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Purpose: The aim of this study is to apply deep learning techniques for the

development and validation of a system that categorizes various phases of dry

age-related macular degeneration (AMD), including nascent geographic atrophy

(nGA), through the analysis of optical coherence tomography (OCT) images.

Methods: A total of 3,401 OCT macular images obtained from 338 patients

admitted to Shenyang Aier Eye Hospital in 2019–2021 were collected for the

development of the classification model. We adopted a convolutional neural

network (CNN) model and introduced hierarchical structure along with image

enhancement techniques to train a two-step CNN model to detect and classify

normal and three phases of dry AMD: atrophy-associated drusen regression, nGA,

and geographic atrophy (GA). Five-fold cross-validation was used to evaluate the

performance of the multi-label classification model.

Results: Experimental results obtained from five-fold cross-validation with

di�erent dry AMD classification models show that the proposed two-step

hierarchical model with image enhancement achieves the best classification

performance, with a f1-score of 91.32% and a kappa coe�cients of 96.09%

compared to the state-of-the-art models. The results obtained from the ablation

study demonstrate that the proposed method not only improves accuracy across

all categories in comparison to a traditional flat CNN model, but also substantially

enhances the classification performance of nGA, with an improvement from 66.79

to 81.65%.

Conclusion: This study introduces a novel two-step hierarchical deep learning

approach in categorizing dry AMD progression phases, and demonstrates its

e�cacy. The high classification performance suggests its potential for guiding

individualized treatment plans for patients with macular degeneration.

KEYWORDS

optical coherence tomography (OCT), age-related macular degeneration (AMD), nascent

geographic atrophy (nGA), convolutional neural network (CNN), deep learning
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1. Introduction

Age-related macular degeneration (AMD) (1) is an ocular

disease that manifests with a degenerative change in the retina and

choroid of the macular region. According to the World Health

Organization, ∼1.3 billion people globally suffer from varying

degrees of vision loss, with AMD as the third leading cause of vision

loss among patients (2, 3). AMD predominantly affects individuals

over the age of 50, and its prevalence increases with advancing

age (4). As the global population continues to age, the number of

people affected by AMD is expected to rise, further highlighting

the importance of understanding and addressing this debilitating

ocular disease (5).

Two distinct categories of AMD are typically distinguished

considering both clinical and pathological features: the atrophic

or dry form, and the exudative or wet form. The exudative form

is defined by the presence of abnormal retinal changes caused by

the growth of newly formed vessels within the macula. The dry

form, on the other hand, is characterized by a progressive course

that culminates in degeneration of the retinal pigment epithelium

(RPE), thickening of the Bruch membrane, and photoreceptor

loss (6). In its late stages, dry AMD manifests with localized RPE

degeneration and photoreceptor loss, known as geographic atrophy

(GA), which ultimately leads to progressive and irreversible loss of

visual function.

Early detection and intervention of GA can facilitate the timely

intervention from clinicians and better management of the disease,

leading to improved patient outcomes. The recent approval by the

U.S. Food and Drug Administration of a new treatment for GA

FIGURE 1

Optical coherence tomography (OCT) images of a healthy retina, drusen, nascent geographic atrophy (nGA) and geographic atrophy (GA).

accentuates the importance of early detection of this condition (7,

8). The identification of GA is also valuable in understanding

the natural progression of AMD and characterizing the disease

spectrum. However, GA is typically small in its nascent stage

and can be difficult to identify accurately, even for experienced

clinicians. This difficulty is exacerbated by the fact that the imaging

characteristics of GA are heterogeneous in shape, size, and location,

making it challenging to detect and differentiate from other kind

of retinal lesions such as drusen. By accurately detecting the

earliest signs of GA, clinicians can provide timely and effective

interventions, leading to better management of the condition and

improved patient outcomes.

A recent study (9) demonstrated that nascent GA (nGA) is a

strong predictor for the development of GA, providing supportive

evidence of the potential value of nGA as a surrogate endpoint

in future intervention trials for the early stages of AMD. In OCT

images, the presence of nGA is defined as the presence of the

subsidence of the inner nuclear layer (INL) and outer plexiform

layer (OPL), and/or the presence of a hyporeflective wedge-shaped

band (Figure 1).

OCT has emerged as a critical imaging technique for the

diagnosis and classification of atrophy, with a consensus established

based on the assessment of OCT images (10). The Classification

of Atrophy Meetings (CAM) group has promulgated guidelines

for the employment of OCT in the diagnosis of dry AMD.

According to CAM’s consensus, nGA was suggested to be retained

as the term to describe incomplete retinal pigment epithelium

and outer retinal atrophy (iRORA) in the absence of choroidal

neovascularization (CNV) (10). To ensure accurate diagnosis and
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treatment, reproducibility is crucial in identifying iRORA and nGA

with OCT.

Advances in OCT technology and the integration of artificial

intelligence algorithms will likely improve the accuracy and

reliability of iRORA identification as clinicians and reading centers

become more familiar with OCT findings (11). Recently numerous

studies have reported the application of deep convolutional neural

networks (CNNs) in the diagnosis of AMD (12–15). In these

studies, promising results have been demonstrated in detecting

AMD with medical images such as color fundus photography and

OCT. With the aid of deep learning algorithms and medical image

analysis, identifying the early signs of GA (i.e., nGA) has become

increasingly feasible.

However, no previous studies have explored the feasibility of

detecting the early stages of dry AMD. One of the challenges is that

currently available datasets for AMD classification tend to focus

on the more advanced phases of the disease, and do not contain

sufficient examples of early stages. The variability in image quality,

diagnosis, and definition of AMD phases across different datasets

further complicates the task of detecting early stages of the disease

using CNNs.

In seeking to improve the early detection of dry AMD,

including the characteristics such as nGA, we developed and

validated a novel two-step hierarchical CNN model along with

image enhancement for dry AMD classification. The major

contributions of this research can be outlined as follows:

• To the best of our knowledge, this is the first investigation to

use CNNs to classify the early stages of dry AMD, including

nGA.

• To leverage the domain expertise regarding the characteristics

of OCT images, including those of nGA, we combine

image enhancement and hierarchical classification techniques,

effectively highlighting features associated with nGA while

preserving the overall integrity of the OCT images.

• The proposed method demonstrates promising classification

results and can be utilized as a useful computer-aided

diagnostic tool for clinical OCT-based AMD diagnosis.

2. Materials and methods

2.1. Datasets and labeling

OCT images in this study were collected from dry AMD

patients admitted to the Shenyang Aier Excellence Eye Hospital

(Shenyang, China) in 2019–2021. The device used to obtain the

images was a Heidelberg Spectralis HRA + OCT (Heidelberg,

Germany), and the scan length was 6 mm × 6 mm. A total of

3,401 qualified OCT images from 338 patients were selected for

model development. Each image was classified by a retinal specialist

with over 15 years of clinical expertise. Example OCT images

of both healthy retinas and dry AMD classes are presented in

Figure 1. These images were divided into a training dataset (∼80%

of the patients) for model development and a validation dataset

(∼20% of the patients) for validating the models based on the

patient’s identification number. The partitioning of the dataset into

approximate proportions of 80 and 20% is contingent upon the

distribution of patients rather than images. Given that each patient

may present an unequal number of OCT images acquired during

a single visit, the precise ratios of the division may exhibit minor

discrepancies across the five-fold cross validation dataset.

The dataset, as detailed in Table 1, contains 712 images of

normal, 1,167 images of drusen, 711 images of nGA, and 811 images

of GA. We conducted five-fold cross-validation to evaluate the

model performance, which involved partitioning the dataset into

five equally sized folds, as described in Table 1. In each iteration

of the five-fold cross-validation, four of the five subsets are used for

training the model, while the remaining subset is utilized for testing

its performance. This process is carried out five times, ensuring that

each subset serves as the test set once. The final performance metric

is obtained by computing the average of the results from each of the

five iterations. This approach allows for a more accurate assessment

of the model’s generalizability and performance on diverse subsets

of the data, reducing the risk of overfitting (16).

2.2. Development of a deep learning
classifier

2.2.1. Image preprocessing
Image enhancement was performed to improve the quality

and contrast of the OCT images, as they are inevitably susceptible

to speckle noise, detection noise, and photon shot noise (17–

19). Numerous studies have investigated the impact of image

enhancement techniques on OCT images (20–22). The current

study applied filtering, exponential enhancement, and linear

enhancement to enhance the visibility of important features in the

images, such as drusen and atrophic areas, as shown in Figures 2, 3.

This process was intended to improve the performance of the CNN

models by providing them with clear and informative images.

The outcome of the image enhancement procedure, performed

on a representative image, is presented in Figure 3. The original

image is presented in Figure 3A. Prior to further processing,

an anisotropic diffusion filtering method (23) was employed to

eliminate the speckle noise and accentuate the contrast between the

distinct retinal layers, as demonstrated in Figure 3B. In the process

of anisotropic diffusion, the parameters were set as alpha = 0.05 and

K = 0.3. Subsequently, exponential enhancement (24) was applied

to account for the light attenuation in OCT images and improve the

image contrast, leading to the image of Figure 3C. The exponential

enhancement was performed with parameters c = 0.4 and gamma

= 1.1. Following this, a linear enhancement (25) method was

implemented to further emphasize the layer by adapting the pixel

values within a specific intensity range, thus rendering the layer

more apparent and distinguishable from other features present in

the image. The linear enhancement was applied with coefficient m

= 20. The final result of image enhancement is demonstrated in

Figure 3D.

2.2.2. Hierarchical classification
Within three phases of dry AMD, drusen-associated atrophy

and nGA are both types of age-related macular degeneration that

share similar imaging characteristics, making them difficult to
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TABLE 1 Details of the training and validation datasets in five-fold cross validation.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Train Val Train Val Train Val Train Val Train Val

No of patients (%) 260 (79.5) 67 (20.5) 260 (79.5) 67 (20.5) 261 (79.8) 66 (20.2) 263 (79.9) 66 (20.1) 266 (80.9) 63 (19.1)

No of images (3,401) 2,720 681 2,806 595 2,587 814 2,742 659 2,749 652

Normal (712) 591 121 621 91 501 211 566 146 569 143

Drusen (1,167) 970 197 875 292 937 230 941 226 945 222

nGA (711) 554 157 592 119 564 147 560 151 574 137

GA (811) 605 206 718 93 585 226 675 136 661 150

Total images

(patients)

3,401 (338)

FIGURE 2

Flowchart of image enhancement methods adopted in preprocessing.

FIGURE 3

Results of the image enhancement procedure on a representative OCT image of retinal layers. The original image is shown in (A), while (B–D)

illustrate the e�ect of di�erent enhancement techniques, namely anisotropic di�usion filtering (B), exponential enhancement (C), and linear

enhancement (D), on the image. The final image, shown in panel (D), highlights the retinal layer by adapting the pixel values within a specific intensity

range, making it more distinguishable from other features in the image.

differentiate in OCT images. To tackle this problem, hierarchical

models were developed to conduct a two-step classification of

dry AMD. Hierarchical models perform better than flat models

in image classification (26). Recent studies have leveraged the

hierarchical organization of object categories to break down

classification tasks into multiple stages, leading to successful

outcomes (27–29). In this research, we implemented hierarchical

classification by training two models, as depicted in the flowchart

presented in Figure 4. The initial model generates a general dry

AMD classification, distinguishing between normal, early stages

of GA (i.e., drusen or nGA), and GA. The subsequent model

concentrates on discriminating between drusen and nGA. Upon

merging the outputs of the two models, a final classification result

consisting of four labels is obtained.

In the hierarchical classification method, the base models serve

as the primary feature extractor and the extracted features are

then used to classify the images into their respective classes at

different levels of the hierarchy. CNNs, which exhibit advantages

in many application areas including medical diagnosis (30–33), are

selected as the candidates of the base model in the hierarchical

classification. Four CNNs, specifically Normalizer-Free ResNet-

50 (34), Xception (35), DenseNet169 (36), and EfficientNetV2 (37),

were evaluated as classification models for dry AMD. These models

are widely recognized for their remarkable performance in a

variety of computer vision andmedical image analysis applications,

making them suitable for this study. All the models were initially

trained on a vast labeled dataset known as ImageNet (38) and were

subsequently fine-tuned on OCT images. The final layer of these

models was removed, and a new fully connected layer with an

output size of four was inserted to represent the four distinct classes

(normal, drusen, nGA, and GA) for classification. To minimize the

computation cost and select the model with the best performance

for further analysis, we conducted a hold-out validation using

only the Fold 1 dataset of Table 1, rather than employing five-fold

cross-validation, to compare different CNN models.

We trained the deep learning models using PyTorch (39), a

commonly used library in the deep learning community. During

the training process, we updated the model parameters using the

Adam optimizer (learning rate of 0.00002) for every minibatch

of four images. The training was stopped after 20 epochs once
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FIGURE 4

Flowchart of our proposed hierarchical classification model.

the accuracy values no longer increased or started to decrease.

All experiments were conducted on a server with Intel Core i5-

10600KF, using an NVIDIA GeForce RTX 3090 24GB GPU for

training and validation, with 32GB RAM.

Cross-entropy loss curves were plotted against the number of

training steps to visualize the model convergence during training.

The loss function estimates the discrepancy between the predicted

and actual labels and is employed to optimize the model during

training. The loss curves enable us to observe how the models learn

and converge toward the optimal solution.

Gradient-weighted class activation maps (Grad-CAM) was also

employed to generate heatmaps that provide visual explanations of

the classification model’s predictions by highlighting the areas in

retinal images that contributed significantly to the classification of

normal, drusen, nGA, and GA cases. Grad-CAM is a visualization

technique that employs the gradients of target class scores with

respect to feature maps in the final convolutional layer to produce

a coarse localization map, highlighting the important regions in the

input image for a specific class prediction (40). This visualization

technique not only assists in the interpretation of the model’s

decisions but also aids in identifying potential misclassifications or

biases, consequently improving the model’s usability and clinical

applicability.

2.2.3. Evaluation metrics
To assess the efficacy of the four models, various metrics were

employed, including accuracy, sensitivity, specificity, and the f1-

score for each class, as well as the macro-f1 and kappa coefficients

for overall classification performance. Sensitivity gauges the ratio

of true positive predictions for a given class, while specificity

measures the proportion of true negative predictions. The f1-score

is the harmonic mean of precision and recall, and offers a holistic

measure of the model’s accuracy for a particular class. The macro-

f1 and kappa coefficients were used to evaluate the models’ overall

performance. The macro-f1 score is the arithmetic mean of f1-

scores for each class, while the kappa coefficient measures the level

of agreement between the predicted and actual labels, considering

the possibility of chance agreement.

3. Results

3.1. Base model selection

Table 2 presents the results given by the four CNN models

evaluated on a single fold of the validation dataset, with each of the

four rows corresponding to the classification metrics for individual

classes, i.e., normal, drusen, nGA, and GA.

Notably, all four CNN models produce commendable results

for the normal, drusen, and GA categories, with all f1 scores

exceeding 90%. However, the classification performance for nGA is

generally inferior, with the EfficientNetV2, DenseNet169, Xception,

and ResNet50NF models giving f1 scores of 82.49%, 82.68%,

80.44%, and 83.58%, respectively. Among the evaluated models,

the ResNet50NF model produces the highest overall f1 scores, with

98.91% for normal, 94.60% for drusen, 83.58% for nGA, and 91.21%

for GA. The macro-f1 and kappa scores using ResNet50NF are

92.08% and 95.45%, respectively.
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TABLE 2 Classification results (percentage) of four CNNmodels on one fold of validation dataset.

Methods Classes Accuracy Sensitivity Specificity F1 Macro-f1 Kappa

EfficientNetV2 Normal 98.66 100.00 98.41 95.79 89.93 94.01

Drusen 94.96 92.12 97.69 94.72

nGA 92.44 89.08 93.28 82.49

GA 96.13 81.72 98.80 86.86

DenseNet169 Normal 99.33 100.00 99.21 97.85 90.35 94.33

Drusen 95.46 94.18 96.70 95.32

nGA 92.61 88.24 93.70 82.68

GA 95.80 79.57 98.80 85.55

Xception Normal 98.82 100.00 98.61 96.30 88.12 93.88

Drusen 95.29 91.78 98.68 95.04

nGA 91.09 91.60 90.97 80.44

GA 94.62 72.04 98.80 80.72

ResNet50NF Normal 99.66 100.00 99.60 98.91 92.08 95.45

Drusen 94.96 90.07 99.67 94.60

nGA 92.61 94.12 92.23 83.58

GA 97.31 89.25 98.80 91.21

Each rows gives the classification metrics for individual classes: normal, drusen, nGA and GA. The best results are shown in bold.

Figure 5 illustrates the performance of the four CNN models

on the training dataset in terms of cross-entropy loss (A), and

on the validation dataset in terms of cross-entropy loss (B),

macro-f1 score (C), and kappa coefficient (D) during the training

process. Notably, ResNet50NF achieves the highest macro-f1 score

and kappa coefficient, while also exhibiting fastest convergence,

as evidenced in Figures 5A, B. Given the superior classification

performance and fast convergence of ResNet50NF, this CNN

was selected as the base model for the subsequent hierarchical

classification. The proposed model with image enhancement and

hierarchical classification achieves macro-f1 of 91.32 ± 9.06%, and

kappa score of 96.09± 4.44%.

3.2. Ablation study

We compared the performance of each components of the

proposed method by ablation study. The ablation results are

presented in Table 3. The accuracy, sensitivity, specificity, and f1

score are listed for the normal, drusen, nGA, and GA classes. The

macro-f1 and kappa values are also displayed as metrics of the

overall classification performance.

The baseline model achieves a high f1 score on the normal

(98.99%) and GA (90.07%) classes, but has a limited ability

to classify drusen (85.24%) and nGA (66.79%) classes. Image

enhancement slightly improves the classification performance

of nGA (from 66.79% to 67.83%) and GA (from 90.07% to

91.11%), but does not improve the performance over the baseline

for the normal and drusen classes. By applying hierarchical

classification to the baseline model, the classification performance

of nGA was improved (from 66.79% to 72.74%, and GA from

90.07% to 93.28%). The proposed method which includes image

enhancement along with hierarchical structure, achieves the highest

accuracy for all classes, with a significant improvement on the nGA

class (from 66.79% to 81.65%).

In terms of sensitivity and specificity, the proposed method

outperforms the other two models in all classes, indicating that it

can better distinguish between true positives and true negatives for

each class. The macro-f1 and kappa coefficient for the proposed

method, are 91.32% and 96.09% respectively, which are higher

than the corresponding values without image enhancement and

hierarchical structure. This demonstrates that the proposed model

achieves better overall performance.

3.3. Model explainability

The heatmaps generated through Gram-CAM confirm that

the proposed model produces an accurate diagnosis by leveraging

distinctive features and pertinent regions or lesions within the

image. As illustrated in Figure 7, the heatmaps demonstrate that

the proposed model diagnoses the pathology based on the correct

lesion. In the validation dataset, the model successfully detected

pathological changes and identified distinguishing features for the

three representative OCT results of the eyes that developed drusen,

nGA, and GA. In particular, as depicted in the nGA example, the

proposed model correctly highlighted the area where subsidence of

OPL and INL were observed (gray mark in Figure 7C).

4. Discussion

The current study aimed to investigate the performance

of classifying early stages of dry AMD based on OCT images.
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FIGURE 5

Performance of experiments on the four CNN models during the training steps: (A) cross-entropy loss on the training dataset, (B) cross-entropy loss

on the validation dataset, (C) f1 score on the validation dataset, and (D) kappa coe�cients on the validation dataset. The light-colored lines indicate

the actual values of each metric at each step of the training process, while the solid lines indicate smoothed curves generated from the actual values

for improved visual clarity.

The study proposed a novel hierarchical classification method

that combines image enhancement with the ResNet50NF

base CNN, which improves the classification performance of

nGA, a challenging task for both ophthalmologists and deep

learning models.

While most related studies have predominantly focused on

using OCT images to classify exudative AMD, particularly those

involving CNV, there has been a noticeable lack of research on

dry AMD stages such as GA. These investigations (41, 42) have

demonstrated promising results in identifying CNV within OCT

images. However, when comparing CNV characteristics with those

of dry AMD stages such as GA, several key differences in image

features can be observed. For example, CNV typically presents with

subretinal fluid, hemorrhages, and a distinct network of new blood

vessels, whereas GA is characterized by a more uniform thinning

of the retinal pigment epithelium and photoreceptor layers, along

with the absence of fluid or hemorrhages.

GA is a chronic ocular condition that causes a decline in visual

function, leading to difficulties in performing everyday activities

such as reading, recognizing faces, and driving, ultimately resulting

in a loss of independence. As the disease progresses and the lesions

expand, patients often experience a slow and steady decline in visual

function.Managing and treating GA can be particularly challenging

because the available treatment options are currently limited. Most

current treatment options primarily aim to slow the progression

of the disease, rather than reversing the damage that has already

occurred. Therefore, early detection, intervention, and ongoing

monitoring and management of the disease are crucial for effective

disease control.

Numerous previous studies have demonstrated that OCT

is an effective tool for training CNNs to identify common

retinal diseases such as dry AMD. Nonetheless, due to the

complicated manifestations of nGA, implementing CNN models

that classify the early stages of dry AMD is a significant

challenge. The results of our experiments reveal that, among

the evaluated CNN models, all models provide satisfactory

classification performance for the normal and GA categories.

However, nGA classification performance was generally inferior.

This emphasizes the challenge of accurate classification of the nGA

category and the need for novel approaches to improve the accuracy

of classification.

We adapted normalization free ResNet50 as the backbone

of the model, which is a variant of ResNet50. This variant

omits normalization layers, which traditionally standardize the

range of data features (34). The absence of normalization boosts

computational efficiency and maintains a wider range of data
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TABLE 3 Ablation study results (%) of the baseline model, the model with only image enhancement, the model with only hierarchical classification, and

the proposed method.

Methods Classes Accuracy Sensitivity Specificity F1 Macro-f1 Kappa

ResNet50NF

(baseline)

Normal 98.99± 1.44 99.73± 0.76 98.78± 1.65 97.75± 3.02 84.96± 3.98 93.01± 2.19

Drusen 90.33± 4.41 86.11± 11.41 92.05± 6.8 85.24± 7.97

nGA 86.16± 4.53 67.82± 19.39 91.03± 6.0 66.79± 11.17

GA 95.55± 2.95 86.09± 6.89 98.34± 1.78 90.07± 5.42

Baseline+

Image

enhancement

Normal 98.74± 0.72 98.27± 3.6 98.86± 1.06 97.06± 1.57 85.17± 4.58 93.23± 1.67

Drusen 89.89± 4.79 86.18± 13.2 91.37± 8.05 84.68± 8.83

nGA 86.78± 4.76 68.31± 20.94 91.69± 6.15 67.83± 12.18

GA 95.94± 3.36 87.78± 7.97 98.39± 1.96 91.11± 6.52

Baseline+

Hierarchical

classification

Normal 99.48± 0.87 99.45± 1.15 99.54± 0.92 99.01± 1.76 89.78± 4.91 95.46± 2.35

Drusen 93.26± 5.98 89.34± 13.98 94.75± 7.25 88.86± 8.77

nGA 89.96± 5.13 73.24± 20.38 93.85± 6.53 72.74± 12.88

GA 96.84± 2.97 91.57± 7.89 99.07± 1.68 93.28± 6.49

Proposed

method

Normal 99.68± 0.9 99.67± 0.92 99.68± 0.89 99.12± 2.45 91.32 ± 9.06 96.09 ± 4.44

Drusen 94.12± 6.63 90.04± 17.64 95.89± 5.16 90.3± 13.23

nGA 91.56± 9.26 81.87± 13.4 94.0± 10.76 81.65± 14.65

GA 97.12± 3.95 93.7± 13.29 98.57± 1.92 94.22± 7.05

The best results are shown in bold.

FIGURE 6

Confusion matrix of the proposed method validated on the Fold 1 dataset.

features, thus enhancing the learning and performance capabilities

in our specific image-based task of classifying dry AMD stages.

The proposed method’s effectiveness can be attributed to

its ability to combine image enhancement with hierarchical

classification. An ablation study was conducted to compare

the proposed method’s performance with that of the baseline

model and the baseline with image enhancement. The results

demonstrated that hierarchical classification along with image
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FIGURE 7

OCT images and feature heatmaps demonstrating example cases of normal, drusen, nGA and GA. (A) Example of OCT image of control group; (B)

Example of a drusen regression detected by our model; (C) Example of nGA detected by our model. (D) Example of GA detected by our model. On

the left side of the nGA example (C), a discernible subsidence of OPL is marked.

enhancement significantly improves the classification performance

for all categories, particularly nGA. The proposed method achieved

the highest accuracy, sensitivity, specificity, f1 score, macro-f1

score, and kappa value for the three phases of dry AMD (drusen,

nGA, and GA). The superiority of the proposed method suggests

that it has the potential to be an effective and reliable tool for early

detection and monitoring of AMD.

Our model exhibits substantial effectiveness in correctly

predicting each phase of dry AMD, with high true positive values

across all categories, as observed from the confusion matrix

in Figure 6. A key observation is the high sensitivity in the

identification of the drusen andGA phase. However, thematrix also

highlights areas for potential improvement in the model, primarily

in reducing false positives between the nGA and GA stages.

The image enhancement component improves the image

quality, resulting in more accurate feature extraction and better

CNN classification performance. The hierarchical classification

component utilizes a two-step approach, in which the first CNN

model classifies images into three categories, and then the second

classification stage distinguishes between nGA and GA. This

approach allows for accurate and reliable classification of nGA,

which is a challenging category due to its similarity to drusen. These
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findings contribute to the development of a reliable and efficient

automated diagnostic tool for early detection and monitoring of

AMD, ultimately leading to improved patient outcomes. Further

validation and testing of the proposed method on larger and

more diverse datasets are necessary to confirm its generalizability

and robustness.

Our model can precisely identify distinguishing characteristics

within OCT images of different dry AMD phases as demonstrated

by the heatmaps of Figure 7. In Figure 7B, the heatmap of our

model focuses on the disruptions in the overlying retina layers,

corresponding to the presence of drusen. This indicates that

our model accurately identifies drusen features in this image. In

Figure 7C, the model highlighted a relatively larger area in which

OPL subsidence can be observed, as marked on the left side of

the image. The heatmap of Figure 7D highlights regions where

evidence of RPE thinning and depression of the outer retinal

layers is present. These imaging features indicate the loss of retinal

tissue and disruption of the normal retinal architecture, which are

typically observed in GA.

4.1. Limitations

The present study has some limitations that could be addressed

in future research. First, the study used the dataset from one center

for evaluation. Further multi-center validation on larger and more

diverse datasets is necessary to confirm the proposed method’s

robustness and generalizability. Second, the study evaluated four

popular CNN models. It would be interesting to compare

the proposed method’s performance with state-of-the-art CNNs.

Third, we did not perform exhausted fine-tuning on the image

enhancement methods, which may have led to limited performance

improvement solely through image enhancement. With further

fine-tuning of the image enhancement stage, the image noise on

the OCT images may be better eliminated, enabling the better

identification of image characteristics for nGA. Future research

should address these limitations and further validate and optimize

the proposed method for practical implementation in clinical

settings. Fourth, the phases of dry AMD was graded by a single

clinician. While the clinician ensured a consistent evaluation

standard across all OCT images, future work could benefit from

double grading of OCT images by two or more experienced

clinicians with consensus adjudication. Despite this limitation, our

study has demonstrated the promising potential of our model for

accurate classification of dry AMD stages.

Future work will expand upon this study by incorporating

longitudinal OCT data from multiple follow-up visits to examine

the progression of dry AMD from drusen to nGA and from nGA to

GA. This will allow the investigation of the deep learning model’s

capability to identify and correctly predict the progression risk of

dry AMD.

5. Conclusion

This study proposed and validated a novel two-step hierarchical

CNN model with image enhancement for the classification of

early-stage dry AMD, including the identification of nGA. The

proposed method combines image enhancement with a CNN-

based hierarchical model to improve the classification of early-

stage dry AMD using OCT images. The results demonstrate

the superior classification performance of the proposed method,

particularly for the challenging nGA category. The proposed

method’s effectiveness could contribute to the development of a

reliable and efficient automated diagnostic tool for early detection

and monitoring of dry AMD. We believe that the proposed

approach provides a valuable computer-assisted diagnostic tool for

clinical diagnosis of dry AMD based on OCT. This could facilitate

prompt and efficient interventions, leading to better management

of the condition and patient outcome, and reducing the burden

on ophthalmologists.
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