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Aerospace research has a long history of developing technologies with industry-
changing applications and recent history is no exception. The expansion of 
commercial spaceflight and the upcoming exploration-class missions to the 
Moon and Mars are expected to accelerate this process even more. The resulting 
portable, wearable, contactless, and regenerable medical technologies are not 
only the future of healthcare in deep space but also the future of healthcare here 
on Earth. These multi-dimensional and integrative technologies are non-invasive, 
easily-deployable, low-footprint devices that have the ability to facilitate rapid 
detection, diagnosis, monitoring, and treatment of a variety of conditions, and to 
provide decision-making and performance support. Therefore, they are primed for 
applications in low-resource and remote environments, facilitating the extension 
of quality care delivery to all patients in all communities and empowering non-
specialists to intervene early and safely in order to optimize patient-centered 
outcomes. Additionally, these technologies have the potential to advance 
care delivery in tertiary care centers by improving transitions of care, providing 
holistic patient data, and supporting clinician wellness and performance. The 
requirements of space exploration have created a number of paradigm-altering 
medical technologies that are primed to revitalize and elevate our standard of 
care here on Earth.
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1. Introduction

Technological development that supports space exploration often translates to novel and 
cutting-edge tools for Earth-based use. The National Aeronautics and Space Administration 
(NASA) is interested in mitigating identified Risks (1) associated with living in space, and, while 
some are space-specific, many have readily-identifiable terrestrial counterparts. The 
requirements of space exploration have created a number of paradigm-altering medical 
technologies that can elevate our standard of care here on Earth across all populations and care 
delivery models.

In this Perspective, we delineate the complexities of medical management during spaceflight 
that motivate such extensive innovation in medical technologies. Then we  discuss the 
overlapping needs between space exploration and terrestrial environments that allow for prime 
translation of these technologies across the two seemingly disparate settings, including historical 
examples of successful technological cross-pollination. Subsequently, we  explore broad 
categories of innovative aerospace-derived medical technologies, with representative examples. 
Finally, we propose high-priority terrestrial clinical applications for these technologies across 
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in- and out-of-hospital settings, including in under-resourced areas; 
we also address critical touchpoints for enhancing clinician wellness 
and performance with these technologies. Overall, we  provide a 
roadmap to spur clinician-leaders in spearheading collaborations with 
aerospace medical technology groups so that they may leverage their 
respective expertise to enhance patient, clinician, and astronaut health.

2. Physiologic consequences of 
spaceflight

Long-duration spaceflight results in significant changes to 
1 g-dependent human physiology. While these changes are covered in 
detail elsewhere (2, 3), they encompass all organ systems and have 
variable trajectories, plateaus, degrees of reversibility, and long-term 
health effects. Their complex, incompletely-characterized nature has 
catalyzed extensive medical technology development for both research 
and medical care provision during spaceflight. For context, we present 
a very brief, generalized overview here (Supplementary Figure S1).

Spaceflight-associated neuro-ocular syndrome (SANS) is an 
important example: it is a syndrome never seen on Earth that affects 
astronauts’ vision. It is thought to be related to cephalad fluid shifts 
occurring in the absence of gravity, which produces alterations in 
brain and eye structure and function (4). Airway edema, headache, 
and sinus fullness occur secondary to cephalad fluid shifts too. 
Cognition and mental health, while not overtly affected by 
microgravity per se, are highly dependent on stress, sleep, and social–
emotional factors, all of which can be  disrupted by spaceflight. 
Additionally, radiation exposure is known to accelerate cataract 
formation and increases malignancy risk (5). Space-related motion 
sickness arises due to mismatched sensory inputs disrupting normal 
vestibular function (6).

From the cardiovascular perspective, cardiac output and stroke 
volume initially increase upon exposure to microgravity, but 
subsequently decline, along with cardiac muscle mass (7, 8). Peripheral 
vasodilation predominates and is exacerbated by changes in 
autonomic receptor sensitivities, endothelial changes, and vascular 
remodeling (9, 10). Grossly, pulmonary mechanics improve (11). 
Cellular and humoral immunity becomes compromised (12). This is 
compounded by radiation-induced genetic changes that increase 
microbial virulence (13). Finally, even despite vigorous exercise, bone 
density and muscle mass decline. Increased urinary calcium from 
bone resorption coupled with decreased diuresis increases the 
incidence of renal stones (14). Ultimately, there is still much to 
be learned about human physiology in this extreme environment.

3. Medical technology for space is 
well-suited to terrestrial adaptations

The challenging nature of spaceflight makes it an ideal catalyst for 
innovation in care delivery for remote terrestrial environments 
(Table 1). These sites frequently coincide with care delivery for patients 
requiring active monitoring and rapid diagnosis and therapy for 
potentially life-threatening conditions, like traumatic injuries and 
toxin exposures. Furthermore, clinicians operating in these conditions 
are often fatigued and under duress, as might be expected in deep 
space. However, even in well-resourced environments, monitoring, 

diagnosis, and therapeutics for serious conditions could be improved 
by facile, assistive technologies, especially in emergency, perioperative, 
and critical care areas.

Many medical devices that are standard of care trace their origins 
to technologies pioneered or refined by aerospace experts. For 
example, the very concept of telemetric monitoring was prompted by 
the desire to send astronaut health information from space to ground 
control during Project Mercury (72) and has since resulted in 
ubiquitous terrestrial use, not the least of which is routine intensive 
care unit (ICU) monitoring. Other recent examples include improved 
LASIK® eye surgery precision due to innovative optics developed for 
the Webb telescope (73); materials engineering advances for Martian 
sample collection that led to biocompatible surgical suture materials 
(74); and an endoscopic robotic surgery arm inspired by robotic repair 
arms on the International Space Station (ISS) (75). Clearly, 
humankind’s extraterrestrial aspirations have stimulated numerous 
advances across many sectors; here, we focus on medical technologies.

4. Space-adapted diagnostic and 
therapeutic technologies

Early and accurate diagnosis and treatment of health conditions 
arising during spaceflight can potentially halt or even reverse their 
negative effects, without requiring a costly, mission-compromising 
return to Earth or delayed post-flight medical care. As such, easily-
deployable and non-invasive diagnostics and therapeutics are 
prioritized. In this section, we survey recent space-related diagnostic 
(Supplementary Table S1) and therapeutic (Supplementary Table S2) 
technologies.

4.1. Diagnostics

Imaging and blood analysis comprise two fundamental categories 
of diagnostic testing. Ultrasound is the primary imaging modality on 
the ISS due to its versatility, portability, and limited hazards. As a 
result, its already-numerous applications have been exponentially 
expanded and include the ability to characterize renal stones (26), 
vascular flow alterations (27), and bone architecture disorders (28, 29). 
While the brain remains relatively inaccessible to ultrasound, retinal 
imaging has been proposed as an alternative to the traditional, and 
currently space-impractical, CT and MRI modalities for diagnosing 
stroke (30). The ever-growing library of diagnostic images has 
concurrently resulted in image-based clinical decision support (CDS) 
systems too (64). The use of blood component analysis in diagnosis is 
pervasive, but standard laboratory analyte platforms are unworkable 
in microgravity, for many reasons including changes in fluid behavior. 
As a result, techniques that preserve accuracy and facilitate component 
miniaturization have prevailed, including for CBC (31), WBC 
differential (32), and multiple electrolyte analysis (33–37).

Unlike portable diagnostics used for intermittent testing, wearable 
and contactless sensors allow for continuous monitoring. These 
sensors can be light-, chemical-, current-, or motion-based, implying 
that the spaces to which they could foreseeably be  adapted are 
numerous. For example, near-infrared spectroscopy (NIRS) relies on 
analysis of absorption and scatter of specific wavelengths to infer 
various parameters, such as hemoglobin oxygenation and 
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TABLE 1 Health risks of space exploration, their terrestrial counterparts, and technological countermeasures.

Medical concern Health risks in deep 
space

Comparable scenarios on 
earth

Technological countermeasures

Remote monitoring, early detection, 

and treatment of mental health and 

cognitive issues

 • Stress-, fatigue-, and radiation-

induced changes in mental 

health and cognitive functions, 

including attention, processing 

speed, and performance

 • At-risk patients with limited 

healthcare access

 • Follow-up care for psychiatric and 

neurologic diseases

 • Mental health wellness for 

clinicians, especially in high-

stress environments

 • Non-pharmacologic options to limit 

side effects of traditional treatments

 • Wearable monitors (15, 16)

 • Contactless monitors (17–20)

 • TRISHA (21), AMRA (22)

 • Telemedicine, telementoring of Crew Medical 

Officer (CMO), consultancy medicine

 • Wearable therapeutics (23–25)

Remote monitoring, early detection, 

and treatment of non-emergent 

medical conditions

 • Vital signs monitoring

 • Loading injuries

 • Pain syndromes

 • Renal stones

 • Vascular flow alterations

 • At-risk patients with limited 

healthcare access

 • Improved prehospital care

 • Timely in-hospital care escalation/

de-escalation

 • Early, safer mobility to 

speed recovery

 • Closer, safer discharge follow-up

 • Hospital-at-home model

 • Medical provider wellness and 

injury prevention

 • Disaster care and triage

 • Portable imaging (26–30) and blood 

analysis (31–37)

 • Wearable detection of physiologic signals (15, 16, 

38, 39) and biologic compounds (40, 41)

 • Contactless acquisition of vitals and behavior 

(17–20, 42–44)

 • Contactless load detection (45)

 • Ultrasound-based therapy (46–48)

 • Wearable therapeutics (23–25, 49–53)

 • ISRU with synthesis of pharmaceuticals (54–56)

 • JITT (57, 58), telemedicine, telementoring, and 

consultancy medicine

Treatment of medical emergencies

 • Bone fractures

 • Cardiac arrest

 • Hemorrhage

 • Intra-abdominal pathology

 • Respiratory compromise

 • Sepsis

 • Trauma

 • Improved prehospital diagnosis 

and treatment

 • Natural and humanitarian disasters

 • Rural, remote, and developing areas

 • Improved transfers of care

The above technologies for non-emergent care, plus:

 • Crystalloid regeneration (59)

 • Shelf-stable blood products (60)

 • Integrated care documentation and delivery 

modules (61)

 • Mixed-reality software (62, 63) and AI-CDS 

(21, 22, 30)

Pharmaceutical availability

 • Radiation-induced degradation 

and toxicity

 • Limited shelf-life

 • Limited re-supply

 • Drug shortages

 • Orphan drugs

 • Disaster supplies and re-supply

 • ISRU with synthetic biochemistry (54–56)

Health decrements and 

performance errors from fatigue, 

stress, and sleep loss

 • Circadian disturbances, high 

stress, close quarters, and 

decreased sleep while in space

 • Small and highly 

interdependent crew

 • High-stress environments requiring 

heightened vigilance (e.g., ED, OR, 

PACU, ICU, disaster care)

 • Medical trainees

 • Providers on 24+ hour shifts or 

overnight coverage

 • Wearable polysomnography (15, 16)

 • Wearable detection of stress biomarkers (40)

 • Contactless stress detection to allow for early 

intervention (17–20)

 • Non-pharmacological sleep enhancement (24, 

25, 50–53)

Medical care delivery by non-

experts

 • CMO cannot be trained in all 

relevant medical subspecialties

 • Care of the CMO by other 

crew-members

 • Pandemics

 • Natural and humanitarian disasters

 • Rural, remote, and developing areas

 • AI-CDS (21, 22, 64)

 • Autonomous and semi-autonomous systems 

(21, 22)

 • JITT (57, 58), telementoring, consultancy 

medicine

Team cohesion and performance

 • Psychosocial stressors resulting 

from long-duration spaceflight

 • Small and highly 

interdependent crew

 • High-stress environments requiring 

heightened vigilance, including ED, 

OR, PACU, and ICU

 • Improved safety for patient 

hand-offs

 • Wearable detection of stress biomarkers (40)

 • Contactless sensors (17–20)

 • TRISHA (21), AMRA (22)

Radiation exposure

 • Cosmic radiation accelerates 

disease and increases 

malignancy risk

 • Nuclear disasters

 • Workplace-related exposures

 • Mitigating side effects of 

radiation therapy

 • Radioprotective oral and parenteral 

pharmaceuticals (65–71)

The health risks associated with space exploration have a number of relevant counterparts on Earth. The technologies targeted at mitigating these risks are easily-deployable and multi-use, thus 
they could feasibly be integrated across a wide range of terrestrial care delivery environments.
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deoxygenation, blood flow, and presence of water. Transcranial NIRS 
via headband-like devices can record cerebral hemodynamics during 
daily activity (15), can identify intracranial edema (16), and can 
be  used in self-deployable polysomnography systems (15, 16). 
Transdermal NIRS can measure metabolic rate, stroke volume, 
peripheral hematocrit, and oxygen saturation (38, 39). Other skin-
based sensors can detect nutrients, metabolites, and hormones in 
perspiration (40) or protease activity changes related to muscle 
atrophy, HIV, and even certain cancers (41). The versatility of these 
sensors lend them to easy incorporation into mobile monitoring 
garments, for astronauts and patients alike. Comfortable, washable, 
wearable, waterproof device-integrated clothing is already available 
(42–44).

The targets of contactless sensors are largely cognitive and can 
detect aspects of team cohesion, mental health, sleep deprivation, 
stress, fatigue, and performance. These devices use a variety of 
techniques, allowing them to blend into home or work environments, 
including optical computer facial recognition algorithms (17), radio 
wave sensors (18), and acoustical analysis (19, 20). Non-invasive 
biomechanical sensors can also record physical exertion (45), in order 
to mitigate injury risk during task performance. Overall, 
environmental enhancements that unobtrusively extract physiologic 
information from subjects provide accessible, compliance-
independent data that can inform decision-making on many scales.

4.2. Therapeutics

While the ability to improve early diagnosis of physical and 
cognitive decrements during long-duration spaceflight is useful, the 
inability to return to Earth in a reasonable treatment time frame 
requires the development of portable, easily-deployable therapeutics. 
In order to minimize payload and maximize multi-use, many of the 
devices used in diagnosis have also been studied as therapies. 
Nevertheless, some therapies are consumable and will need to 
be resynthesized during long-duration missions – a complex problem 
also addressable with innovative technologies.

Given its portability and extensive diagnostic capabilities, 
ultrasound technology has also been studied for therapeutic 
applications, including renal stone propulsion (46), targeted 
hemostasis (47), and bone remineralization (48). Additionally, 
wearable ultrasound can treat back pain (49) and potentially provide 
functional neuromodulation (23) for neurologic and psychiatric 
disorders. Improvement of sleep and performance have also been 
trialed using sound stimulation (50–52), light stimulation (53), 
transdermal vagus nerve stimulation (24), and transcranial NIRS-
based photobiomodulation (25).

While these technology-based therapies may supplant standard 
treatment for some conditions, pharmaceuticals remain critical to the 
therapeutic arsenal. Radiation sickness and radiation-induced cellular 
damage is of utmost concern for long-duration extraplanetary 
missions, resulting in accelerated development of pharmacologic 
treatment options, including synthetic genistein (65–67) and melanin-
based radioprotectants (68–71). However, in addition to human 
exposure concerns, cosmic radiation also risks degrading 
pharmaceutical stores (76) and, with the prospect of very limited and 
very expensive resupply missions, the need to regenerate 
pharmaceutical compounds is paramount. In-situ resource utilization 

(ISRU) using modified terrestrial biological catalysts along with 
compounds available on extraplanetary missions to synthesize 
pharmaceuticals is likely feasible (54–56). Other consumable but life-
supporting therapies include intravenous resuscitative fluids, such as 
crystalloid solutions and blood products. Generation of sterile normal 
saline from potable water (59) and reconstitution of desiccated, shelf-
stable hemoglobin-based oxygen carriers (HBOC) (60) are reasonable 
solutions for resuscitation in under-resourced conditions.

Finally, integration of CDS with these diagnostic and therapeutic 
technologies, to streamline and optimize care delivery, is also being 
tackled by aerospace groups. Integration of structured documentation 
with mobile critical care modules can ease user burden and improve 
care (61). Just-in-time training (JITT) with (57) and without 
telementoring (58) can also improve diagnosis by non-medical 
personnel. Mixed reality-guided checklist-based software for medical 
training and real-time management (62, 63) and semi-autonomous 
and autonomous intelligent agents can facilitate CDS, care 
coordination, and care delivery (21, 22). Overall, safe advanced care 
delivery in the remoteness of deep space is approaching a 
possible reality.

5. Elevating terrestrial medical care 
delivery with aerospace technologies

Given the breadth of biological targets and the versatility of the 
medical technologies developed for space exploration, finding direct 
terrestrial applications is not difficult. Integration of these technologies 
across the patient care spectrum is immediately feasible and is critical 
to launch medicine into an era of unprecedented access to patient-
centered health optimization.

5.1. Out-of-hospital applications

Management of health, wellness, and chronic illness in the 
outpatient setting is multi-faceted and is (too) frequently 
escalated beyond primary care services. Aerospace medical 
technologies have the potential to keep patients healthier at home 
and decrease preventable hospitalizations. Integration of these 
technologies in the home and clinic (Figure 1A) can hasten the 
decentralization of medical care without sacrificing safety or 
quality, empowering patients to control their health outcomes and 
their quality of life.

“Smart” devices and homes are prevalent and ever-growing, but 
aerospace-derived technologies can fine-tune this growth by 
expanding biological targets of monitoring, liberating users from 
traditional workflow constraints, and facilitating care coordination. 
These intrinsic advantages of aerospace technologies stem from their 
highly stringent requirements favoring multi-functionality, 
unobtrusiveness, and integration. Examples of unobtrusive multi-
functionality include concurrent, non-invasive monitoring of vital 
signs, sleep parameters, gait analysis and certain behaviors, like 
medication compliance and fall detection, to provide valuable 
feedback for behavioral modification and wellness optimization. 
Additionally, non-invasive, continuous monitoring of a various 
patient-specific parameters – such as biomarkers of anxiety and 
depression, sleep disorders, renal disease, endocrine disorders, and 
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FIGURE 1

Integration of space-adapted medical technologies in a healthcare workflow model. Two patient care scenarios are presented – an outpatient with chronic 
illness and an acute surgical emergency. While they ultimately require different management, the integration of space-adapted medical technologies not 
only improves the efficacy and efficiency of patient care, thereby improving outcomes, quality of life, and patient satisfaction; they can also decrease 
facility-related length of stay, and thus decrease costs and complication rates. (A) Chronic Medical Management. Patient-centered health and wellness can 
be supported with various contactless and wearable devices that can intelligently monitor a variety of physiologic parameters and provide feedback to the 
patient and their local provider, empowering them to regulate their health outcomes and intervene early and effectively at home and in their local clinic. 
Local providers armed with novel technologies to diagnose and treat conditions typically requiring escalation of care can be supported virtually to further 
facilitate de-centralized, high-quality, and accessible healthcare and wellness optimization. (B) Surgical Emergency. An acute event occurs. The standard 
cycle of care is illustrated and captioned, including a number of gaps and delays that contribute to additional patient morbidity. Widespread integration of 
space-adapted medical technologies across the care cycle could dramatically improve patient outcomes, quality of life, and costs in a variety of ways 
including: (1) providing baseline health information and last known well, (2) contributing to timely escalation of care, (3) decreasing time to diagnosis and 
targeted treatment, (4) improving care coordination by decreasing and streamlining transfers of care, (5) providing multi-dimensional continuous monitoring 
supported by CDS to rapidly and effectively correct deviations, (6) optimizing clinician performance through non-invasive behavioral and cognitive support 
technologies, (7) leveraging non-pharmacologic interventions to more effectively prevent and treat in-hospital delirium, (8) facilitating early mobility and 
safe care de-escalation with unobtrusive patient-centered monitoring including of medical conditions and physical loading, and (9) moving patient care out 
of facilities and into the home and local clinics so patients can get back to their lives sooner, safely, and in better health.
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hematologic and oncologic disorders – would limit the need for 
repeated visits to clinics for invasive, expensive bloodwork. This can 
also provide unbiased, compliance-independent, and high-density 
information about disease states, including the efficacy of prescribed 
interventions and relevant outcomes of clinical trials. Portable and 
resilient point-of-care bloodwork devices can facilitate testing in 
clinics or at home, supporting medication titration and side-effect 
management without needing to travel to the office. Finally, in 
addition to providing readily available, structured medical and mental 
health support at home, semi-autonomous conversational intelligent 
agents can also escalate and coordinate care resources as needed, 
resulting in timely intervention.

Aerospace technologies are also primed for expanding clinical 
access by empowering non-expert providers to safely, confidently 
care for numerous conditions with assistance from AI-CDS, JITT, 
and specialist telementoring, in a model similar to non-physician 
astronauts caring for their fellow spacefarers. Expansion of 
remotely-guided and AI-assisted ultrasound-based diagnostics and 
therapeutics is a game-changing possibility for care delivery in 
under-resourced areas (77). These technologies can decrease 
hospitalizations by allowing earlier detection of disease and earlier 
intervention, even (and especially) by non-specialists. Treatment of 
certain ailments that previously required care escalation could 
initially be attempted in the home or office, such as ultrasound-
based renal stone management or hemorrhage control. Similarly, 
infusion of shelf-stable reconstituted HBOCs could obviate the 
need to travel long distances for patients requiring transfusion. In 
cases of extreme remoteness or other travel impediment, such as in 
pandemics or wars, ISRU and synthetic pharmacy could restore 
stocks of basic medical supplies.

Furthermore, these technologies not only have the potential to 
improve baseline health, they can also improve specific chronic 
conditions ahead of elective surgery, decreasing perioperative 
morbidity. At-home data collection could also inform preoperative 
and risk evaluation, providing patients and clinicians with 
individualized risk–benefit assessments. “Pre-habilitation” programs 
for at-risk patients could include biometric and metabolic/hormone 
monitoring to support targeted systemic disease optimization and 
NIRS-based photobiomodulation to shore up cognitive and 
psychological reserve ahead of surgery.

Last, but not least, device detection of deviations from known 
baseline and semi-autonomous contacting of a clinician or emergency 
services can limit delays in care, especially for time-sensitive conditions 
like stroke or myocardial infarction. Emergency services equipped with 
portable or wearable blood component or perspiration analysis devices, 
advanced diagnostic and therapeutic ultrasound, retinal imaging, and 
AI-CDS could more rapidly diagnose specific critical conditions, initiate 
earlier targeted treatment en route to a hospital, and redirect transport 
to a specialty hospital based on tentative technology-assisted diagnoses, 
limiting the need for late transfers of care. Overall, aerospace medical 
technology can rapidly bring 21st century medicine to all patients.

5.2. In-hospital applications

Translation of space-adapted medical technologies is primed 
for high-acuity hospital areas (Figure 1B). Faster, more accurate 

diagnostics in the Emergency Department (ED), especially for 
critically ill or unstable patients would undoubtedly aid decision-
making and treatment. Integration of the above portable blood 
testing platforms and ultrasound-based diagnostics to the standard 
arsenal should be  prioritized. Furthermore, use of ultrasound-
based therapeutics in this setting, such as for hemostasis or kidney 
stone propulsion, should be considered.

ICU care could be augmented by space-adapted technologies. For 
example, patients could be  non-invasively and continuously 
monitored for muscle degradation (from being bed-bound) or 
improvement (from physical therapy), drug metabolites (especially of 
sedatives or narcotics), and cancer progression (given treatment is 
paused for ICU admission), without multiple painful, costly blood 
draws. Stroke could be  identified using retinal imaging without 
needing urgent and unwieldy transport to the CT scanner. Nutritional 
supplementation decisions could be  supported with NIRS-based 
measurements of metabolic rate. Stroke volume and hematocrit could 
also be  monitored by NIRS. Circadian rhythm disorders could 
be averted or treated with non-pharmaceutical sleep entrainment, 
reducing delirium and sedative use. Seamless multi-modal physiologic 
monitoring, including brain monitoring, could assist with mental 
health and delirium assessment, sleep monitoring, drug dosing, or 
detection of disease state or acute changes; their portable nature can 
mitigate the cumbersomeness of patient transport to procedures and 
imaging, and can improve periprocedural care by limiting the need to 
connect and disconnect monitoring multiple times.

Unobtrusive physiologic monitoring can also facilitate patient 
care transfers and patient mobility within the hospital. Sensor-
equipped patient gowns or wearables could allow continuous, yet 
comfortable, monitoring; coupling these continuous inputs with 
CDS could track patient clinical status longitudinally and 
determine transfers to different levels of care. CDS can also 
integrate the multi-modal data to better direct which procedures 
and interventions are offered and reduce unrecognized bias in care 
delivery (78). Wearables deployed during acute changes in status 
would facilitate monitoring of the patient during resuscitation, 
triage, and transport. Finally, sensor-equipped gowns could 
improve patient mobility during hospitalization while maintaining 
a safety net of monitoring, improving physical and mental health 
rehabilitation and patient satisfaction.

Ultimately, the timely and safe de-escalation of care acuity can 
be  facilitated with these technologies, including transitions to 
non-hospital facilities. For example, non-invasive sensors of 
metabolic rate, skeletal muscle mass, and cardiac parameters could 
be of great utility in monitoring physical therapy progress as well 
as physiologic parameters that would limit the extent of therapy in 
at-risk patients. Wearable unobtrusive monitors could provide a 
virtual safety net supported by telementoring and consultancy 
medicine, keeping patients healthier and out of the hospitals as 
much as possible.

5.3. Clinician performance and wellness 
applications

Finally, space-adapted medical technologies have the potential to 
improve clinician performance and wellness. Application of 

https://doi.org/10.3389/fmed.2023.1226531
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Scarpa et al. 10.3389/fmed.2023.1226531

Frontiers in Medicine 07 frontiersin.org

biomedical sensors to the patient care environment have the potential 
to record physical loading and torque experienced by staff such as 
nurses, physical and occupational therapists, or patient care assistants 
during routine physical tasks required for patient care; this can help 
inform and improve workplace safety measures to prevent injury as 
well as improve patient safety. Other “smart” workplace design 
possibilities would include incorporation of contactless monitoring 
– optical, acoustical, radio wave detection – of cognitive or mental 
health decrements in high-stakes, stressful environments, such as the 
ED, OR, or ICU. Real-time unbiased feedback on patient safety and 
team dynamics can speed the quality improvement cycle.

Much like astronauts, clinicians can experience cognitive 
decrements resulting from heightened stress and decreases in sleep 
quantity or quality. In particular, clinicians working in complex 
environments like the ED, the OR, or the ICU, where heightened 
vigilance is required and emergency action is not uncommon, are 
at risk for suboptimal attention and performance despite maximal 
effort, especially during overnight or 24-h shifts. The same could 
be said for care delivery personnel operating in remote or under-
resourced locations. Enhancing cognition and performance during 
these shifts, and enhancing recovery after these shifts, may improve 
clinician well-being, reduce burnout, and improve outcomes. 
Routine availability or application of non-pharmaceutical sleep-
improving or performance-boosting technologies for medical 
practitioners either in the workplace (e.g., while on call) or at home 
is worth exploring.

6. Conclusion

Disruptive medical technologies, like those required to support 
extraplanetary human existence, have an extensive array of potential 
applications across all terrestrial care delivery settings, for both 
patients and practitioners. Rapid and efficient clinical validation of 
these technologies and their integration into standard clinical 
workflow must be a priority and requires the involvement of clinicians 
to spearhead the charge. The future of democratized, safe, quality 
healthcare delivery is already here.
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Glossary

AI Artificial Intelligence

AMRA Autonomous Medical Response Agent

CBC Complete Blood Count

CDS Clinical Decision Support

CMO Crew Medical Officer

CT Computed Tomography

ECG Electrocardiography

ED Emergency Department

EEG Electroencephalography

HBOC Hemoglobin-Based Oxygen Carriers

ICU Intensive Care Unit

ISS International Space Station

ISRU In-Situ Resource Utilization

IV Intravenous

JITT Just-In-Time Training

MRI Magnetic Resonance Imaging

NASA National Aeronautics and Space Administration

NIRS Near-Infrared Spectroscopy

PACU Post-Anesthesia Care Unit

SANS Spaceflight-Associated Neuro-ocular Syndrome

WBC White Blood Cell
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