units (ICUs) and has an immense medical, societal and economic

relevance (2, 3). As each hour of delayed effective antibiotic

treatment increases mortality, timely detection and treatment of

sepsis are crucial and improve clinical outcome and survival (4).

On the other hand, unnecessary antibiotic treatment due to a

wrong sepsis diagnosis may contribute to antimicrobial resistance

(5, 6). Overall, prediction and early detection of sepsis are still

challenging in the absence of suitable biomarkers and a gold-

standard diagnostic test.

Sepsis originally had been defined as the systemic inflammatory

response syndrome (SIRS) due to an infection (7), commonly

referred to as Sepsis-1. In contrast, the latest consensus definition

of sepsis, commonly referred to as Sepsis-3, specifies sepsis as

a life-threatening organ dysfunction, caused by a dysregulated

host response to an infection (8, 9). In particular, Sepsis-3

is not based on the SIRS concept anymore. However, this is

controversially discussed, especially as Sepsis-3 has been developed

as epidemiological measure of sepsis incidence rather than to

support early detection of sepsis (10). SIRS remains an important

predictor of sepsis (11) and is still a relevant topic of current

research, see, e.g., (12), (13), or (14).

SIRS can arise due to various causes and includes, but is

not limited to, more than one of the following four clinical

manifestations (7): tachycardia (TC), tachypnea (TP), abnormal

body temperature (Tem), and abnormal leukocyte (while blood

cell) count (Leu). While originally not limited to those, SIRS

is generally operationalized as meeting at least two out of the

above four criteria concurrently. Previously, SIRS has typically

been determined at time points in spot check evaluations only.

Moreover, in ICU settings, tachypnea and tachycardia may

be masked by interventions like mechanical ventilation and

catecholamine therapy, respectively, which are not accounted for

by the traditional SIRS definition. A first attempt to resolve these

issues is given by the SIRS algorithm introduced in (15). However,

this algorithm partly has a retrospective design, which impedes

a real-time application for prediction at the bedside in a clinical

decision support system (16). While the influence of individual

SIRS criteria on ICU mortality has already been examined (17, 18),

corresponding investigations in the context of sepsis are still lacking

to our knowledge.

Abbreviations: AIS, Abbreviated injury scale; AUROC, Area under the

receiver operating characteristic curve; CI, confidence interval; DistIntercept,

Distance of calibration intercept to the reference value of 0 (indicating good

calibration); DistSlope, Distance of calibration slope to the reference value of

1 (indicating good calibration); EMV, Expired minute volume; ICU, Intensive

care unit; Leu, Leukocytes criterion (SIRS); OR, odds ratio; PaCO2, Partial

pressure of carbon dioxide in arterial blood; PH, Proportional hazards; sd,

Standard deviation; SIRS, Systemic inflammatory response syndrome; TC,

Tachycardia criterion (SIRS); Tem, Temperature criterion (SIRS); TP, Tachypnea

criterion (SIRS); ws, Weighting scheme; λ = λℓ, SIRS level in a given minute

ℓ; 3, Average SIRS level over a time period; 1, SIRS level trend over a time

period; C, Number of changes in the SIRS level over a time period.

Patients with polytrauma, defined as multiple, potentially lethal

injuries in typically more than one body region (19), are at high

risk of sepsis (20–22). Although biomarkers for sepsis specifically

for polytrauma patients have been proposed (23–25), the lack

of valid, clinically applicable sepsis biomarkers also pertains to

these patients. As polytrauma patients often develop SIRS due to

a trauma-induced inflammatory response (26), they represent a

population of high interest for research on SIRS and sepsis alike.

Therefore, we here report a detailed analysis of the role and

relevance of the four SIRS criteria for sepsis prediction and

diagnosis in a cohort of polytrauma patients. Our aim is to

determine whether some of the four SIRS criteria have a more

pronounced influence than others in the context of two distinct,

clinically relevant tasks, namely (i) sepsis prediction, considering

the first 24 h after ICU admission, and (ii) sepsis diagnosis,

considering the last 24 h before sepsis onset. We also investigate

how the results for different weighting schemes relate to those

for the hitherto common usage of SIRS, i.e., a scenario of equal

weighting. For this, we introduce a novel adaptation of the

approach by (15), for providing a time-dependent summary of SIRS

criteria as SIRS descriptors. Our enhanced algorithm, referred to as

SIRS Prospective, uses a dynamic, time interval-based concept of

SIRS specifically tailored to the ICU treatment context by explicitly

accounting for catecholamine therapy and mechanical ventilation.

While applied to electronic medical records in retrospective studies

here, our SIRS algorithm itself is designed in a prospective manner

and generally suitable for analyses of real-time data streams, e.g., in

clinical decision support systems.

2. Methods and data

2.1. Polytrauma cohort and sepsis
(outcome) definition

In our retrospective studies, we consider a polytrauma cohort

based on data from the post-surgical ICU of the University Medical

Centre Mannheim, Germany, where the cohort at hand has been

identified as follows. Among all valid admissions to the ICU from

April 2006 to December 2016, we first selected those that had

free text entries corresponding to the German expressions for

“fall”, “fracture”, “accident”, or “trauma” in their electronic medical

record. From the remaining patients, we then kept those in our

cohort that had recent injuries in more than one body region as

admission reason and had an injury severity score greater than 15.

These patients were defined as having polytrauma (27). We further

reduced this cohort by excluding patients that were younger than 16

years. Moreover, as the focus of our studies is the first ICU stay after

trauma incidence, we only included this period in our analyses. We

also excluded patients (i) whose day of trauma onset is more than

1 day before the start of the ICU stay, (ii) whose first period of ICU

stay is less than 24 h, or (iii) for which the difference between the

start of the ICU stay and the first sepsis diagnosis time point is less

than 24 h.

In this context, the trauma onset day has been determined using

both a computational and manual screening of patient anamnesis

and hospital records, and the time point of sepsis treatment

initiation was taken as the sepsis onset time point. Further, we here
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defined the starting point of the ICU stay (ICU admission time

point) as the first chart time with a valid heart rate or peripheral,

pulsoxymetrically measured oxygen saturation (SpO2) value. The

end of a patient’s ICU stay is determined in a similar way.

Sepsis as the outcome in our studies was defined based on

clinical validation in our paper as follows: The ICU electronic

medical records were comprehensively reviewed by experienced

intensive care physicians, who manually searched for entries

related to sepsis-specific antibacterial treatment. Patients with a

corresponding entry were defined as having sepsis. Moreover, the

corresponding sepsis diagnosis time was defined as the time of the

first order of the antibacterial in the electronic medical record.

Using the above selection strategy and sepsis definition, our

final polytrauma cohort consists of 415 encounters in total, 143 of

which developed sepsis (34%), and 272 of which did not develop

sepsis (66%). Basic characteristics of the patients in our polytrauma

cohort are summarized in Table 1.

2.2. Prospective SIRS algorithm

We introduce an algorithm to adequately describe the SIRS

phenomenon and determine the validity of the individual SIRS

criteria, namely tachycardia (TC), tachypnea (TP), abnormal

body temperature (Tem), and abnormal leukocyte (white blood

cell) count (Leu). In particular, the presented algorithm allows

for a dynamic description of SIRS and is specifically tailored

to the setting of an ICU by explicitly accounting for ICU-

specific catecholamine therapies and mechanical ventilation when

evaluating tachycardia and tachypnea, respectively, in contrast

to the original SIRS definition by (7). First attempts into this

direction have been made by (15). However, their algorithm is

partly designed in a retrospective manner, in that the validity of

some of the SIRS criteria at a fixed time point is determined by

taking account of future values. This consequently hampers a real-

time clinical application of their tool. To address this shortcoming,

we here adapt the SIRS algorithm of (15) by developing it

from a retrospective to a prospective tool, which allows for the

evaluation of SIRS criteria at a time point of interest without

the need to consider future events. As part of this, we provide a

simplification and harmonization of the previous algorithm rules in

(15) by putting them in a general overarching frame which is then

specifically elaborated for the individual SIRS criteria (Table 2).

The general rationale of our novel, prospective SIRS algorithm,

referred to as SIRS Prospective, essentially consists of two steps.

First, for each measurement of an involved vital or laboratory

parameter, we check whether the respective value deviates from

a pre-defined range indicating typical measurements that are

clinically to be expected for healthy people (7). If this is the

case, then the corresponding SIRS criterion is considered to

be fulfilled, and criterion validity starts with the chart time of

the measurement. Second, SIRS criterion validity is designed to

last until a corresponding subsequent measurement is charted,

leading to a re-evaluation of criterion validity according to the

first step. However, maximum validity intervals for SIRS criteria

are implemented, depending on the considered variable and

determined in accordance with clinical expertise. In addition,

possible interplays between variables for the tachypnea criterion are

explicitly accounted for. The explicit rules of the SIRS Prospective

algorithm for the four individual SIRS criteria are as follows:

2.2.1. Tachycardia criterion (TC)
The TC criterion is fulfilled if at least one of the following

two subcriteria is fulfilled: (i) the heart rate criterion or (ii) the

catecholamine criterion.

(i) Heart rate criterion. Each heart rate record > 90 beats per

minute starts criterion validity for 30 min if no measurement ≤ 90

beats per minute ends criterion validity earlier.

(ii) Catecholamine criterion. Here, we consider a patient

to receive a catecholamine therapy if doses of adrenaline,

noradrenaline or dobutamine are administered. Each dose record

> 0µg/min of adrenaline, noradrenaline or dobutamine starts

criterion validity for 30 min.

2.2.2. Tachypnea criterion (TP)
The TP criterion is fulfilled if at least one of the following

three subcriteria is fulfilled: (i) the EMV (expired minute volume)

criterion indicating mechanical ventilation, (ii) the respiratory rate

criterion or (iii) the PaCO2 (partial pressure of carbon dioxide in

arterial blood) criterion.

(i) EMV (expired minute volume)/mechanical ventilation

criterion. Here, we evaluate the presence of mechanical ventilation

of a patient by considering records of the EMV. Each EMV record

> 0 L starts criterion validity for 1 h.

(ii) Respiratory rate criterion. Each respiratory rate record

> 20 breaths per minute without an EMV record > 0 L within

the preceding hour starts criterion validity for 30 min unless a

subsequent respiratory rate record ≤ 20 breaths per minute or an

EMV record > 0 L ends criterion validity earlier.

(iii) PaCO2 (partial pressure of carbon dioxide in arterial blood)

criterion. Each PaCO2 record < 32mmHg without an EMV record

> 0 L within the preceding hour starts criterion validity for 8 h

unless a subsequent PaCO2 record ≥ 32 mmHg or an EMV record

> 0 L ends the criterion validity earlier.

2.2.3. Temperature criterion (Tem)
Each temperature record < 36◦C or > 38◦C starts criterion

validity for 4 h if no measurement ≥ 36◦C or ≤ 38◦C ends validity

earlier.

Note that temperature records ≤ 29◦C are excluded from our

analyses here, as these likely mirror a wrong recording of ambient

temperature, e.g., due to sensor dislocation. Similarly, also values

≥ 42.5◦C are excluded from our studies.

2.2.4. Leukocytes criterion (Leu)
Each leukocyte count < 4000/µL or > 12000/µL starts

criterion validity for 24 h if no measurement that lies within the

interval [4000, 12000]/µL ends validity earlier.

Note that we here do not additionally consider a further

subcriterion from the original SIRS definition by (7) which suggests
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TABLE 1 Patient characteristics for our polytrauma cohort consisting of in total 415 patients, where the data is represented in the form mean ± sd or n

(% of N), and p-values for comparisons between the sepsis and no sepsis group are derived using t-tests or χ2-tests, respectively.

Characteristic Sepsis
(N = 143)

No sepsis
(N = 272)

P-value

Basic characteristics

Age (in years) 50.9± 19.8 48.7± 20.0 0.2888

Men 118 (82.5%) 190 (69.9%) 0.0051

ICU length-of-stay (in days) 25.4± 17.8 8.5± 6.8 < 0.0001

ICU mortality 28 (19.6%) 20 (7.4%) 0.0002

Acute condition

Glasgow Coma Scale 9.7± 5.0 11.2± 4.5 0.0022

Simplified Acute Physiology Score II 33.6± 10.5 27.4± 9.0 < 0.0001

[8 (5.6%) missing] [18 (6.6%) missing]

Injury Severity Score 35.7± 8.6 32.3± 8.1 0.0002

AIS abdomen 1.7± 1.8 1.2± 1.6 0.0101

AIS extremities 2.5± 1.5 2.3± 1.5 0.4483

AIS face 1.1± 1.3 1.1± 1.4 0.6443

AIS head 2.4± 1.9 2.2± 1.9 0.2988

AIS thorax 3.0± 1.5 2.7± 1.5 0.0521

AIS soft tissue 2.0± 0.8 1.9± 0.8 0.0943

Chronic condition on admission

Alcoholism 27 (18.9%) 27 (9.9%) 0.0100

Cardiovascular diseases 33 (23.1%) 26 (9.6%) 0.0002

Diabetes 17 (11.9%) 19 (7.0%) 0.0917

Respiratory diseases 7 (4.9%) 7 (2.6%) 0.2549∗

AIS, abbreviated injury scale; ICU, intensive care unit. ∗P-value derived using Fisher’s exact test.

TABLE 2 Prospective SIRS algorithm rules.

SIRS criterion Subcriterion (Sub)criterion
fulfilled if

Maximum
validity length

Tachycardia (TC) ∗ (i) heart rate η

(ii) catecholamine dose d,
d = dNor + dAdr + dDob

η > 90/min
d > 0µg/min

0.5 h
1 h

Tachypnea (TP) ∗ (i) respiratory rate ν †
(ii) PaCO2 ρ †
(iii) expired minute volume EMV

ν > 20/min
ρ < 32 mmHg
EMV > 0 L/min

0.5 h §
8 h §
1 h

Temperature (Tem) ϑ ϑ /∈ [36, 38]◦C 4 h

Leukocyte count (Leu) l l /∈ [4000, 12000]/µL 24 h

The conditions for the fulfillment of a SIRS (sub)criterion (3rd column) are taken from (7) (except from catecholamine dose and EMV), while the maximum validity lengths (4th column) are

determined based on clinical expertise. Adr, adrenaline; Dob, dobutamine; Nor, noradrenaline; PaCO2 , partial pressure of carbon dioxide in arterial blood.
∗TC/TP criterion is fulfilled if at least one of the respective subcriteria is fulfilled.

†Measurement only valid if there is no EMV record > 0 within the preceding hour.

§Possibly, a subsequent EMV record > 0 ends validity earlier.

the validity of the leukocyte criterion if there exist> 10% immature

(band) forms.

The rules of our prospective SIRS algorithm and their

overarching frame as presented above are summarized in Table 2.

At this point, we emphasize again that our algorithm itself, as

indicated by its name, has a prospective design, but the studies in

which it will be applied here have a retrospecive design.

2.3. SIRS levels and weighting schemes for
SIRS criteria

Traditionally, the SIRS level λ∗ at a given time point is defined

as the number of SIRS criteria (out of the criteria TC, TP, Tem, and

Leu) that are fulfilled concurrently, and SIRS is diagnosed if at least

two out of the four SIRS criteria are fulfilled simultaneously. To
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investigate the individual contributions of the four SIRS criteria in

the context of sepsis prediction and diagnosis, we here adapt the

SIRS level concept to the needs for our analyses. Non-technically

speaking, we assign weightswTC,wTP,wTem, andwLeu, respectively,

between 0 and 1 to each SIRS criterion. We then define the SIRS

level λ at a given time point as the sum of the weights of the fulfilled

criteria.

Specifically, in our studies, we employ different weighting

schemes (i.e., weights wTC,wTP,wTem,wLeu) for the four SIRS

criteria as summarized in Figure 1, where we consider differently

composed weightings of the following types:

• Type A: all four SIRS criteria have equal weight of 1/4 each,

• Type B: exactly one SIRS criterion has full weight of 1, and the

remaining three have zero weight,

• Type C: exactly two SIRS criteria have a weight of 1/2 each,

and the remaining two have zero weight,

• Type D: exactly three SIRS criteria have a weight of 1/3 each,

and the remaining one has zero weight,

• Type E: exactly one SIRS criterion has a dominant high weight

of 1/2, and the remaining three have a weight of 1/6 each,

• Type F: the weights of the SIRS criteria are gradually varying,

attaining values of 0.4, 0.3, 0.2, and 0.1.

In what follows, we formalize and describe our approach in

a more technical framework. In a given minute ℓ, the SIRS level

λ∗ : = λ∗ℓ is traditionally derived by

λ∗ : = 1TC + 1TP + 1Tem + 1Leu ∈ {0, 1, 2, 3, 4} ,

where

1c : =

{

1, criterion c fulfilled

0, criterion c not fulfilled

for criterion c ∈ {TC, TP, Tem, Leu}, and SIRS is then

diagnosed if λ∗ ≥ 2. Thus, the SIRS level λ∗ can only attain a

discrete spectrum of values (namely 0, 1, 2, 3 or 4).

To adapt this concept to the setting of our analyses, we now

introduce non-negative weights

wTC,wTP,wTem,wLeu ≥ 0

for the four SIRS criteria, where we follow the common

definition of weights assuming that

wTC + wTP + wTem + wLeu = 1.

We then define the SIRS level λ : = λℓ in a given minute ℓ as

follows:

λ : = wTC1TC + wTP1TP + wTem1Tem + wLeu1Leu ∈ [0, 1].

In this definition here, the SIRS level λ can attain values in

[0, 1], and we can therefore think of λ as a SIRS intensity level here.

Thus, we proceed from the traditional consideration of SIRS levels

λ∗ ∈ {0, 1, 2, 3, 4} (with SIRS diagnosis if λ∗ ≥ 2) to a SIRS level

FIGURE 1

Overview of the di�erently composed (type A–F) weighting

schemes ws1-ws43, consisting of corresponding weights wTC , wTP ,

wTem , and wLeu for the tachycardia, tachypnea, temperature and

leukocytes criterion, respectively.
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FIGURE 2

Illustration of the SIRS algorithm output and the corresponding summarizing SIRS descriptors for a fictitious encounter over an observation period of

24 h (L = 1, 440 min), using exemplarily the equal weighting scheme (ws1), which gives a weight of 0.25 to each of the four SIRS criteria (TC,

tachycardia; TP, tachypnea; Tem, temperature; Leu, leukocytes): At the top, time spans of validity of a respective SIRS criterion are indicated by filled

sections in the corresponding boxes. Below, the corresponding SIRS levels λ for each minute of the observation period are shown. Note that in the

specific present case of equal weighting of the SIRS criteria, the SIRS levels λ are directly related to the number of concomitantly fulfilled SIRS criteria

(in that a λ value of 0, 0.25, 0.5, 0.75, and 1 corresponds to the concurrent fulfillment of 0, 1, 2, 3, and 4 SIRS criteria, respectively), thus reflecting the

traditional view of the SIRS phenomenon.

spectrum λ ∈ [0, 1], with values of λ depending on the choice of

the weights.

Despite of our aim to investigate the effect of giving different

weights to the four SIRS criteria, the common concept of equal

weighting (Type A) used in weighting scheme 1 (ws1) from

Figure 1 still has our specific focus for several reasons. First, we

will use it as a (traditional) reference approach against which we

compare the other weighting schemes. Second, the equal weighting

scheme allows for a straightforward interpretation, as it (is the only

weighting scheme that) directly relates to the number of fulfilled

SIRS criteria. Specifically, for ws1, a λ value of 0, 0.25, 0.5, 0.75

and 1 corresponds to the concurrent fulfillment of 0, 1, 2, 3 and

4 SIRS criteria, respectively. In particular, in the framework of our

formulation here, in the common case of equal weighting wTC =

wTP = wTem = wLeu : = 1/4 (ws1), we have a SIRS diagnosis if

λ =
1

4
(1TC + 1TP + 1Tem + 1Leu) ≥

1

2
.

Analogously, the threshold value of 0.5 for λ could also be

applied to the other weighting scheme settings, and we may

generally think of a SIRS diagnosis if λ ≥ 0.5 in our new framework.

2.4. SIRS descriptors

We here introduce three summary measures 3, 1 and C,

which we use as SIRS descriptors (15) to describe the output of

our SIRS algorithm over a pre-defined time period consisting of L

consecutive minutes:

• 3 refers to the average SIRS level over the considered time

period,

• 1 refers to the SIRS level trend in the time period, comparing

the levels of the first and the last (L-th) considered minutes,

and

• C refers to the number of changes in the SIRS level, reflecting

the degree of SIRS level fluctuation within the time period.

The SIRS descriptors 3,1 and C represent intuitive and well-

established measures. For instance, the mean (3) has been

shown to be a powerful time series summary statistics for

clinical disease prediction tasks in a recent study by (28).

While additional summary measures are available (29), we do

not use them here, as initial considerations did not yield any

benefit.

An illustration of the SIRS algorithm output and the descriptors

is given in Figure 2.

Technically, if λ1, λ2, . . . , λL ∈ [0, 1] denotes a

series of L (time-ordered) SIRS levels, such that level

λ1 is valid in the first considered minute, level λ2

is valid in the second considered minute, . . ., level

λL is valid in the last (L-th) considered minute,

then

• 3 : = 1
L

L
∑

ℓ=1
λℓ ∈ [0, 1],

• 1 : = λL − λ1 ∈ [−1, 1], and

• C : =
L−1
∑

ℓ=1
1{λℓ 6=λℓ+1} ∈ {0, 1, . . . , L− 1}.
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In our analyses, we focus on 24-h periods comprising

L : = 1, 440 min, by considering the first 24 h after

ICU admission (prediction task) and the last 24 h

before an index (sepsis) time point (diagnosis task),

respectively.

2.5. Sepsis prediction and diagnosis tasks

Based on the output by the SIRS Prospective algorithm,

we calculate the SIRS descriptors (average SIRS level 3,

SIRS level trend 1, number of changes in SIRS level C)

for the different weighting schemes and evaluate their

discriminative performance by using them for the clinically

relevant tasks of sepsis prediction and sepsis diagnosis,

respectively (15):

1. Sepsis prediction refers to the time period of the first 24 h after

ICU admission, with the aim of predicting the development of

sepsis during a patient’s further ICU stay. Here, the distinction

between case and control group is made irrespective of the

follow-up time. That is, we take the 143 encounters developing

sepsis at any point during their time in the ICU as the cases

(referred to as the sepsis group throughout the paper) and the

272 encounters not developing sepsis during that time as the

controls (referred to as the no sepsis group throughout the

paper).

2. Sepsis diagnosis refers to the time period of the last 24 h before

an index time point, which corresponds to

• the sepsis onset (time point) for patients developing sepsis

(case group), and

• a time point of comparable ICU treatment duration in a

control group,

for comparison of both groups. Here, we also take the

143 encounters developing sepsis as the cases (referred to as

the sepsis group throughout the paper). However, the controls

(referred to as the control group throughout the paper) are

derived by matching encounters to the sepsis cases according

to their ICU length-of-stay in a nested case-control study

design (30). Specifically, for each septic encounter, controls are

identified as all ICU admissions of the cohort treated in the ICU

for at least as long as the given septic patient, independent of

a possible later development of sepsis. This way, we construct

risk sets, each consisting of a septic encounter and all admissions

with matching on length-of-stay as controls, so that the total

number of controls is much greater than the number of

admissions. In each risk set, we then calculate the index time

for each control as the sum of the ICU admission time and

treatment duration of its corresponding septic encounter. Using

this strategy for our diagnosis task, we finally end up with in

total 29721 controls derived from the risk sets, noting that two

septic patients have an identical length-of-stay in the ICU until

the sepsis onset and thus an identical risk set, such that we have

143 septic patients in 142 strata.

2.6. Models and evaluation techniques

We first employ basic tools from descriptive statistics to

summarize the simultaneous fulfillment of the four SIRS criteria

as well as the distributions and properties of the SIRS descriptors

3, 1, and C for each of our weighting schemes in the prediction

and diagnosis task, respectively. For comparisons between the

sepsis and no sepsis/control groups in this context, the two-sided

Wilcoxon rank sum test is used to check for significant differences

with respect to the mean. Additionally, we employ the waddR

tool (31) based on Wasserstein distances to test for corresponding

differences between whole distributions (location and variability)

of the SIRS descriptors.

To investigate the impact of the output of our SIRS algorithm

on sepsis prediction and diagnosis, for each of our weighting

schemes, we consider the following different logistic regression

models with a binary response variable S indicating whether sepsis

occurs or not, and the derived SIRS descriptors 3, 1 and C as

predictor variables (and also an intercept term, which we omit in

the formulas for convenience):

S ∼ 3, S ∼ 1, S ∼ C, S ∼ 3+1, S ∼ 3+C, S ∼ 1+C and S ∼ 3+1+C.

For model validation, we here use 10-fold cross validation.

We mainly evaluate the discriminative performance of

our logistic regression models using area under the receiver

operating characteristic curve (AUROC) values, basically balancing

sensitivity and specificity. However, for the sake of completeness,

we also separately assess sensitivity and specificity of the models,

where the predicted sepsis probabilities yielding the maximum sum

of sensitivity and specificity from the ROC curve data are employed

as model-based cutoffs here. However, we note that in principle the

choice of probability threshold based on clinical expertise (32) is

important for decision making and model calibration (33).

Additionally, we evaluate the predictive performance of our

models by looking at calibration, see, e.g., (34) for an overview.

In particular, we consider both the slopes and the intercepts of

probability calibration plots (35, 36). Here, reference targets for a

good performance are a slope value of 1 and an intercept value of 0,

i.e., the calibration plot should be a curve close to the diagonal, such

that predicted risks correspond well to observed proportions. As

performance evaluation measures for calibration, we consider the

distance of the calibration slope to the reference value of 1, referred

to as DistSlope, as well as the distance of the calibration intercept to

the reference value of 0, referred to as DistIntercept.

Both models and weighting schemes are assessed based
on their relative performance to their competitors, where a

performance/importance ranking is made using a specifically

proposed ranking score as a quantitative scoring system
(Supplementary Section 1 in Supplementary material 1).

We here focus on logistic regression models since these are
quite basic, clear and easy to communicate to practitioners.

Moreover, it has been witnessed that there is virtually no benefit
of using more complex machine learning methods over logistic

regression (37). In particular, logistic regression has shown good
calibration compared to other approaches (38).
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FIGURE 3

Prediction task: Upset plot-like figure relating to the frequencies of fulfilled SIRS criteria (TC, tachycardia; TP, tachypnea; Tem, temperature; Leu,

leukocytes; indicated by the black dots), represented in the form of percentages of minutes over encounters, i.e., as percentages of in total

143× 1440 = 205920 min for the sepsis group and 272× 1440 = 391680 min for the no sepsis group, respectively.

Despite an existent imbalance between the sizes of the sepsis

and no sepsis/control groups, in particular for the diagnosis task,

we do not use imbalance correction approaches (such as weighted

logistic regression) in our models here, as it has been shown by

(39) that such methods typically do not improve AUROC values

(which are our main evaluation measure here) and even deteriorate

calibration in terms of the slope and intercept of probability

calibration plots, compared to uncorrected data. Initial tests for the

diagnosis task (not explicitly shown) suggest that these findings are

confirmed for our polytrauma cohort data.

For the prediction task, we additionally consider Cox

proportional hazards (PH) models (40) for time-to-event analysis,

where the event in our setting corresponds to the sepsis time point.

Specifically, for each weighting scheme, we consider a multivariable

Cox PHmodel (T, S) ∼ 3+1+C, with the SIRS descriptors3,1

and C being derived based on the first 24 h after ICU admission.

Here, T refers to the time-to-event, i.e., the time to sepsis onset

(S = 1; 143 septic encounters) or the end of the ICU stay (S = 0;

272 non-septic encounters).

2.7. Reference algorithms

To highlight the benefit of our novel, prospective SIRS

algorithm introduced above, referred to as SIRS Prospective, we

compare its results to those obtained by the following related

reference algorithms:

• SIRS Conventional: This very basic algorithm uses the

traditional SIRS definition and predicts sepsis when ≥ 2 SIRS
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criteria are concurrently fulfilled for≥ 1min in the considered

time period. Transferred to the context of the paper here,

sepsis is predicted when the SIRS level λ is ≥ 0.5 for ≥ 1 min.

• SIRS Non-ICU: This algorithm corresponds to the SIRS

Prospective algorithm, but without accounting for

catecholamine therapy and ventilatory support in the

tachycardia and tachypnea criteria, respectively. Thus, it can

be seen as variant of our SIRS algorithm in a non-ICU-specific

setting. In particular, for the temperature and leukocytes

criteria, the rules of the SIRS Non-ICU algorithm exactly

correspond to those of the SIRS Prospective algorithm. This

implies that the results for these two algorithms coincide when

weight is only given to the temperature and/or leukocytes

criteria (i.e., for weighting schemes ws4, ws5, and ws11;

Figure 1).

• SIRS Retrospective: This algorithm is a former, retrospective

version of our SIRS algorithm, which had been introduced

in (15). While SIRS Prospective takes measurements at face

value, SIRS Retrospective is a more conservative approach,

which is more strict to allow SIRS criteria to be fulfilled.

In particular, SIRS Retrospective partly makes use of future

measurement values to derive the validity of SIRS criteria and

thus is not suitable for a potential real-time application, in

contrast to the SIRS Prospective approach.

3. Results

3.1. Prediction task

3.1.1. Basic analyses and descriptive statistics
In the prediction task, for both the sepsis and the no sepsis

group, the tachypnea and the tachycardia criteria are fulfilled most

often, then the leukocytes and the temperature criteria (Figure 3).

The situation that either only the tachypnea or only the tachycardia

or only the temperature criterion is fulfilled occurs more frequently

in the sepsis group, whereas the situation that only the leukocytes

criterion is fulfilled occurs more frequently in the no sepsis

group (Figure 3; respective P-values P < 0.0001 from χ2-tests).

Meaningfully, the situation that there is no fulfilled SIRS criterion

clearly occurs more frequently in the no sepsis group (Figure 3;

P < 0.0001 from a χ2-test). The simultaneous fulfillment of only

the tachypnea and the tachycardia criterion constitutes the most

blatant example where the occurrence is higher in the sepsis group

than in the no sepsis group (Figure 3; P < 0.0001 from a χ2-test).

For the standard equal weighting scheme (ws1), summaries

of the distributions of the SIRS descriptor values 3,1 and C for

the sepsis and no sepsis groups in the prediction task are given

in Table 3. Corresponding boxplots for all weighting schemes can

be found in Supplementary material 1 (Supplementary Figures 1–

3), accompanied by results for the respective Wilcoxon rank

sum tests (Supplementary Figure 4 in Supplementary material 1)

and the alternative waddR tool [(31); Supplementary Figure 5 in

Supplementary material 1]. The values of the SIRS descriptor 3

are significantly different between the sepsis group and the no

sepsis group (namely, significantly greater for the sepsis group)

for all weighting schemes except for ws5, giving weight to the

leukocytes criterion only. The values of the SIRS descriptor 1

TABLE 3 Prediction and diagnosis task: Mean ± sd of the SIRS descriptors

3, 1, and C for the equal weighting scheme (ws1) for the sepsis and no

sepsis/control group, where the P-values for comparison are derived

using a two-sided Wilcoxon rank sum test.

Sepsis No sepsis/
Controls

P-value

3 0.43± 0.16 0.33± 0.18 < 0.0001

Prediction 1 0.17± 0.33 0.10± 0.33 0.0831

C 14.1± 8.9 16.8± 10.5 0.0219

3 0.53± 0.19 0.32± 0.20 < 0.0001

Diagnosis 1 0.13± 0.27 0.00± 0.24 < 0.0001

C 13.0± 10.7 14.1± 10.3 0.0796

are significantly different between the sepsis group and the no

sepsis group (namely, significantly greater for the sepsis group)

for a bit less than 1/4 of the weighting schemes. In particular,

significant differences in terms of 1 (i.e., for ws3, ws6, ws14,

ws17, ws21, ws23, ws26-ws29) appear to be mainly driven by a

high weight on the tachypnea criterion. The values of the SIRS

descriptor C are significantly different between the sepsis group

and the no sepsis group for most (84%) weighting schemes. In

case of a significant difference, the values for C are greater in

the no sepsis group for all weighting schemes except for ws4 and

ws11, for which C is significantly greater in the sepsis group.

Hence, significantly greater values of C for the sepsis group appear

to be driven by the temperature criterion, whereas significantly

greater values of C for the no sepsis group appear to be driven

by the tachycardia and tachypnea criteria. Note that the only

weighting scheme for which all three SIRS descriptors are not

significantly different between the sepsis and the no sepsis group

is ws5.

3.1.2. Model and weighting scheme performances
In the univariable logistic regression model S ∼ 3, 3 is

a significant predictor for all weighting schemes except for ws5

and ws11, in which the leukocytes criterion has a high weight

(Supplementary Figure 6 in Supplementary material 1) [e.g., for

ws1: odds ratio (OR): 2.27 [95% confidence interval (CI): 1.69–3.09]

for 1/4-unit change; P < 0.0001].

In the S ∼ 1 model, 1 is a significant predictor

for weighting schemes in which the tachycardia and/or the

tachypnea criterion have a high weight (Supplementary Figure 6

in Supplementary material 1) [e.g., for ws1: OR: 1.15 [95% CI:

0.99–1.35] for 1/4-unit change; P = 0.0702].

In the S ∼ C model, C is a significant predictor

for all but five weighting schemes (Supplementary Figure 6 in

Supplementary material 1) [e.g., for ws1: OR: 0.97 [95% CI: 0.95-

0.99]; P = 0.0111].

In the multivariable logistic regression model S ∼ 3 + 1 + C,

3 is a significant predictor for all weighting schemes except for

ws4, ws5 and ws11, in which the tachypnea and the tachycardia

criteria have zero weight and the temperature and/or the

leukocytes criteria a high weight (Supplementary Figure 7

in Supplementary material 1). Moreover, 1 is only a
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significant predictor for ws4, in which all weight is given

to the temperature criterion, and C typically is a significant

predictor for those weighting schemes in which the tachypnea

criterion has zero or a low weight (Supplementary Figure 7 in

Supplementary material 1).

For each of our 7 logistic regression models and each

of our 43 weighting schemes, we consider the corresponding

AUROC values as main performance measures here (Figure 4

and Supplementary Figure 8 in Supplementary material 1). In the

prediction task, we generally observe not that high AUROC values,

with a maximum of 0.693 for the S ∼ 3 model for ws15 and ws34,

respectively.

The models S ∼ 3 + C, S ∼ 3, S ∼ 3 + 1 + C and S ∼

3 + 1 globally perform well over all weighting schemes, mirrored

by the corresponding ranking score (Supplementary Section 1

in Supplementary material 1) values sm in Figure 4. In contrast,

models S ∼ 1 + C and S ∼ C perform rather badly, and

model S ∼ 1 clearly worst. Overall, 3 appears to be the most

relevant SIRS descriptor and should be included in a potential

sepsis prediction model, followed by C. In contrast, the descriptor

1 isolatedly performs badly and does not clearly contribute to

a performance improvement, or even deteriorates performance,

when considering it in combinations with 3 and C (compare the

ranking scores sm of (i) S ∼ 3 vs. S ∼ 3 + 1, (ii) S ∼ C

vs. S ∼ 1 + C and (iii) S ∼ 3 + C vs. S ∼ 3 + 1 + C in

Figure 4).

When assessing the global performance of specific weighting

schemes over the logistic regression models, we meaningfully

restrict our attention here to the four best-performing models

S ∼ 3, S ∼ 3 + 1 + C, S ∼ 3 + 1 and S ∼ 3 + C

figured out before. Weighting schemes with a good performance

are in particular ws34, ws15, ws28, ws9, ws26, ws32, ws6, ws18

and ws36 (ranking scores sw in Figure 4). These weighting schemes

typically have a high weight on the tachypnea and the temperature

criteria and a zero or low weight on the leukocytes criterion, and

they all outperform the standard equal weighting scheme ws1 in

terms of the AUROC values (Figure 4 and Supplementary Figure 8

in Supplementary material 1). Weighting schemes with a poor

performance are in particular ws5, ws8, ws19, ws13, ws39, ws2,

ws10, ws41 and ws11 (ranking scores sw in Figure 4), where ws5

(weight only on leukocytes criterion) performs worst for all of the

four best-performing models. These weighting schemes typically

have a low weight on the temperature and the tachypnea criterion

and a high weight on the leukocytes criterion, and they all perform

worse than the standard equal weighting scheme ws1 in terms

of the AUROC values (Figure 4 and Supplementary Figure 8 in

Supplementary material 1).

In conclusion, based on our AUROC analyses and supported by

additional results regarding sensitivity, specificity and calibration

as alternative performance measures (Supplementary Figures 9–

12 in Supplementary material 1) as well as Cox PH models (next

subsubsection), S ∼ 3 is our preferred model for the prediction

task. Moreover, tachypnea and temperature constitute the most

important SIRS criteria in the prediction task, followed by the

tachycardia criterion, whereas the leukocytes criterion is by far the

least important one and can even be counterproductive. Hence, the

leukocytes criterion should not be given a high or prominent weight

for the prediction task, or it may even be omitted completely.

3.1.3. Cox PH models
The results for the multivariable Cox PH model (T, S) ∼

3 + 1 + C for time-to-event analysis, where the sepsis onset

is the event here, basically confirm that 3 is by far the most

important predictor in the prediction task. In particular, for

all weighting schemes except for ws4, ws5, ws8 and ws11,

holding the other covariates constant, a higher value of 3 is

associated with an increased sepsis risk and a shorter time-to-

event (Supplementary Figures 13, 14 in Supplementary material 1).

In contrast,1 and C, respectively, are essentially associated with no

effect (Supplementary Figures 13, 14 in Supplementary material 1).

Finally, the multivariable Cox PH model is globally statistically

significant (i.e., the omnibus null hypothesis that all SIRS descriptor

coefficients are zero is rejected) for all weighting schemes

except for ws5, ws8, ws10 and ws19 (Supplementary Figure 15 in

Supplementary material 1). Compared to the (time-independent)

multivariable logistic regression model S ∼ 3 + 1 + C

(Supplementary Figure 7 in Supplementary material 1), the (time-

dependent) multivariable Cox PH model (T, S) ∼ 3 + 1 +

C (Supplementary Figure 14 in Supplementary material 1) exhibits

similar results with respect to3 and1. In contrast, the significance

of C that is present for some of the weighting schemes in the logistic

regression model essentially vanishes for the Cox PH model. This

underpins our choice of S ∼ 3 as the preferred model for the

prediction task.

3.2. Diagnosis task

3.2.1. Basic analyses and descriptive statistics
In the diagnosis task, for both the sepsis and the control group,

the tachypnea and the tachycardia criteria are fulfilled most often,

then the leukocytes and the temperature criteria (Figure 5). The

occurrence of each criterion is clearly more frequent in the sepsis

group than in the control group (Figure 5; respective P-values

P < 0.0001 from χ2-tests). Compared to the prediction task

(Figure 3), the temperature and the leukocytes criteria are more

often fulfilled for the sepsis group in the diagnosis task (respective

P-values P < 0.0001 from χ2-tests). In the diagnosis task, the

occurrence of no fulfilled criterion is meaningfully more frequent

in the control group than in the sepsis group (∼ 25% vs. ∼ 7%

in Figure 5; P < 0.0001 from a χ2-test). In contrast, in the sepsis

group, there are more occurrences of three or more fulfilled SIRS

criteria simultaneously than in the control group (P < 0.0001 from

a χ2-test).

For the standard equal weighting scheme (ws1), summaries

of the distributions of the SIRS descriptor values 3,1 and C for

the sepsis and control groups in the diagnosis task are given in

Table 3. Corresponding boxplots for all weighting schemes can

be found in Supplementary material 1 (Supplementary Figures 16–

18), accompanied by results for the respective Wilcoxon rank

sum (Supplementary Figure 19 in Supplementary material 1) and

waddR (Supplementary Figure 20 in Supplementary material 1)

tests. The values of the SIRS descriptor 3 are significantly different

between the sepsis and the control group (namely, significantly

greater for the sepsis group) for all weighting schemes. The values

of the SIRS descriptor 1 are significantly different between the
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FIGURE 4

Prediction task: Overview of the AUROC values of the weighting schemes (ws1-ws43) for each considered logistic regression model

(S ∼ 3, S ∼ 1, S ∼ C, S ∼ 3 + 1, S ∼ 3 + C, S ∼ 1 + C , and S ∼ 3 + 1 + C). Weighting schemes (rows) and models (columns) are decreasingly

ordered according to their corresponding performances with respect to the ranking score values sw and sm (displayed in orange; derived as

described in Supplementary Section 1 in Supplementary material 1) from the top to the bottom and from the left to the right, respectively. We

emphasize that the ranking scores for the weighting schemes are derived using the four best-performing models (i.e., S ∼ 3 + C, S ∼ 3, S ∼

3+1+C , and S ∼ 3+1) only. For convenience, the compositions of the weighting schemes with respect to the four SIRS criteria (i.e., the weights

wTC , wTP, wTem , and wLeu for the tachycardia, tachypnea, temperature, and leukocytes criterion, respectively) are indicated on the right-hand side of

the overall plot, mirroring the specifications in Figure 1.

sepsis and the control group (namely, significantly greater for

the sepsis group) for all weighting schemes except for ws2, ws3

and ws6, putting weight exclusively on the tachycardia and/or

tachypnea criteria. Thus, significant differences for 1 appear to

be mainly driven by the temperature and the leukocytes criteria.

The values of the SIRS descriptor C are significantly different

between the sepsis and the control group for 8 (19%) weighting

schemes only. In case of significantly greater values of C for the

sepsis group (ws4, ws5, ws11), these differences are mainly driven

by the temperature and leukocytes criteria. In contrast, in case

of significantly greater values of C for the control group (ws3,

ws6, ws10, ws14, ws15), these differences are mainly driven by the

tachypnea criterion.

3.2.2. Model and weighting scheme performances
In the univariable logistic regression model S ∼ 3,

3 is a significant predictor for all weighting schemes

(Supplementary Figure 21 in Supplementary material 1) [e.g.,

for ws1: OR: 3.36 [95% CI: 2.75–4.12] for 1/4-unit change;

P < 0.0001].

In the S ∼ 1 model, 1 is a significant predictor for

all weighting schemes except for ws2, ws3 and ws6, giving

weight exclusively to the tachycardia and/or tachypnea criteria

(Supplementary Figure 21 in Supplementary material 1) [e.g., for

ws1: OR: 1.69 [95%CI: 1.43-1.99] for 1/4-unit change; P < 0.0001].

Thus, S ∼ 1 is useful only if the temperature and the leukocytes

criteria are considered.
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FIGURE 5

Diagnosis task: Upset plot-like figure relating to the frequencies of fulfilled SIRS criteria (TC, tachycardia; TP, tachypnea; Tem, temperature; Leu,

leukocytes; indicated by the black dots), represented in the form of percentages of minutes over encounters, i.e., as percentages of in total

143× 1440 = 205920 min for the sepsis group and 29721× 1440 = 42798240 min for the no sepsis group, respectively.

In the S ∼ C model, C is a significant predictor for ≈

16% of the weighting schemes only (Supplementary Figure 21 in

Supplementary material 1) [e.g., for ws1: OR: 0.99 [95% CI: 0.97-

1.01]; P = 0.1994].

In the multivariable logistic regression model S ∼ 3 + 1 + C,

3 is a significant predictor for all weighting schemes.

This also holds for 1, except for ws2, ws3 and ws6.

In contrast, C is a significant predictor for ≈ 14% of

the weighting schemes only (Supplementary Figure 22 in

Supplementary material 1).

Considering again AUROC values as the main

performance measures (Figure 6, Supplementary Figure 23

in Supplementary material 1), in the diagnosis task, there

is a maximum AUROC of 0.816 for the S ∼ 3 + 1

model for ws18, giving individually high weight to the

temperature criterion and equal positive weight to the remaining

criteria.

The models S ∼ 3 + 1, S ∼ 3 + 1 + C, S ∼ 3 and

S ∼ 3 + C globally perform well, where S ∼ 3 + 1 has

the highest ranking score of all considered models (Figure 6). In

contrast, models S ∼ 1 and S ∼ 1 + C perform a bit weaker,

and model S ∼ C clearly worst. Overall, 3 appears to be the

most relevant SIRS descriptor and should be included in a potential

sepsis diagnosis model, followed by1. In contrast, the descriptor C

isolatedly performs badly and even deteriorates performance when

considering it in combinations with3 and1 (compare the ranking

scores of (i) S ∼ 3 vs. S ∼ 3 + C, (ii) S ∼ 1 vs. S ∼ 1 + C and

(iii) S ∼ 3 + 1 vs. S ∼ 3 + 1 + C; Figure 6).

When evaluating the global performance of specific weighting

schemes over the logistic regression models, we again meaningfully
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FIGURE 6

Diagnosis task: Overview of the AUROC values of the weighting schemes (ws1-ws43) for each considered logistic regression model

(S ∼ 3, S ∼ 1, S ∼ C, S ∼ 3 + 1, S ∼ 3 + C, S ∼ 1 + C , and S ∼ 3 + 1 + C). Weighting schemes (rows) and models (columns) are decreasingly

ordered according to their corresponding performances with respect to the ranking score values sw and sm (displayed in orange; derived as

described in Supplementary Section 1 in Supplementary material 1) from the top to the bottom and from the left to the right, respectively. We

emphasize that the ranking scores for the weighting schemes are derived using the four best-performing models (i.e., S ∼ 3 + 1, S ∼ 3 + 1 + C,

S ∼ 3 , and S ∼ 3 + C) only. For convenience, the compositions of the weighting schemes with respect to the four SIRS criteria (i.e., the weights

wTC , wTP, wTem and wLeu for the tachycardia, tachypnea, temperature, and leukocytes criterion, respectively) are indicated on the right-hand side of

the overall plot, mirroring the specifications in Figure 1.

restrict our attention to the four best-performing models S ∼ 3 +

1, S ∼ 3 + 1 + C, S ∼ 3 and S ∼ 3 + C. Weighting schemes

with a good performance are in particular ws18, ws35, ws37, ws33,

ws36, ws34, ws32, ws41, and ws43 (Figure 6). These weighting

schemes consider all SIRS criteria simultaneously, but give a higher

weight to the temperature criterion. In particular, the AUROC

values corresponding to these weighting schemes are larger than

the AUROC values for the standard equal weighting scheme ws1,

which itself already performs well (Supplementary Figure 23 in

Supplementary material 1). Notably, ws18 performs best for all

of the four best-performing models (ranking score sws18 = 1;

Figure 6). Weighting schemes with a poor performance are in

particular ws2, ws5, ws3, ws6, ws8 and ws10 (Figure 6), where

ws2, with weight only on the tachycardia criterion, performs worst

for all of the four best-performing models (ranking score sws2 =

0; Figure 6). These weighting schemes have zero weight on the

temperature criterion, and weight is given only to one or two

SIRS criteria simultaneously. All these weighting schemes perform

worse than the standard equal weighting scheme ws1 in terms

of the AUROC values (Figure 6 and Supplementary Figure 23 in

Supplementary material 1).

In conclusion, based on our AUROC analyses and

underpinned by additional results regarding sensitivity,

specificity and calibration as alternative performance measures

(Supplementary Figures 24–27 in Supplementary material 1),

S ∼ 3+1 is our preferred model for the diagnosis task. Moreover,
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FIGURE 7

ROC curves and corresponding AUROC (AUC) values for the models S ∼ 3 for the prediction task and S ∼ 3 + 1 for the diagnosis task, respectively,

with respect to weighting scheme ws1 (equal weight for all SIRS criteria) for the SIRS algorithm versions Conventional, Non-ICU, Retrospective, and

Prospective.

accounting for all SIRS criteria simultaneously is important in the

diagnosis task, while temperature by far clearly constitutes the

most important SIRS criterion.

3.3. Comparison of prospective SIRS
algorithm to reference approaches

We now compare our hitherto results based on the prospective

SIRS algorithm (SIRS Prospective) to those obtained by the related

reference algorithms SIRS Conventional, SIRS Non-ICU and SIRS

Retrospective, respectively. For convenience, in the main text,

we exemplarily only focus on the results for the (overall well-

performing) standard equal weighting scheme (ws1) considering

all SIRS criteria and our preferred models S ∼ 3 for the prediction

task and S ∼ 3 + 1 for the diagnosis task, respectively (Figure 7

and Table 4).

Overall, the corresponding AUROC values in the diagnosis task

are clearly higher than those in the prediction task, thus indicating

a better discriminative performance of the algorithms and models

near to the index (sepsis) time point (Figure 7). For both tasks, SIRS

Prospective has the best AUROC, followed by SIRS Retrospective

and then SIRS Non-ICU (Figure 7). SIRS Conventional has the

worst AUROC (Figure 7), showing indeed high sensitivity, but by

far weakest specificity (Table 4).While there is a quite clear AUROC

performance order for the prediction task, the differences between

the AUROC values of SIRS Non-ICU, SIRS Retrospective and SIRS

Prospective become smaller for the diagnosis task. The algorithm

performance rankings with respect to the AUROC values basically

also hold in terms of the calibration measures DistSlope and

DistIntercept (Table 4). In a nutshell, our results suggest superiority

of the SIRS Prospective algorithm compared to the reference

approaches and thus confirm its meaningfulness.

For the sake of completeness, all ROC curves and AUROC

values of the four considered algorithms in our 301 considered

scenarios (43 weighting schemes × 7 logistic regression models)

are provided in Supplementary material 2 (prediction task) and

Supplementary material 3 (diagnosis task), respectively. Essentially,

the results described before continue to hold for well-performing

models and weighting schemes according to Figure 4 (prediction)

and Figure 6 (diagnosis).

4. Discussion

The principal goal of our study was to investigate the

importance of each of the four SIRS criteria for sepsis prediction

and diagnosis in a polytrauma cohort from an ICU. For both tasks,

we assessed sepsis classification performance of regression models

from systematically varied weights of the SIRS criteria. For each

weighting scheme, criteria were determined and summarized as

SIRS descriptors 3 (average SIRS level), 1 (SIRS level trend) and

C (number of changes in SIRS level) with a novel prospective

SIRS algorithm. The resulting regression models were compared

with a specifically devised scoring system facilitating objective

identification of the optimal SIRS criteria weights and SIRS

descriptor-based classification models. The SIRS descriptor 3

is of greatest importance for AUROC-based sepsis classification

in both tasks. For diagnosis, 1 was relevant as additional

parameter. Combining our findings for sepsis prediction and

diagnosis suggests that the importance of individual SIRS criteria

changes over ICU treatment time. Thus, we support the a priori

consideration of all SIRS criteria in a given sepsis risk model.
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TABLE 4 Performance measures for the models S ∼ 3 for the prediction

task and S ∼ 3 + 1 for the diagnosis task, respectively, with respect to

weighting scheme ws1 (equal weight for all SIRS criteria) for the SIRS

algorithm versions Conventional, Non-ICU, Retrospective and

Prospective.

Prediction Diagnosis

S ∼ 3 S ∼ 3 + 1

ws1 ws1

Sensitivity SIRS Conventional 0.986 0.965

SIRS Non-ICU 0.671 0.762

SIRS Retrospective 0.790 0.783

SIRS Prospective 0.636 0.881

Specificity SIRS Conventional 0.066 0.349

SIRS Non-ICU 0.493 0.666

SIRS Retrospective 0.430 0.674

SIRS Prospective 0.632 0.575

DistSlope SIRS Conventional 0.267 0.019

SIRS Non-ICU 0.159 0.020

SIRS Retrospective 0.043 0.014

SIRS Prospective 0.022 0.010

DistIntercept SIRS Conventional 0.168 5.341

SIRS Non-ICU 0.101 0.096

SIRS Retrospective 0.026 0.067

SIRS Prospective 0.012 0.046

Here, DistSlope refers to the distance of the calibration slope to the reference value of 1

(indicating good calibration), and DistIntercept to the distance of the calibration intercept

to the reference value of 0 (indicating good calibration).

For both tasks, a dynamic ICU-specific representation of systemic

inflammation with our prospective SIRS algorithm was superior to

static consideration of SIRS with a conventional SIRS algorithm

version.

Our novel prospective algorithm captures the SIRS

phenomenon in a time-dependent fashion. It has a conceptually

clear overarching framework, which basically relies on (i)

assessment of the observed parameters regarding the SIRS

criteria thresholds based on (7) complemented by ICU-specific

adjustments and (ii) the assignment of clinically plausible

duration intervals for each parameter (Table 2). By accounting

for catecholamine therapy and mechanical ventilation, we have

specifically tailored our SIRS algorithm to the ICU; however,

due to the modular design, a SIRS algorithm for non-ICU

settings is readily available. Thanks to its strictly prospective

implementation, our SIRS algorithm is potentially applicable

in real-time in a data-driven clinical decision support system

(16). While several artificial intelligence and machine learning-

based approaches have already been proposed in the context

of sepsis prediction (41–45, among others), the translation of

such techniques is still in its infancy, and the tools typically are

not operationally used yet (46). This may be for instance due

to a skepticism of clinicians toward too complex, possibly black

box algorithms. In this light, we believe that our conceptually

simple, comprehensible and interpretable SIRS algorithm has

high potential for application in clinical practice. Generally, the

dynamization accomplished by our algorithm for SIRS may also

serve as a template for capturing other time-dependent clinical

phenomena.

Despite using an explicit dynamic modeling approach, the

focus of our analyses was still on the three descriptors average

SIRS level 3, SIRS level trend 1 and number of changes

in SIRS level C, which summarize the output of our SIRS

algorithm over specified time intervals, here 24 h. However, a

more detailed consideration of the temporal evolution, e.g., in

minute resolution, is also possible. Respective initial inspections of

group average trajectories of the SIRS level λ are consistent with

our findings for 24-h intervals (Supplementary Figures 28–31 and

Supplementary Section 3 in Supplementary material 1).

Our SIRS descriptor-based models in general perform better

for the sepsis diagnosis than for the prediction task with respect

to AUROC and other alternative metrics. This intuitively makes

sense, as the diagnosis task is performed closer to the relevant

index (sepsis) time point. This temporal association supports the

validity of SIRS, particularly our dynamic representation, as an

acute, sepsis-related concept. Our results of the prediction task

nevertheless suggest that sepsis predcition based on SIRS criteria

within 24 h after ICU admission may be meaningful, but is not

overly powerful.

Overall, for both prediction and diagnosis, we found that

the average SIRS level 3 is a good classifier. This is in line

with recent results from the literature, in which the mean has

been shown to be a powerful time series summary statistics for

clinical disease prediction tasks (28). The other SIRS descriptors

1 and C may be useful for classification as well, but apparently

should be considered and interpreted together with the values of

3. Interestingly, the importance of 1 and C appears to change,

depending on the task. In particular, while C appears to be more

important than 1 for prediction, the opposite holds for diagnosis:

While C is less important here, the SIRS level trend 1 apparently

becomes more relevant, which is in line with results by (15).

This reflects that close to the time of sepsis diagnosis a positive

trend in SIRS level is present, which additionally supports the

validity of the SIRS concept for sepsis diagnosis and generally

the operationalization of SIRS with dynamic SIRS descriptors.

An explanation for the behavior of 1 may be that, in the

prediction setting, it is comparatively probable to observe a non-

negative trend in both the sepsis and the no sepsis groups. This

is because the different parameters required for SIRS descriptor

determination are generally not likely to be measured and recorded

at exactly the same minute with reference to the ICU admission

time point. This technical delay in data acquisition may not

only cover meaningful group differences in 1, but may also

non-differentially inflate C. This likely at least partly causes the

initial strong upward slope of both group SIRS level λ averages

within the first 120 min of admission (Supplementary Figure 29

in Supplementary material 1). In contrast, as patients have already

stayed at the ICU for some time, 1 and C are not likely

to be affected this way when used for sepsis diagnosis and

consistently no initial slope in group averages of λ is present

(Supplementary Figure 31 in Supplementary material 1).
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Regarding the performance of the different weighting schemes

over our logistic regression models, for the sepsis prediction task,

temperature and tachypnea constitute the most important SIRS

criteria, followed by the tachycardia criterion. In contrast, the

leukocytes criterion should not be given a high or leading weight

for the prediction task and may even be omitted completely. On

the other hand, for the diagnosis task, the temperature criterion

is most prominent when distinguishing between the sepsis and

the control group, which is consistent with results by (47).

Remarkably, also the leukocytes criterion plays a much more

important role for diagnosis, and thus, its relevance strongly differs

between the prediction and diagnosis tasks. In the prediction task,

the leukocytes criterion is clearly not suitable for distinguishing

between the sepsis and no sepsis group. Here, a fulfillment of the

leukocytes criterion (i.e., leukocytosis) likely occurs as a result of

physical and emotional stress shortly after the (poly)trauma in a

transient process that is not related to bone marrow production

or the release of band cells or other immature cells (48). Hence,

the leukocytes criterion is likely not a suitable predictor for a later

development of sepsis at the ICU admission stage shortly after

trauma. This can be related to results by (49), who showed that

variations in leukocytes count in trauma patients at admission are

not beneficial in predicting the need for therapeutic interventions

such as volume resuscitation, transfusion or surgery. However,

the leukocytes criterion obviously becomes more important in the

course of ICU treatment and is muchmore able to contribute to the

distinction between the sepsis and control groups at a later stage

than at admission, as witnessed by the results for the diagnosis task

shortly before the index (sepsis) time point.

In the diagnosis task, the joint fulfillment of SIRS criteria

(i.e., the interplay between the criteria), with a specific focus

on the temperature criterion, is very important to distinguish

the sepsis from the control group. In particular, the more one

approaches the index (sepsis) time point the more important the

joint consideration of all four SIRS criteria appears to become, in

that a joint fulfillment of three to four SIRS criteria points at the

development of sepsis, while no or only one fulfilled SIRS criterion

points at no (impending) sepsis.

Overall, no weighting scheme performs best for both tasks

and for all considered models, and weighting schemes may in

particular show different performances at different points during

treatment time (here, prediction and diagnosis). Hence, consistent

with the dynamic nature of systemic inflammation, the individual

importance of the four SIRS criteria for sepsis prediction may

change over treatment time as observed in our study. Thus,

no SIRS criterion should a priori be omitted in a sepsis risk

model. In particular, the standard equal weighting scheme ws1

performs quite well in both the prediction (Supplementary Figure 8

in Supplementary material 1) and especially the diagnosis task

(Supplementary Figure 23 in Supplementary material 1) compared

to the other weighting schemes. Hence, ws1 is a reasonable overall

compromise, which underpins the validity of the original expert

definition of SIRS (7). All in all, our findings of a dynamic role

of the SIRS criteria further support the validity of our approach to

capturing SIRS.

To highlight the benefits of our novel SIRS Prospective

algorithm, we exemplarily compared its performance to that of

three reference approaches for the overall well-performing equal

weighting scheme ws1 for our preferred models S ∼ 3 (prediction)

and S ∼ 3 + 1 (diagnosis), respectively. For both the prediction

and the diagnosis tasks, SIRS Prospective clearly outperforms

the non-dynamic SIRS Conventional approach, that is indeed

highly sensitive, but suffers from a lack of specificity, which

drastically limits the usefulness of this very basic approach. This

confirms that a dynamic modeling of the SIRS phenomenon as

used in SIRS Prospective is essential. Moreover, SIRS Prospective

overall outperforms the SIRS Non-ICU algorithm, which by

construction corresponds to SIRS Prospective but does not

account for catecholamine therapy and mechanical ventilation

when determining the validity of the tachycardia and tachypnea

criteria, respectively. Hence, our results underline that accounting

for ICU-specific interventions is beneficial in our settings. Lastly,

while SIRS Retrospective and SIRS Prospective overall perform

similarly well, the latter performs slightly better in terms of

AUROC and calibration metrics. Moreover, SIRS Prospective is

conceptually simpler, easier to implement, and has the advantage

of not having to possibly rely on future values to determine the

validity of a SIRS criterion, such that in principle, it could be applied

in real-time in a clinical decision support system, unlike SIRS

Retrospective. In a nutshell, we have shown the superiority of the

SIRS Prospective algorithm compared to the reference approaches

and in particular that accounting for catecholamine therapy and

mechanical ventilation as well as dynamic aspects makes sense in

our ICU setting considering critically ill polytrauma patients.

Finally, we emphasize again that our results here hold for

a specific cohort of polytrauma patients and are additionally

limited by the single-center design of our study. It remains to be

investigated whether the results are confirmed also in other patient

groups and settings.

5. Conclusion

Overall, our novel prospective SIRS algorithm provides a

conceptually simple, yet promising tool that we have used for sepsis

prediction (using data from the first 24 h after ICU admission) and

diagnosis (using data from the last 24 h prior to the index/sepsis

time point) in an ICU polytrauma cohort. For these applications,

our SIRS algorithm typically outperforms reference algorithm

versions. Moreover, the results obtained by our algorithm reveal

the importance and contribution of the four SIRS criteria in

our considered settings, using different weighting schemes and

logistic regression models including several summarizing SIRS

descriptors. In particular, in the sepsis prediction task, temperature

and tachypnea turn out to be the most important SIRS criteria,

while the leukocytes criterion is clearly the least relevant one. In

contrast, in the sepsis diagnosis task, temperature turns out to

be the most important SIRS criterion, and a joint consideration

of all four SIRS criteria becomes essential. From a modeling

point of view, in particular the average SIRS level 3 proves

to be an important predictor that should be included in any

sepsis prediction or diagnosis model. The SIRS level trend 1 that

is additionally proposed for sepsis diagnosis models highlights

the acute change in patient state, associated with impending

sepsis.
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5.1. Implications and recommendations for
translational research

We in what follows summarize general implications and

recommendations for translational research on sepsis with respect

to SIRS and its criteria which can be derived from our cohort of

ICU polytrauma patients.

• Despite not being present anymore in the latest consensus

definition of sepsis, SIRS remains an important concept in the

context of sepsis prediction and diagnosis.

• We recommend a dynamic, prospective description of the

SIRS phenomenon, as e.g., provided by our SIRS Prospective

algorithm, to exploit the potential of SIRS for sepsis prediction

and diagnosis, as well as to allow for real-time applications in

clinical decision support systems.

• When considering SIRS in ICU settings, we recommend to

account for the ICU-specific interventions of catecholamine

therapy and mechanical ventilation when assessing whether

the tachycardia and tachypnea SIRS criteria, respectively, are

fulfilled.

• The importance of the four individual SIRS criteria for sepsis

prediction may change over treatment time, reflecting the

evolving clinical patient state. Thus, all SIRS criteria from the

original expert definition (7) are potentially important and

should be monitored, and none should be omitted a priori.

• In particular, the temperature criterion overall appears to

play a prominent role. Therefore, monitoring a patient’s

temperature appears a simple yet efficient measure for early

detection of sepsis.

6. Outlook and future work

While the prospective SIRS algorithm introduced here appears

to be a well-performing and promising tool, there are plenty

of opportunities for further development of the algorithm.

For instance, further rules from subgroup analyses or patient

stratification could be derived (e.g., taking account of etiology

or specifically tailored relevant patient subgroups) that could be

implemented “on top” of the current algorithm rules, favored by

the modular design of the algorithm.

Moreover, one may rethink the thresholding approach that is

used to define the range of “normal” values and thus to derive

the validity of the SIRS criteria. As the threshold values that are

currently employed stem from the original work by (7) from the

early 1990s, they could be re-evaluated, and it may be checked

whether the choice of other thresholds would be more appropriate,

see, e.g., (50) in the context of temperature. Ideally, a relaxation or

even the complete abolition of the thresholding strategy to describe

the SIRS phenomenon should be a major aim for future work, e.g.,

by developing a dynamic, continuous “SIRS state”, or the like.

We here only considered our three SIRS descriptors in the

logistic regression models for sepsis prediction and diagnosis.

However, also other clinical, laboratory or demographic parameters

can be included into the models. Likewise, the output and

descriptors, respectively, of our SIRS algorithm could be included

in more comprehensive sepsis risk models, e.g., as a part of a

multifactorial algorithm with the long-term aim to provide a final

sepsis/SIRS score for clinical decision support.

Moreover, we stress that our studies here have been performed

using a polytrauma cohort, comprising quite specifically selected

patents from the ICU. However, similar analyses can readily be

conducted for cohorts consisting of more general, unselected

patients. One example may be the cohort based on the ground truth

for sepsis questionnaire introduced in (51), in which the sepsis time

point can be derived using labels assigned by clinical experts.

Likewise, in future work, one could consider alternative (i)

SIRS descriptors, which may more comprehensively describe and

summarize the time dynamics in the SIRS algorithm (52), and (ii)

evaluation tools, such as NetBenefit (53) as a metric for clinical

utility.

Furthermore, a network-based approach to the evolution of

SIRS in the context of organ systems could be taken with the

network analysis methods recently proposed in (54).

Finally, our SIRS algorithm can potentially be used in other

contexts apart from sepsis prediction and diagnosis, e.g., for other

complications, and the dynamic time series concept can likely be

transferred to other settings and application areas with possibly

different time resolutions.

Software usage

The SIRS algorithm variants have been implemented in SAS

v9.4 (SAS Institute, Cary, NC). The statistical analyses and

evaluations have been performed using SAS v9.4 and the R language

and environment for statistical computing (55).
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