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Introduction: Bladder cancer (BLCA) is the ninth most common malignancy 
worldwide and the fourth most common cancer in men. Copper levels are 
significantly altered in patients with thyroid, breast, lung, cervical, ovarian, 
pancreatic, oral, gastric, bladder, and prostate cancers. Outcomes can be predicted 
by constructing signatures using lncRNA-related genes associated with outcomes.

Methods: We identified lncRNAs related to outcomes, those differentially expressed 
in bladder cancer, and cuproptosis-related lncRNAs from TCGA. We identified the 
intersection to obtain 12 genes and established a prognostic risk signature consisting 
of eight genes using LASSO-penalized multivariate Cox analysis. We constructed 
a training set, performed survival analysis on the high-and low-risk groups, and 
performed validation in the test and full sets. There existed a substantial contrast 
in the likelihood of survival among the cohorts of high and low risk. An in-depth 
analysis of the gene mutations associated with tumors was conducted to evaluate 
the risk of developing cancer. We also performed gene analysis on neoadjuvant 
chemotherapy. We conducted experimental validation on the key gene UBE2Q1-
AS1 in our prognostic signature.

Results: The risk signature we constructed shows significant differences between 
the high-risk group and the low-risk group. Univariate survival analysis of the 
eight genes in our signature showed that each gene distinguished between high- 
and low-risk groups. Sub-group analysis revealed that our risk score differed 
significantly in tumor stage, age, and gender. The analysis results of the tumor 
mutation burden (TMB) showed a significant difference in the TMB between the 
low- and high-risk groups, which had a direct impact on the outcomes. These 
findings highlight the importance of TMB as a potential prognostic marker in 
cancer detection and prevention. We analyzed the immune microenvironment 
and found significant differences in immune function, validation responses, 
immunotherapy-related positive markers, and critical steps in the tumor immunity 
cycle between the high- and low-risk groups. We found that the effect of anti-
CTLA4 and PD-1 was higher in the high-risk group than in the low-risk group.Gene 
analysis of neoadjuvant chemotherapy revealed that the treatment effect in the 
high-risk group was better than in the low-risk group. The key gene UBE2Q1-AS1 
in our prognostic signature can significantly influence the cell viability, migration, 
and proliferation of cancer cells.
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Discussion: We established a signature consisting of eight genes constructed 
from cuproptosis-related lncRNAs that have potential clinical applications for 
outcomes prediction, diagnosis, and treatment.
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1. Introduction

Bladder cancer (BLCA) is the ninth most common malignancy 
worldwide and the fourth most common cancer in men (1). As the 
most prevalent urinary system tumor, its incidence continues to rise in 
China (2). More than 90 percent of BLCAs are of the urothelial tumor 
type and are classified as superficial nonmuscle-invasive BLCA and 
muscular nonmuscle-invasive BLCA according to their clinical 
characteristics (3). Current treatments include radical cystectomy with 
extensive pelvic lymphadenectomy, immune checkpoint block 
immunotherapy, neoadjuvant chemotherapy, and radiotherapy. These 
methods are somewhat effective; however, outcomes in advanced 
metastatic tumors are poor (4–7). We hope to obtain new tools to 
predict outcomes, achieve early diagnosis, and identify sensitive 
treatment options. Tsvetkov and colleagues discovered that intracellular 
copper (Cu) induces regulated cell death distinct from those mediated 
by oxidative stress and called it ‘cuproptosis’ (8). Cu is a cofactor for the 
catalytic function of enzymes and the maintenance of structural 
stability; it plays a substantial role in physiological processes such as 
metabolism, signal transduction, and substance transport. Cu 
imbalances are associated with genetic diseases related to Cu 
metabolism and neurodegenerative diseases (9). Cu levels are 
significantly altered in patients with thyroid, breast, lung, cervical, 
ovarian, pancreatic, oral, gastric, bladder, and prostate cancers (10). 
Moderate intracellular Cu concentrations are toxic under certain 
circumstances, leading to cell death (11). Cu binds to the fatty 
lipoylated component of the tricarboxylic acid cycle, through which 
proteins bound to fatty acylation accumulate. Iron–sulfur cluster 
proteins are lost in a subsequent step, a mechanism that leads to 
proteotoxic stress and, ultimately, cell death (12). We wished to explore 
the role of cuproptosis in BLCA progression. Noncoding RNA 
molecules include long non-coding RNAs (lncRNAs), circRNAs, and 
microRNAs (miRs) (13). Over 15,000 long non-coding RNA genes are 
encoded in the human genome (14). LncRNAs are the portion of 
nonprotein-coding RNA transcripts longer than 200 nt. They 
participate in genetic regulation and are involved in the regulation of 
several pathological and physiological processes (15). According to the 
relative relationship between genes of lncRNAs and protein-coding 
genes in physical space, we classify them as sense lncRNAs, antisense 
lncRNAs, long intergenic ncRNAs, intronic lncRNAs, and bidirectional 
lncRNAs (16). There are two primary mechanisms by which lncRNAs 
function: (1) lncRNAs interact with promoters and gene regulatory 
regions to regulate chromatin transcription, and (2) lncRNAs sequester 
other regulators (e.g., the ceRNA mechanism) (17). LncRNAs are 
involved in cancer immune regulation and modulate the tumor 
microenvironment (18). Several lines of evidence suggest that lncRNAs 
participate in tumor progression, including BLCA. The most common 
manifestation is abnormal lncRNA expression. At present, 
computational biology and high-throughput sequencing data have 
been widely used in the field of biomedicine (19). We hope to use the 

phenomenon as a clue to construct a risk evaluation system for the 
outcomes, diagnosis, and treatment of BLCA.

2. Materials and methods

2.1. Gene expression and clinical data

Our study utilized data from TCGA1 and utilized the ‘survival,’ 
‘DEseq2’ and ‘limma’ R software packages then identify 2418 BLCA 
outcomes-related lncRNAs (p < 0.05), 752 differentially expressed 
lncRNAs (|logFC| > 2, fdr < 0.05) and 1492 cuproptosis-related lncRNAs 
(cor > 0.4, p < 0.001). We collected gene expression data from 428 TCGA-
BLCA samples and clinical data of 413 patients from TCGA-
BLCA. We normalized the differentially expressed gene data using log2 
(exp + 1). These rigorous data analysis methods allowed us to obtain 
accurate and reliable results. The lists of outcomes-related lncRNAs, 
differentially expressed lncRNAs, and cuproptosis-related lncRNAs 
intersected and then we  obtained 12 genes, which were used for 
subsequent analysis.

2.2. Construction of a prognostic signature 
for cuproptosis-related lncRNAs

Using the expression of 12 genes, we employed Least absolute 
shrinkage and selection operator (LASSO) regression analysis to 
develop the cuproptosis-related lncRNA signature. We constructed 
the risk score using the following formula: (Coefficient 
lncRNA1 × expression of lncRNA1) + (Coefficient lncRNA2 × 
expression of lncRNA2) + ν + (Coefficient lncRNAn × expression 
lncRNAn), and applied it to each patient. Based on the best cut-off 
value of the risk score (0.036391179), we classified patients into high- 
and low-risk groups. To ensure robust and reliable results, we utilized 
strict and validated methods in our data analysis approach.

2.3. Validation of the risk score signature

We utilized Sangerbox2 to create risk charts and Kaplan–Meier 
curves. Additionally, we performed receiver operating characteristic 
(ROC) curve analysis to compare the conditional survival rate between 
groups using model classification. Through these analyses, we were 
able to verify the validity and reliability of our risk signature. Our 
approach provided a comprehensive evaluation of the prognostic value 

1 https://portal.gdc.cancer.gov/

2 http://sangerbox.com/
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of cuproptosis-related lncRNAs in BLCA, offering important insights 
into the clinical applications of this molecular signature.

2.4. Correlation analysis between tumor 
mutation load and risk score signature

We downloaded tumor mutation burden (TMB)-related data 
from TCGA and used the R package ‘TMBcor’ to analyze the 
correlation of various TMB data with risk scores.

2.5. Immune microenvironment analysis

We used the ESTIMATE algorithm to calculate stromal and immune 
scores based on gene expression data, providing insights into the tumor 
microenvironment. The correlation analysis of staging and inflammatory 
factors with clustering was performed using the ‘heat map’ R package. 
We also tested the relationship between our risk score and immune 
checkpoints. The correlation between risk score and immune cells, 
immune process, and critical steps of the cancer immunity cycle were 
identified using the ‘pheatmap’ and ‘riskImmCor’ R packages.

2.6. Sensitivity analysis of the therapeutic 
target

Sensitive immunotherapeutic and neoadjuvant chemotherapy 
targets were identified based on the gene expression matrix using the 
R package ‘pRRophetic.’ The R package ‘ggpubr’ was used to draw 
boxplots of sensitive targets to compare the correlations with risk 
scores. We compared the risk scores of RB1, ARID1A, ERBB2, ATM, 
ERCC2, and FANCC between high- and low-risk groups and the 
mutation burden of these factors that participate in the neoadjuvant 
chemotherapy process. We also compared the associations of BLCA-
associated drug target genes identified from the Drugbank database 
with our constructed risk signature for targeted and radiation 
therapies. We analyzed immunotherapy, ERBB therapy, chemotherapy, 
and anti-angiogenic therapy effects using the Drugbank database.

2.7. Culture and transfection of the 
UM-UC3 cell line

The UM-UC3 cell line was purchased from the Cell Bank of the 
Chinese Academy of Sciences (China). Cells were cultured in DMEM 
(high glucose) medium (Hyclone) containing 10% fetal bovine serum 
(FBS) at 37°C and 5% CO2. UBE2Q1-AS1-targeted small interfering 
RNA (siRNA) was purchased from JTSBIO Co. (China) to transfect 
the cells. The UBE2Q1-AS1 siRNA sequence was as follows:

GGAGAAACCUGAAUCAUUACAUCTCGAGAUGUAAUGA 
UUCAGGUUUCUCCUU.

2.8. Quantitative real-time PCR

The cells were subjected to RNA extraction using RNAiso Plus 
(Takara Biotechnology, Dalian, China) for the isolation of total 
RNA. Subsequently, the reverse transcription of total RNA was 

conducted employing the Prime Script RT Master Mix (Takara, 
Dalian). The resulting cRNA was subjected to qRT-PCR using the 
SYBR ® Premix Ex TaqTM kit (Takara, Dalian). The results were 
analyzed on a Thermal Cycler Dice ™ Real-Time TP800 System 
(Takara, Kyoto), and GAPDH was selected as the internal reference 
gene. The relative gene expression level was obtained using the 
ΔΔCT method.

The primer sequences were as follows: UBE2Q1-AS1 (Forward 
primer: TCCTCTCCTCGCTACAAATGC; Reverse primer: GCTGG 
AAGCTCTTGCAGTCA).

2.9. CCK-8 assay

96-well plates were utilized for seeding UM-UC3 cells, and the 
Cell Technology Kit-8 (CCK-8) assay reagent (Dojindo Molecular 
Technologies) was added as per the prescribed guidelines of the 
manufacturer. Subsequently, an absorbance plate reader (Bio-Rad) 
was employed to measure the absorbance at a wavelength of 450 nm.

2.10. Cell migration assay

Transwell chambers with 8-μm pores were inserted into 24-well 
plates (Corning Costar, Corning, NY, United  States). Each well 
received 600 μL of DMEM medium containing 10% FBS, while each 
chamber was loaded with 200 μL of FBS-free DMEM medium 
containing 10,000 suspended cells. Following incubation for 48 h at 
37°C in 5% CO2, the inserts were washed with phosphate-buffered 
saline (PBS), and the membrane undersides were stained with crystal 
violet for 15 additional minutes. Cell passage through the membrane 
was measured using ImageJ installed on an inverted microscope 
(EVOS XL system, AMEX1200; Life Technologies Corp, Bothell, WA, 
United States) and images were captured at 10 × magnification.

2.11. Wound-healing assay

We performed a wound-healing assay in six-well plates. When 
UM-UC3 cells grew to a confluence higher than 90%, we scratched a 
straight artificial wound in the plate using a 200-μL pipette tip and 
incubated it with an FBS-free medium. After 24 h, cell migration was 
observed and photographed under a 10x lens using a microscope as 
previously described. Migration rate statistics were performed 
using ImageJ.

2.12. Ethynyl-20-deoxyuridine (EdU) assay

Cell proliferation was evaluated using an EdU assay kit (Ribobio, 
Guangzhou, China). In brief, 2000 transfected cells were seeded into 
96-well plates. After 18 h, 500 μL of medium containing 50 μM EdU 
was added to each well, followed by incubation for 3 h. The medium 
was then removed, and the cells were fixed with 4% paraformaldehyde 
at room temperature for 15 min. Next, 0.3% Triton X-100 in PBS was 
added to each well to permeabilize the cells for 15 min, and a click 
reaction solution was added for an additional 30 min. After staining 
with Hoechst 33342 diluted in PBS (1:1000) for 10 min, the proportion 
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of EdU-positive cells was determined using a fluorescence microscope 
(Olympus Corporation, Japan), and images were captured for 
subsequent analyses with ImageJ software (NIH Image, Bethesda, MD).

3. Results

3.1. Cuproptosis-related risk signature 
construction in BLCA

We found 2418 lncRNAs associated with BLCA outcomes, 752 
differentially expressed lncRNAs, and 1492 lncRNAs associated with 
cuproptosis using the R package. Twelve genes were obtained by the 
intersection of the three groups of lncRNAs (Figure 1A). Based on the 
expression levels of these 12 genes, we performed LASSO regression 
analysis. Ultimately, we established a prognostic signature consisting 

of 8 genes, according to the analysis results (Figures  1B,C). The 
formula was as follows:
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The expression levels of the eight genes were significantly different 
between BLCA and normal tissues (Figures 1D,E). The risk signature 

FIGURE 1

(A) Number and relationship of prognostic lncRNAs, differentially expressed lncRNAs and cuproptosis-related lncRNAs. (B) Least absolute shrinkage 
and selection operator coefficient spectra of 12 BLCA prognostic genes. (C) Optimal lambda. (D,E) Differential expression levels of eight genes in BLCA 
versus normal tissues. (F) Relationship between the screened risk signature and critical genes for cuproptosis.
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was associated with several genes critical for cuproptosis, including 
DLAT, DLST, SLC31A1, DBT, ATP7A, and ATP7B (Figure 1F).

We obtained data from TCGA and used them to build a training 
set to calculate the risk score. All BLCA patients were randomly 
allocated into two sets using a complete randomization method at a 
1:1 ratio through SPSS software. One set served as the training set, 
while the other set served as the test set. The risk score had a positive 
relationship with the number of deaths. The survival curve 
demonstrated a marked contrast in 5-year overall survival (OS) 
between the high-risk and low-risk cohorts, revealing significant 
differences (Figure 2A). A heat map demonstrated that there was a 
significant gap in the expression of genes used to construct the risk 
signature for the high- and low -risk groups (Figure 2B). The area 
under the ROC curve (AUC) for one-year OS was 0.71 (Figure 2C). 
In order to confirm the findings, we  established a test set and 
computed the risk score for both the test and full sets, subsequently 
classifying the samples into high- and low-risk categories. The 
resulting survival curve demonstrated a significant difference in the 
one-year OS rates in the high- and low-risk groups (Figures 2D,G). 
The heat map showed a significant gap in the expression of genes used 
to construct the risk score in the test and full sets for high and low 

risks (Figures 2E,H). The AUCs were 0.66 for the test set (Figure 2F) 
and 0.67 for the full set (Figure 2I).

Subsequently, we conducted single-gene survival analysis for the 
eight genes in the full set of samples, revealing significant segregation 
of the high-risk and low-risk groups for each individual gene 
(Figures 3A–H).

Furthermore, a single-factor survival analysis was conducted on 
both the training and test sets, effectively discerning the high-risk 
group from the low-risk group in a significant manner 
(Supplementary Figures S1, S2).

Univariate and multivariate Cox regression analyses were 
conducted, revealing that age, stage, and risk score were independent 
risk factors in predicting outcomes (Table 1).

We analyzed cancer stages in the high- and low-risk groups and 
analyzed the risk scores of patients in the Stage 1 + Stage 2 and Stage 
3 + Stage 4 groups. There was a positive correlation between stage and 
risk scores (Figures  4A,B). We  performed a clinical sub-groups 
survival analysis in the full set based on the eight genes in the genetic 
risk score, and compared between Stage 1 + Stage 2 and Stage 3 + Stage 
4, age > 60 years and age < = 60 years, and men and women 
(Figures 4C–H).

FIGURE 2

(A–I) The Cancer Genome Atlas training set, test set and full set were analyzed through Kaplan–Meier analysis, which revealed a significant variation in 
the 5-year overall survival rate between the high-risk and low-risk clusters (A,D,G). The risk scores were sorted in an ascending order; patients’ over 
survivals; Heatmaps for eight genes in The Cancer Genome Atlas training set, test set and full set (B,E,H). Receiver operating characteristic curves for 
1-year overall survival in The Cancer Genome Atlas training set, test set and full set (C,F,I).
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These comparisons revealed significant differences between these 
sub-groups. We  performed the same clinical sub-groups survival 
analysis in the training and test sets and found significant differences 
(Supplementary Figures S3, S4). These findings suggest that our 
signature is accurate and can predict outcomes.

3.2. Risk-based analysis of TMB

We analyzed the tumor-related gene mutation burden in the 
samples of the low- and high-risk groups and significant differences 
in the gene burden, gene type, and mutation (Figures 5A,B). The 
difference in TMB was statistically significant (Figure  5C). 
We performed a correlation analysis between the risk score and TMB 
and found that the risk score presented a significant negative 
relationship with TMB (Figure 5D). The survival analysis of the high- 
and low-TMB groups showed that the outcomes of the low-TMB 
group were significantly worse than that of the high-TMB group 
(Figure  5E). We  divided the risk score and TMB as criteria for 
grouping (high TMB + high-risk; high TMB + low-risk; 

low-TMB + high-risk; low-TMB + low-risk) and performed survival 
analysis. The difference in survival outcomes among the groups was 
significant (Figure 5F), suggesting that risk score and TMB could 
be used as independent risk assessment methods to predict BLCA 
outcomes, and the risk score predicts TMB.

3.3. Risk-based analysis of the immune 
microenvironment

We analyzed the immune microenvironment of samples with 
different risk scores and obtained the expression profiles of their 
immune microenvironments (Figure  6A). We  then analyzed the 
immune function of the high- and low-risk groups. The high-risk 
group’s immune function was significantly more hyperactive than the 
low-risk group (Figure 6B). The inflammatory response is associated 
with immunotherapy; therefore, we  performed an analysis of the 
inflammatory response and found that the inflammatory response in 
the high-risk group was more intense than that of the low-risk group 
(Figure 6C). The risk signature we constructed was positively correlated 

FIGURE 3

(A–H) Kaplan–Meier survival curves for eight genes in the full set of The Cancer Genome Atlas.

TABLE 1 Univariate and multivariate Cox regression analysis of age, grade, stage, and risk score.

Variables Univariable analysis Multivariable analysis

HR 95% CI of HR P HR 95% CI of HR P

Lower Upper Lower Upper

Age 1.03 1.02 1.05 4.74E-05 1.03 1.01 1.05 0.0002

Gender 0.86 0.62 1.19 0.3489 0.89 0.64 1.24 0.4983

Grade 2.89 0.72 11.69 0.1361 1.11 0.27 4.63 0.8829

Stage 1.74 1.44 2.11 1.71E-08 1.66 1.36 2.02 6.19E-07

Risk score 8.11 3.28 20.09 6.01E-06 7.71 3.04 19.56 1.71E-05
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with the enrichment score of all immunotherapy-related positive 
markers (Figure 6D). The risk signature presents a positive relationship 
with the critical steps of the cancer immunity cycle (Figure 6E). The 
high- and low-risk groups were subject to immune checkpoint analysis, 
which uncovered higher gene expression of immune checkpoints in the 
former than in the latter (Figure  6F). These findings suggest the 
possibility that samples in the high-risk group might obtain higher 
sensitivity and better therapeutic effects in terms of immunotherapy.

Based on our analysis of immune checkpoints, the high- and 
low-risk groups showed a significant difference, and we focused on 

CTLA4 and PD-1 (targets for cancer immunotherapy). We divided the 
samples according to treatment regimens: no anti-CTLA4 and PD-1, 
only anti-CTLA4, only anti-PD-1, and anti-CTLA4 and PD-1 
combined. Our study compared the treatment effect scores of anti-
CTLA4 or PD-1 treatment regimens between high- and low-risk 
groups. The results indicated that patients in the high-risk group who 
received single or combined anti-PD-1 checkpoint therapy showed 
significantly better treatment effects than those in the low-risk group. 
This finding suggests that the immunotherapy effect of anti-CTLA4 
and PD-1 in the high-risk group was better than that of the low-risk 

FIGURE 4

(A,B) Staging proportion of patients in high and low-risk groups, and risk score distribution of patients in the Stage 1  +  Stage 2  +  Stage 3  +  Stage 4 
group. It should be noted that there are samples at stage I in panel (A), but due to their very small number and rounding off, they ultimately appear as 
0%. (C–H) All BLCA cases in The Cancer Genome Atlas full set were stratified according to clinicopathological parameters. (C) Stage I-II; (D) Stage 
III-IV; (E) age  ≤  60; (F) age  >  60; (G) Male; (H) Female.
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group (Figures  7A–D). The finding also partly corroborates our 
previous conjecture that our risk score can predict the sensitivity and 
effectiveness of immunotherapy. We  analyzed the expression of 
neoadjuvant chemotherapy-related genes in various groups according 
to the risk scores and found that mutations of RB1 and ERBB2 in the 
high-risk group were significantly more numerous than in the low-risk 
group (Figures 7E,F). This finding suggests that patients with higher 
risk scores have better neoadjuvant treatment outcomes. The 
enrichment score of the radiotherapy prediction and targeted therapy 
pathways were higher in the high-risk group than in the low-risk 
group (Figure 7G). The Drugbank database revealed that the samples 
in the high-risk group responded significantly to immunotherapy, 
ERBB therapy, chemotherapy, and anti-angiogenic therapy 

(Figure 7H). The data indicates that the therapeutic benefit for patients 
undergoing immunotherapy, neoadjuvant chemotherapy, 
radiotherapy, and anti-angiogenic therapy is significantly higher in the 
high-risk group compared to the low-risk group.

3.4. UBE2Q1-AS1 knockdown significantly 
inhibited BLCA cell viability, migration, and 
proliferation

We first knocked down UBE2Q1-AS1 using siRNA (Figure 8A). 
Subsequently, CCK-8 assays were conducted on UM-UC3 cells which 
revealed that the UBE2Q1-AS1 knockdown group exhibited 

FIGURE 5

(A) Tumor-associated gene mutation burden in low-risk group samples. (B) Tumor-associated gene mutation burden in high-risk group samples. 
(C) Scatter Plot of tumor mutation burden for low- and high-risk groups. (D) Correlation analysis between risk score and tumor mutation burden. 
(E) Survival analysis of high tumor mutation burden group and low tumor mutation burden group. (F) Survival analysis of H-TMB  +  high-risk group, 
H-TMB  +  low-risk group, L-TMB  +  high-risk group, and L-TMB  +  low-risk group.
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significantly lower cell viability compared to the negative control 
group (Figure  8B). We  also performed cell migration assay and 
wound-healing assay and found that the migration ability of UM-UC3 
cells in the UBE2Q1-AS1 knockdown group was significantly lower 
(Figures  8C,D). Moreover, proliferation in UM-UC3 cells was 
markedly suppressed upon knockdown of UBE2Q1-AS1, as evidenced 
by the EdU assay (Figure 8E).

4. Discussion

Studies on lncRNA function revealed many mechanisms, and it 
is currently believed that lncRNAs are inextricably related to cellular 
functions such as differentiation, apoptosis, and proliferation (20). As 
a novel regulated cell death, cuproptosis is compelling regarding 
prognostic signature establishment related to BLCA. Understanding 

FIGURE 6

(A) Relationship between molecular subtypes and immune molecular typing. (B) Analysis of immune function in the low- and high-risk groups. 
(C) Inflammatory response analysis. (D) Correlation analysis between risk score and positive markers related to immunotherapy. (E) Analysis of the 
correlation between risk scores and critical steps of the cancer immunity cycle. (F) Immune checkpoint analysis. * Represents P ≤ 0.05; ** Represents 
P ≤ 0.01; *** Represents P ≤ 0.001.
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the mechanism of cuproptosis, we realize that it plays a critical role 
in BLCA progression. LncRNAs are involved in tumor development; 
therefore, we  used bioinformatics analysis to identify lncRNAs 
affecting BLCA outcomes, lncRNAs differentially expressed in BLCA, 
and lncRNAs associated with cuproptosis. The construction of risk 
signature has a wide range of application value in urinary system 
tumors (21). We constructed a risk evaluation system for outcomes 
to guide diagnosis and treatment. We obtained 12 genes in TCGA 
using univariate Cox analysis and a risk prediction signature 
composed of eight genes (AC004637.1, AC011503.2, AC012065.2, 
AC099850.3, AL078587.1, MIR181A2HG, U47924.1, and 
UBE2Q1-AS1) using LASSO-penalized multivariate Cox analysis. 

Downregulation of miR181A2HG downregulated AKT2 expression 
by decreasing its sponging of miR-8056, miR-6842-5p, and 
miR-6832-5p, which in turn significantly inhibited the migration, 
proliferation, and capillary-like structure formation in human 
umbilical vein endothelial cells; glucose uptake, ATP content and 
glycogen synthesis were also significantly reduced, suggesting that 
MIR181A2HG also plays a critical role in energy metabolism (22). 
UBE2Q1-AS1 is involved in RNA degradation and ubiquitin-
mediated proteolysis. Zhang et al. suspected that UBE2Q1-AS1 might 
play a role in cancer through the sense gene UBE2Q1, which 
significantly correlates with gastric cancer tumor grade (23). By 
conducting survival analysis, we observed notable differences in the 

FIGURE 7

(A–D) No anti-CTLA4 and PD-1, anti-CTLA4 only, anti-PD-1 only, combined with anti-CTLA4 and PD-1 treatment effect scores in the low- and high-
risk groups. (E) Expression profile of genes associated with neoadjuvant chemotherapy in the low-risk group. (F) Expression profile of genes related to 
neoadjuvant chemotherapy. (G) Enrichment analysis related to radiotherapy prediction pathways and targeted therapy in the low- and high-risk 
groups. (H) Enrichment analysis of samples from low- and high-risk groups for drug targets, including immunotherapy, ERBB therapy, chemotherapy, 
and anti-angiogenic therapy.
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five-year survival rates and area under the ROC curve between the 
high- and low-risk groups based on our devised risk scores. Our 
monogenic survival analysis of the eight genes revealed that they were 
capable of identifying and differentiating the high- and low-risk 
groups, while their dysregulation emerged as a standalone risk factor 
for BLCA. We performed survival analysis of stage, age, and gender 
and found that the high- and low-risk groups significantly 
distinguished Stage 1 + Stage 2 from Stage 3 + Stage 4, age > 60 years 
from age < = 60 years, and males from females. Across all human 
cancers, TMB predicts benefits from immune checkpoint inhibition 
(24); it has been proposed as a possible immunotherapy biomarker 
(25). Therefore, we hoped to determine if there were TMB differences 
between patients in the high- and low-risk groups. We  found a 
significant gap in TMB between groups with a statistically negative 
relationship. The results of the survival analysis indicated that the 

group with a higher TMB exhibited superior outcomes compared to 
the group with a lower TMB. We divided the cohort into four groups 
according to TMB and risk signature. Survival analysis showed that 
TMB and risk signature were independent methods to predict BLCA 
outcomes, and the risk signature predicts the degree of TMB. The 
tumor immune microenvironment is essential in cancer occurrence 
and progression, and immune dysfunction is a primary cause of 
tumorigenesis, suggesting that correct expression of immune genes is 
essential for collective immune function. Prior research has mainly 
centered on coding genes, however, a number of studies have 
highlighted the importance of lncRNAs in the immune system (26–
28). Therefore, we explored the immune microenvironment based on 
the risk signature. Wang et al. identified biomarkers in the tumor 
immune microenvironment using computational biology methods, 
which provided methodological support for our study (29). We used 

FIGURE 8

(A) Real-time quantitative PCR before and after UBE2Q1-AS1 knockdown. (B) A CCK8 assay was used to show that the knockdown of UBE2Q1-AS1 
inhibited viability in UM-UC3 cells. (C) Cell migration assays demonstrated the effect of UBE2Q1-AS1 on UM-UC3 cells migration. (D) Wound-healing 
assay was used to test the effect of UBE2Q1-AS1 on UM-UC3 cells migration. (E) Knockdown of UBE2Q1-AS1 inhibited the proliferation of UM-UC3 
cells using an EdU assay. ** Represents P ≤ 0.01; *** Represents P ≤ 0.001.
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seven databases to obtain immune microenvironment expression 
profiles and found significant differences in the immune 
microenvironment between the high- and low-risk groups. The high-
risk group exhibited heightened immune function and inflammatory 
responses compared to the low-risk group. The risk scores were 
positively correlated with immunotherapy-related positive markers, 
critical steps of cancer immunity circulation, and critical gene 
expression levels of immune checkpoints. Immune checkpoint related 
therapies have great value for urinary system tumors (30). Immune 
checkpoints regulate the initiation and maintenance of immune 
responses, including a series of structures located on the cell surface 
with similar functions exemplified by CTLA4 and PD-1 (31). 
Immune checkpoint inhibitors (ICI) have been approved to treat 
many tumors and have become a critical link in cancer therapy. The 
effective combination of dual ICI therapy and the use of regimens 
combining targeted therapy and chemotherapy is expanding (32). 
CTLA4 and PD-1 are the most clinically relevant checkpoints that 
inhibit anticancer immune responses; inhibition of these receptors 
has been shown to eliminate tumors in animal models (33). Based on 
our immune checkpoint analysis, we will focus on the analysis of 
CTLA4 and PD-1. By computing the treatment effect scores of four 
treatment regimens associated with CTLA4 and PD-1 in both high- 
and low-risk groups, we determined that anti-PD-1 monotherapy and 
anti-CTLA4 combined with PD-1 had superior treatment effects in 
the high-risk group compared to the low-risk group. Neoadjuvant 
chemotherapy is also widely used. Cisplatin-based neoadjuvant 
chemotherapy is often administered before radical cystectomy in 
patients with muscle-invasive BLCA (34, 35). Studies have shown that 
mutations in ERCC2, ERBB2, and DNA repair genes can predict 
responses to neoadjuvant chemotherapy, which is more conducive to 
weighing the benefits against substantial toxicity (36). After 
examining the gene expression levels related to neoadjuvant 
chemotherapy, we observed a higher incidence of RB1 and ERBB2 
mutations in the high-risk group compared to the low-risk group. 
Based on this finding, we  hypothesized that the high-risk group 
would gain more benefits from neoadjuvant chemotherapy. 
We  conducted meaningful analyses of immune-targeted therapy 
pathways, radiation therapy-related pathways, and relevant drug 
targets for multiple targeted therapies and demonstrated the validity 
of our risk signature. We  focused on BLCA outcomes prediction 
using a cuproptosis-related lncRNA signature and the effect of TMB, 
immune microenvironment analysis, immune-targeted therapy, 
neoadjuvant chemotherapy, and other treatments. We are the first to 
analyze the prognostic impact of cuproptosis in BLCA. The treatment 
outcomes analysis has high feasibility for clinical decision-making. 
We  verified the conclusions from the correlation analysis 
experimentally. We knocked down UBE2Q1-AS1 and validated the 
knockdown efficiency using PCR. UBE2Q1-AS1 knockdown in 
UM-UC3 cells attenuated viability, migration, and proliferation. Our 
study has some limitations. First, our clinical data are derived from 
the same database, and our training and validation sets are derived 
from different parts of the same data source. Second, we did not 
include factors that may affect outcomes, such as smoking. Third, the 
study was retrospective; prospective, multicenter studies are needed 
for support and validation. Fourth, our BLCA outcomes study of 
cuproptosis-related lncRNAs requires in-depth related mechanistic 
studies. Finally, our conclusions concerning drug therapy for BLCA 
need to be verified in clinical trials.

5. Conclusion

We analyzed the genes associated with cuproptosis-related 
lncRNAs and constructed an eight-genes signature for BLCA, which 
has value in predicting BLCA outcomes and selecting targeted therapy 
or neoadjuvant chemotherapy.
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