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Human papillomavirus is a predominant sexually transmitted viral pathogen. 
Our objective was to analyze the relative distribution of genotypes over time and 
to determine the genotypes associated with adverse clinical lesions. The study 
was based on data from adult women with cytological abnormalities from whom 
histological samples were obtained from 2005 to 2021. HPV genotyping was 
performed using PCR and INNO-LiPA assay (Fujirebio). Among the 1,017 HPV-
positive biopsies, 732 (72%) were infected with a single HPV genotype and 285 
(28%) were infected with several HPV genotypes. Most of the infections involved 
the high-risk genotypes 16, 31, and 52. Throughout the study period, HPV 16 was 
the most encountered genotype (541, 53.2%), while HPV 18 was rather under-
represented (46, 4.5%), especially in invasive cervical carcinoma. HVP52 (165, 16.2%) 
was detected mainly from 2008 to 2014, and its distribution reached 19.7% in 2011. 
Such epidemiological data underlines the possibility of an emergence of a high-risk 
genotype. The most detected low-risk HPV in combination with high-risk HPV was 
HPV 54 in 6.5% of samples. Monoinfection by HPV 16 led statistically more often to 
severe lesions than multi-infection involving HPV 16 (p < 0.001), while for HPV 52, 31 
or 33, multi-infections were significantly associated with severe lesions (p < 0.001 for 
each of these three genotypes). HPV 16 was involved in 55.2% of high-grade lesions 
and in situ carcinoma and 76.3% of invasive carcinomas. In severe lesions, HPV 16 
participation was predominant, whereas diverse genotypes were seen in low-grade 
lesions. Importantly, we observed that high-risk genotypes, for example HPV 52, can 
emerge for a few years then decrease even without vaccine pressure.
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Introduction

The human papillomavirus (HPV), which belongs to the Papillomaviridae family, is 
a pathogen that infects the epithelial tissue. It is the main risk factor for cervical cancer 
and is thus highly clinically relevant (1). HPV is mainly transmitted through sexual 
contact, and most people are infected with HPV shortly after the onset of sexual activity. 
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HPV can also lead to anogenital cancers affecting the anus, vulva, 
vagina, and penis, as well as to oropharyngeal cancers located in 
the pharynx, larynx and oral cavity. Anogenital and 
oropharyngeal cancers linked to HPV occur in both men and 
women (2, 3). The high-risk (HR) HPV genotypes are responsible 
for severe lesions, and the persistence of oncogenic HR HPV 
infection is the main cause of cervical cancer. The DNA 
integration of HPV into the infected cell genome contributes to 
malignant transformation of host cells (4, 5). Some cofactors 
(viral, immune response of the host, or host behavior) may also 
contribute to the development of cervical cancer. However, the 
specific role of these cofactors in the persistence and progression 
of cervical infections due to HPV is not well known. HPV 16 and 
HPV 18 have been identified as the most prevalent HPV types, 
and they are associated with more than 70% of cervical cancers 
and are accountable for 50% of precancerous cervical lesions (6, 
7). Papillomavirus infections are common in sexually active 
women. Most infections clear spontaneously and have no clinical 
signs. Half of new HPV infections are undetectable after 6 to 12 
months and more than 90% are undetectable at 3 years (8). 
Persistent HPV infection has been associated with cervical 
intraepithelial neoplasia (CIN) and cervical cancer. The natural 
history of HPV-induced cervical cancer is usually slow, and it 
remains unclear why only a fraction of HPV cases progress to 
cancer. Multi-infections with several HPV genotypes are 
frequent, but the frequency varies depending on the country, and 
the clinical impact is controversial (9–11).

In 2018, there were nearly 3,000 new cases of invasive cervical 
cancer in France and more than 1,000 deaths (12). Moreover, 
although the incidence and mortality of cervical cancer have 
declined over the past decades, this reduction has been slower 
since 2005 (13). Given the abundant diversity of HPV genotypes, 
we  conducted an epidemiological investigation to better 
understand their relative distribution in histological samples to 
provide useful information for HPV vaccination programs. 
We analyzed samples collected over a 16-year period and explored 
the HPV genotypes found in mono- and multi-infections, the 
preferential links among them, and their association with 
clinical conditions.

A vaccination program was launched in France in 2007 with the 
quadrivalent Gardasil vaccine that targets HPV 6, 11, 16, and 18. In 
December 2019, a new vaccine, Gardasil 9, was implemented, 
targeting HPV 6, 11, 16, 18, 31, 33, 45, 52, and 58. The low-risk (LR) 
genotypes, HPV 6 and 11, are responsible for 90% of condyloma 
acuminate cases. The HR genotypes targeted by the Gardasil 9 vaccine 
are involved in 80% of CIN2+ lesions and 90% of cervical cancers. 
Unfortunately, the poor perception of the HPV vaccine has hampered 
its implementation in France (14, 15), and the coverage of the French 
population is among the lowest in Europe. A better understanding of 
the genotypic spectrum of HPV could inform preventative strategies 
against cervical cancer and help to measure of the impact 
of vaccination.

Methods

Specimen collection

This retrospective cohort study was conducted at the Dijon 
University Hospital, France. The samples were collected for diagnostic 
purposes in the Medical Gynecology department, from September 2005 
to December 2021. No additional samples were collected for the 
purpose of this study. Patient non-opposition was confirmed. All the 
women had cervical abnormalities, at least a pap smear with 
LSIL. Samples were mainly conizations, cervical, endocervical or 
endometrial biopsies, as well as some paraffin blocks from the 
pathological anatomy laboratory. All samples were placed in tubes with 
a transport medium. Briefly, biopsies were dilacerated with a scalpel, 
paraffin embedded samples were shaved to obtain slices, and all samples 
were incubated in a proteinase K solution at 56°C with stirring for at 
least 2 h up to 16 h maximum. Proteinase K was inactivated at 95°C for 
10 min. At this stage, samples could be frozen at −20°C prior to analysis.

Classification of lesions was as follows: group 0, included samples 
close to normal; group 1, called low-grade lesions, included cervical 
intraepithelial neoplasia (CIN)1 and flat condyloma; group 2, named 
high-grade lesions group, included CIN2, CIN3, adenocarcinoma in 
situ (AIS), and squamous cell carcinoma (SCC); and a third group 
included invasive cervical carcinoma (ICC).

Genotyping

HPV infection was detected using, successively, two versions of 
the INNO-LiPA HPV Genotyping (Fujirebio) that can determine the 
presence of the 28 genotypes (version EXTRA from 2005 to 2014) or 
32 genotypes (version EXTRA II from 2015 to 2021). The INNO-LiPA 
HPV Genotyping is a line probe assay for in vitro diagnostic use. It was 
designed for the identification of HPV genotypes by detection of 
specific sequences in the L1 region of the HPV amplification products 
that are subsequently hybridized using a single typing strip on which 
sequence-specific DNA probe lines and control lines are fixed. 
Classification of genotypes were indicated in the manufacturer’s 
instructions, according to Munoz et al. (16) and IARC Monographs 
volume 100B (17):

HPV HR 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68

HPV pHR 26, 53, 66, 69/71, 70, 73, 74, 82

HPV LR or not classified 6, 11, 40, 42, 43, 44, 54, 61, 62, 67, 81, 83, 89

HR means high-risk, LR means low-risk, and p, probable. The 
underlined genotypes were detected only in the EXTRA II version, 
while those in italic were no longer detected. When HPV 52 and a 
weak signal for HPV 31 were detected, only 52 was recorded seeing as 
non-specific activity was attributed to HPV 31, as indicated by 
the manufacturer.

Statistical analysis

Continuous variables were expressed as means ± standard 
deviation (SD), categorical variables were expressed as percentages, 

Abbreviations: HPV, human papilloma virus; LR , low-risk; HR, high-risk; LGL , 

low-grade lesions; HGL, high-grade lesions; CIN , cervical intraepithelial neoplasia; 

ADC, adenocarcinoma; ISC, In situ carcinoma; SCC , squamous cell carcinoma; 

ICC , invasive cervical carcinoma.
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and 95% confidence intervals (CI) were indicated. Categorical 
variables were compared using the Chi-square test and continuous 
variables were compared using one-way analysis test or Kruskal–
Wallis test, as appropriate. A value of p <0.05 was considered 
statistically significant. STATA v15 (StataCorp LLC, College Station, 
TX, United States) was used for the statistical analyses.

Results

We analyzed the relative distribution of genotypes in histological 
specimens collected over a 16-year period, from 2005 to 2021. The 
samples (n = 1,017) were collected from female patients who were 
HPV-positive and analyzed using the INNO-LiPA hybridization test. 
Women were aged 18 to 92 (mean 38.9 years; median 37.5 years). 
Samples were obtained in the cervix (998, 98.1%), endometrium (2, 
0.2%), vagina (3, 0.3%), vulva (9, 0.9%), or anus (5, 0.5%). As expected 
for this cohort, most of the women had high-grade lesions. Women 
with an HR HPV infection represented 97.8% (96.7–98.6%) of patients 
(n = 995), while only 29 women 2.9% (1.9–4.1%) were found to have 
either only a LR (n = 22) or an indeterminate genotype (n = 7). 
Moreover, 10 of these 29 samples were extra-cervical.

The predominant genotypes were HR HPV 16, 52, and 31, 
followed by HR HPV 33 and LR HPV 54 (Figure  1). The most 
prevalent genotype was HPV 16 (541, 53.2%), followed by HPV 52 
(165, 16.2%), and HPV 31 (142, 14/%); HPV 18 was rather under-
represented throughout the study (46, mean 4.5%) (Figure 1). These 
four genotypes are all classified as high-risk. The distribution of the 
other genotypes targeted by Gardasil 9 (HPV 6, 11, 18, 45) was below 
5%. Supplementary Figure S1 illustrates the distribution of genotypes 
included in the new Gardasil 9 vaccine (Supplementary Figure S1).

The distribution of HPV 16 was high (mean per year, 37.6% ± 7.1%) 
with a tendency to decrease over the years 2007–2016 when HPV 52 
emerged (polynomial tendency curve 16 on Figure 1). HPV 52 was 

rarely detected in 2005 to 2007. It then emerged from 2008 to reach a 
distribution of 18.9% ± 2% from 2010 to 2014, and decreased to 7.6% ± 
2.3% from 2015 to 2021 (polynomial tendency curve 52 on Figure 1).

Similar to HPV 52, the distribution of LR HPV 54 reached 10.4% 
± 2.4% from 2008 to 2014, then decreased from 2015 to 2021 to 1% ± 
1.1%.The distribution of HR HPV 31 was 12.6% ± 1.2% from 2015 to 
2019 vs. 7.5% ± 2.1% for the rest of the study period. These genotypes 
(in descending order: 16, 52, 31, 33, 54, and 51) constituted 67.3% of 
the genotype cases (Figure 1).

Almost three quarters of samples revealed a monoinfection [732, 
72% (69.1–74.7%)], including seven positive samples with 
indeterminate genotypes, and the remaining 285 samples were multi-
infected [28% (25.3%–30.9%)]. When multi-infected (n  = 285), 
women had an infection with 2 to 6 different HPV genotypes, dual 
infections were the most frequent (178, 62.5% of multi-infections), 
61 samples included three different genotypes, 27 included four 
genotypes, 16 included five genotypes, and three samples had six 
genotypes, which led to the determination of 1,477 genotype results 
in total. HPV 16 was most frequently found as a single genotype 
(77.8% of HPV 16) whereas other HR types of HPV were often 
detected as coinfecting viruses (Figure 2A). The prevalence of HPV 
16 mono-infection was far higher than HPV 16 in multi-infection: 
77.8% (74.1%–81.2%) vs. 27.1% (23.3%–31.3%). HPV 31, 33, 39, 52, 
and 54 were often associated with other genotypes, and HPV 18 was 
detected mainly alone or in dual infections (Figure 2A). The most 
frequently observed combinations were dual infections with HPV 16 
and 52 (in 7.7% of coinfected patients) followed by the combination 
of HPV 31, 32, 54 (in 4.2% of coinfected patients) (Figure 2B).

Most coinfections involving HPV 16 were dual infections (84/120, 
70%). Of these, only eight involved an LR HPV as a coinfectant (9.5%). 
We then focused on preferential associations for prevalent genotypes 
(Supplementary Table S1). For the HR genotypes 18, 58, and 68, a 
quarter or more of coinfections occurred as follows: HPV18 coinfected 
with HPV 39 or 16 (36.8% and 23.7% of coinfection cases, 
respectively), HPV 58 with HPV16 or 52 (27% and 29.7%), and HPV 
68 with HPV 39 (25.6%). When coinfected, HPV 16 was most often 
found with HPV 52 (22% of cases). Interestingly, HPV 33 was 
infrequently co-infected with the prevalent HPV 16 genotype (7.9%). 
As expected, low-risk genotypes were poorly represented in this 
cohort. Only HPV 54 was frequently encountered in association with 
HPV 52 and 31 (29.9% and 26.2% of cases).

The mean age of the cohort was 38.9 years. The mean age of 
patients with monoinfection was 39.3 years while multi-infected 
women had a mean age of 37.9 years (p < 0.05). HPV 16 was most 
frequent in women 26–45 years (p < 0.001). Although not statistically 
significant, the distribution of HPV 52, 31, and 33 also appeared to 
be higher from 26 to 45 years old (Figure 3).

HPV 16 was the most frequent genotype in all histological grades, 
and its frequency increased with the severity of the lesions. Specifically, 
13.5% (5.6%–25.8%) of low-grade lesions were HPV-16-positive, 
55.2% (51.9%–58.5%) of high-grade lesions and 76.3% (59.6%–88.6%) 
of ICC (p  < 0.001) (Figure  4). HPV 52 and 31 were detected, 
respectively, in 16.9% and 14.7% of the high-grade lesions. Depending 
on the genotype involved, we found that either the monoinfections or 
the multi-infections were associated with severe lesions. HPV 16 
monoinfections were associated with severe lesions while multi-
infections including genotypes 31, 33 and the emergent HPV 52 
genotype were associated with severe lesions.

FIGURE 1

Relative distribution and trends of HPV genotypes (2005–2021). 
Dotted lines indicate polynomial regression curve for HPV 16 (green 
curve) and HPV 52 fluctuating genotype (orange curve).
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We also explored the age of women with single-type HPV 16 
infections in the different lesion classification groups. Women with 
HPV 16 in group 3 (mean 44.6 years old) were older than those in 
group 2 (mean 37.3 years old) while in group 1 (low-grade lesions), 
the mean age was 33.0 years old (p < 001). Associations between age 
and any other genotypes could not be calculated because of the large 
diversity of genotypes in group 1 and the limited number of cases in 
group 3.

Discussion

HPV infection is associated with the development of several types 
of cancer, and it is therefore necessary to reduce the incidence of 
infections of all prevalent HR genotypes. Genotype distribution and 

variation in severe lesions needs to be better understood, and this 
information can be used to design vaccine strategies and evaluate their 
impact. We found single type infection to be most common, and HPV 
16 was shown to predominate over the 16 years of the study, from 
2005 to 2021, for both the distribution and the associated disease 
severity. On the contrary, HPV 52 emerged as the second most 
common genotype over a period of several years and then decreased. 
HPV 16 was defined as the HPV genotype with the highest risk of 
causing cancer of the cervix and several other sites (18), and HPV 18 
was found to be the second most prevalent HR HPV in cervical cancer 
in 2003 (16). HPV 18 remained relatively infrequent throughout the 
study at around 4.5%. This is in accordance with a study performed in 
France and based on a previous period from 1999 to 2005, during 
which HPV 16 was by far the most common HPV type associated to 
CIN 2/3 while HPV 18 was observed only in 4% of the CIN 2/3 

FIGURE 2

Mono infections and multi infections. (A) Percentage of women with HPV 16, 18, 31, 33, 39, 52, 54, and 58 with mono or multi-infections with 1–5 
other genotype during the study period 2005–2021, p < 0.001 for HPV 16 (mono- vs. multi-infections), Chi-square test. (B) Most frequent 
combinations detected in patients during the study period, 2012–2021. Dark green: percentage of all infected patients, light green: percentage of 
multi-infected patients. The graphic highlights the dual infection by HPV 16 and 52.
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samples (19). However, worldwide, HPV 18 positivity in biopsies was 
reported to reach 8.9% in CIN2/3 from 1999 to 2011 (20). The 
proportion of HPV 18 was also found to be 16 to 19% in ICC (20, 21). 
Surprisingly, we report here a very low level of HPV 18 in ICC, which 
is potentially due to the study period or local prevalence.

The distribution of genotypes can vary depending on the country 
(1), and we show here that it is also variable over time in the same 
location. We  reported in particular the emergence and then the 
decline in HPV 52 over time. HPV 16 as well as HPV 52 and 33 are of 
public health concern and are included in the nonavalent vaccine. 
We found a relatively large proportion of HPV 52 in the biopsies: it 
rose rapidly to 13% in 2008, stabilized at about 19% for six years, and 
then declined and remained around 8% the following years. During 
the same period, in 2010–2012, endocervical cytology samples from 
Mexico were found to have a high prevalence of HPV 51 and 52 
(around 37%), even exceeding HPV 16 (22). A meta-analysis based on 
studies from 1994 and 2012 reported that the prevalence of HPV 52 in 
CIN2/3 samples was high, at about 16.5% in Asia and about 11.2% in 
the Americas and Europe (23). Although we  found that the 
distribution of HPV 52 decreased to 8% after 2015, HPV 52 was still 
common in 2017  in China (20%) among women with cervical 
precancerous lesions (24). HPV genotype distributions vary between 
different regions as underlined elsewhere, but also locally over time as 
shown here. This can be  explained by the regional dominance of 
variants. In Asia, the B2 sublineage of HPV 52 is greatly dominant and 
frequently detected in serious cervical lesions compared to the HPV 
52 a lineage, which predominates in Europe (25). Moreover, some 
variants of HPV 52 display specific HPV 52 mutations that contribute 
to lesion severity (26, 27). The geographical and chronological 
variability in the prevalence of HR human papillomavirus genotypes 
in cervical intraepithelial neoplasia lesions underlines the importance 
of continuously monitoring HPV genotype prevalence within a 
country in order to accurately assess the efficacy of HPV vaccines.

From 2007, two vaccines against the papillomavirus were 
available, Cervarix, which targets HPV 16 and 18 but is no longer 
recommended, and Gardasil, which targets HPV 6, 11, 16, and 18. 
Recently, virus–like particles (VLPs) to protect against HPV 31, 33, 
45, 52, and 58 were added to these four genotypes to produce the 
updated Gardasil 9 vaccine. Gardasil 9 was implemented in December 

2019 in France, when the women included in our study were too old 
to be eligible for vaccination. Therefore, the observed emergence and 
decline of HPV 52 cannot be attributed to any vaccine pressure against 
this genotype. It is worth noting, however, that vaccination may 
facilitate an increase in HR HPV types not targeted by the vaccine 
(28). Rather frequently, genotypes such as 31, 33, 52, and 54 were 
found to be part of multi-infections. Regarding the other genotypes 
included in Gardasil 9, HPV 18 was associated preferentially with 
HPV 39, while HPV 58 was associated preferentially with HPV 52; 
HPV 45 was infrequent. We  also found a preferential association 
between HPV 16 and 52. An antagonism by viral interference has 
been proposed between HPV 16 and low-risk HPV 6/11 (29). Our 
data showed a low capacity of HPV 16 to co-infect with low-risk 
genotypes except HPV 54 when also combined with other HR HPVs. 
The interaction between multiple HPVs has been suspected to affect 
oncogenic risk, but the impact of multiple infections on the risk of 
cervical lesions has not been established yet. Whether these infections 
occur by chance or as a result of interactions between HPV genotypes 
is still unclear (30). Several studies have reported that multiple HPV 
infections were more closely related to high-grade lesions compared 
to single infections (11, 31). We add here that this assertion is true for 
several genotypes (HPV 31, 33, 52), except for HPV 16. In Italy, 
Iacobone et  al. established that HPV multi-infections were 
significantly associated with lower risk of CIN2+, whereas single 
infections were more likely in cervical cancers and precancerous 
lesions (32). Other studies have also shown reduced high-grade 
squamous intraepithelial lesion (HSIL) rates for multiple HPV 
infections compared to single-genotype infection, with no additive or 
synergistic effect, suggestive of possible intergenotypic competition or 
more effective immune response triggered by multiple infections (33). 
Recently, HPV 16 was reported to have a lower risk of CIN 3+ when 
co-infected with other types than single HPV 16 infection (34). In our 
study, HPV 16 was by far the most dominant genotype and was found 
mainly as single HPV infection in severe lesions, underlying its 
pathogenic role.

Regarding only dual infections, ours results indicate that they 
were more likely to lead to severe lesions when they included HPV 16. 
Specific HPV dual-infections such as HPV 16–68 (35) or HPV 16–58 
(31) seem particularly prone to increase risk of intraepithelial lesions 
and cervical cancer in women. However, here, these coinfections were 
very infrequent. A study in Italy showed that the most common 
co-infections in patients with CIN were HPV 16–18, 51–52, and 
16–51–52 (36). In Brazil, the co-infection of HPV 16–18 was related 
to a higher future risk for both cervical adenocarcinoma in situ and 
ICC (37). In our study, the coinfection of HPV 16–52 was the most 
frequent. None of the samples with this combination were low-grade 
lesions – they were all classified as group 2 lesions. In two recent 
studies, HPV 52 was shown to be one of the five dominant HPV 
genotypes found in CIN 2/3 and cancer (23, 38). In particular, HPV 
52 and 58 have been reported to be common types in Asia among CIN 
2/3 and ICCs (23, 38), while we found a fairly low distribution of HPV 
58 in severe histological lesions and a large but fluctuating prevalence 
of HPV 52.

Here, we found that the majority of ICC was associated with HPV 
16 monoinfection (76.3%), in accordance with previous reports (63%–
65%) (20, 39, 40). These results confirm that HPV 16 monoinfections 
confer an increased risk of developing high-grade lesions and ICC. For 
single infections with HPV 16, increased viral load and integrated 

FIGURE 3

HPV distribution of the most prevelent genotypes by age range 
results are expressed as percentages of total number of womens.
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viral genomes have been significantly associated with prevalent HSIL 
(41). Moreover, a threshold for HPV 16 viral load was associated with 
disease prognosis, whereas it could not be defined for HPV 18 (42–
44). Among the ICC cases, we reported only one case involving HPV 
18 that was in a dual infection with HPV 39. The genotypes, apart 
from HPV 16, most frequently associated with ICC are HPV 18 

worldwide, HPV 45 in Africa and Latin and Central America, and 
HPV 58 in Asia (20). HPV 18 positivity was reported to vary very little 
between normal cytology and CIN3 (around 7.6%), but this level 
doubled in ICC (20). Moreover, since the prevalence of HPV 18 in 
SCC and ICC was higher at younger age, it has been suggested that 
HPV 18 induces cancer rapidly (45), whereas the risk of HPV 16 
infection in cancer was not influenced by age (40, 45). Results on the 
associations between age, HPV 16 and high-grade lesions are 
conflicting. Correa et al. reported that the risk of HPV 16 infection in 
CIN3 cases increased with age while another recent study from 
Finland showed that HPV-16-type distribution in HSIL was more 
prevalent in women younger than 30 years (40, 46). In line with 
Correa et al., we did find a significant association between age, HPV 
16 genotype and severe lesions in biopsy samples.

Cervical cancer accounts for 83% of HPV-attributable cancer, 
two-thirds of which occur in less developed countries. HPV-DNA 
integration into cellular chromatin is a necessary event contributing 
to carcinogenesis. The persistence over time of a HR HPV infection 
(47, 48) and the presence of cofactors increases the risk of occurrence 
of cervical cancer (49). Fortunately, genotypes covered by the 
nonavalent vaccine contributed to 85.2% of CIN2 lesions, 97.9% of 
CIN3 lesions, and 93.8% of cancers (50). Universal access to 
vaccination is the key to avoiding most cases of HPV-attributable 
cancer (1) and the French National Cancer Control Plan (NCCP) 
launched in 2014 fixed the objective to improve human 
papillomavirus vaccination coverage. However, Gardasil has failed to 
reach coverage goals due to a context of vaccination hesitancy in 
France (14, 51).

In conclusion, this study underscores the prevalence of HR HPV 
16 over time in Burgundy in women undergoing biopsies or resections 
after abnormal colposcopies. The strong presence of HPV 16 has been 
consolidated over the years despite some vaccine pressure. In our 
population, which was not eligible for vaccination with Gardasil 9, 
we evidenced a spontaneous fluctuation of some genotypes over the 
16 years. Such fluctuations could bias the results of vaccine 
policy evaluations.
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