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Background: Diabetic kidney disease (DKD) remains the primary cause of end-
stage renal disease (ESRD) globally, but treatment options are limited. Kunxian 
capsule (KXC) has been utilized for the treatment of autoimmune diseases and IgA 
nephropathy in China. However, its effect on DKD remains poorly investigated. 
Therefore, this study aimed to explore the protective effect of KXC in db/db mice 
and elucidate its underlying mechanism.

Methods: The renoprotective effects of KXC were assessed in a DKD mouse 
model using male BKS db/db diabetic mice. After 8 weeks of treatment, the 
urinary albumin-to-creatinine ratio (UACR), blood biochemical parameters, renal 
histopathological manifestation, and podocyte ultrastructural changes were 
evaluated. Additionally, the expression of podocyte epithelial-to-mesenchymal 
transition (EMT) markers [WT1, ZO-1, and collogen I (Col1a1)] was quantitatively 
analyzed. Furthermore, we explored the role of KXC in the β-catenin signaling 
pathway to elucidate the underlying mechanism of KXC’s renoprotective effect.

Results: KXC treatment effectively reduced albuminuria and attenuated renal 
structural abnormalities in db/db mice. Additionally, KXC restored the protein and 
mRNA expression of WT1 and ZO-1 while suppressing the expression of Col1a1 in 
db/db mice, indicating its ability to alleviate podocyte EMT. Mechanistically, KXC 
exerted a significant suppressive effect on the activation of β-catenin signaling in 
diabetic kidneys.

Conclusion: KXC has the potential to protect podocytes during DKD by alleviating 
podocyte EMT through inactivating β-catenin signaling.
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Introduction

DKD is a common and severe complication in diabetic patients and is characterized by 
excessive urinary albumin excretion and progressive renal function impairment. DKD remains the 
primary cause of ESRD worldwide, but therapeutic options are limited (1–3). Over the past three 
decades, renin-angiotensin system (RAS) inhibitors have consistently served as the mainstay 
treatment for slowing the progression of DKD. However, the renoprotection provided by these 

OPEN ACCESS

EDITED BY

Xu-jie Zhou,  
Peking University, China

REVIEWED BY

Dingkun Gui,  
Shanghai Jiao Tong University, China
Dong Zhou,  
University of Connecticut, United States
Song Jiang,  
Nanjing General Hospital of Nanjing Military 
Command, China

*CORRESPONDENCE

Bo Jin  
 jinbo1025@gmail.com  

Chunming Jiang  
 guloujiang@sina.com

†These authors have contributed equally to this 
work

RECEIVED 27 April 2023
ACCEPTED 16 June 2023
PUBLISHED 30 June 2023

CITATION

Jin B, Liu J, Zhu Y, Lu J, Zhang Q, Liang Y, 
Shao Q and Jiang C (2023) Kunxian capsule 
alleviates podocyte injury and proteinuria by 
inactivating β-catenin in db/db mice.
Front. Med. 10:1213191.
doi: 10.3389/fmed.2023.1213191

COPYRIGHT

© 2023 Jin, Liu, Zhu, Lu, Zhang, Liang, Shao 
and Jiang. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in this 
journal is cited, in accordance with accepted 
academic practice. No use, distribution or 
reproduction is permitted which does not 
comply with these terms.

TYPE Original Research
PUBLISHED 30 June 2023
DOI 10.3389/fmed.2023.1213191

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2023.1213191&domain=pdf&date_stamp=2023-06-30
https://www.frontiersin.org/articles/10.3389/fmed.2023.1213191/full
https://www.frontiersin.org/articles/10.3389/fmed.2023.1213191/full
https://www.frontiersin.org/articles/10.3389/fmed.2023.1213191/full
https://www.frontiersin.org/articles/10.3389/fmed.2023.1213191/full
mailto:jinbo1025@gmail.com
mailto:guloujiang@sina.com
https://doi.org/10.3389/fmed.2023.1213191
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2023.1213191


Jin et al. 10.3389/fmed.2023.1213191

Frontiers in Medicine 02 frontiersin.org

drugs may be insufficient, particularly in advanced stages of DKD (4, 5). 
In recent years, as our understanding of the underlying pathogenic 
mechanisms of DKD has advanced, novel drugs such as sodium-glucose 
transport protein-2 inhibitors (SGLT-2i), endothelin antagonists, 
mineralocorticoid receptor antagonists (MRAs) and glucagon-like 
peptide (GLP)-1 agonists have emerged as potential treatments for 
improving DKD outcomes. Despite their promising benefits in clinical 
practice, the risk of progressive kidney function decline and the 
development of ESRD remains substantial (6, 7). Therefore, more 
effective therapeutic strategies are urgently needed to prevent and 
treat DKD.

Traditional Chinese medicine (TCM) has a longstanding history 
of use for treating diabetes and DKD (8–11). Kunxian capsule (KXC), 
a patent TCM prescription, is composed of four medicinal herbs: 
Tripterygium hypoglaucum Hutch, Cuscuta chinensis Lam, Epimedium 
brevicornu Maxim, and Lycium barbarum L. In China, KXC has 
gained widespread popularity for the treatment of autoimmune 
diseases due to its notable immunomodulatory and anti-inflammatory 
activities (12–14). Previous clinical studies have demonstrated that 
KXC has low toxicity and is a safe treatment option (15). Furthermore, 
accumulating clinical data from small cohorts have indicated that 
KXC can attenuate proteinuria and impede the progression of IgA 
nephropathy (16). Notably, a randomized clinical trial is currently 
ongoing to verify the renoprotective effect of KXC in individuals with 
DKD (17). However, the protective role and potential mechanism of 
KXC in DKD remain obscure. Therefore, this study aimed to explore 
the protective effects of KXC on DKD and elucidate its 
underlying mechanism.

Materials and methods

Animal experiment

Male BKS db/db diabetic mice and age-matched db/m mice 
(Nanjing University Model Animal Research Center) were used in the 
study. The mice were 8 weeks old and housed in a specific pathogen-
free (SPF) environment at our animal center. Diabetic db/db mice 
with random blood glucose levels exceeding 16.7 mmol/L were 
included in the observational studies. Subsequently, the mice were 
randomly assigned to three groups (n = 6 each): db/m group, db/db 
group, and db/db + KXC group. KXC, provided by Guangzhou Chen 
Li Ji Pharmaceutical Co. Ltd (Guangzhou, China), was dissolved in 
0.5% carboxymethylcellulose sodium (CMC-Na) to increase its 
solubility before use. According to clinical practice and previous 
literature (18), the db/db + KXC group received intragastric 
administration of KXC (234 mg/kg/day). The db/m and db/db groups 
were administered the same volume of vehicle (0.5% CMC-Na) by 
gavage. Samples of spot urine were collected every 4 weeks during the 
treatment and stored at −80°C. After 8 weeks of treatment, fasting 
blood glucose (FBG) was measured in each group using a glucometer 
(LifeScan Milpitas, CA, United States) with blood samples obtained 
from the mouse tail vein. Subsequently, the mice were sacrificed, and 
blood samples, as well as kidney tissues, were harvested.

The Ethics Committee on Animal Experiments of Nanjing Drum 
Tower Hospital (Nanjing, China) approved all experimental protocols 
in accordance with the guidelines established by the Committee on 
Laboratory Animals.

Urine and blood examination

Albumin and creatinine levels in urine were measured using the 
Albumin ELISA Kit (GeneTex) and QuantiChrom™ Creatinine Assay 
Kit (BioAssay Systems), respectively. Blood specimens were collected 
via cardiac puncture. The levels of serum creatinine (Scr), alanine 
transaminase (ALT), and aspartate transaminase (AST) were analyzed 
using an automatic biochemical analyzer (Hitachi).

Histological and Immunohistochemical 
analysis

The renal tissues were excised, fixed in 4% PFA and embedded 
in paraffin wax. Subsequently, renal tissues were sectioned into 
4-μm slices. To assess glomerular matrix accumulation, slides 
were stained with periodic acid-Schiff (PAS). For 
immunohistochemical staining, slides were deparaffinized, and 
then blocked with 10% BAS at room temperature. Tissues were 
incubated overnight at 4°C with primary antibodies against WT1 
(Abcam Cat# ab89901, 1:100), ZO-1 (GeneTex Cat# GTX636399, 
1:100), Col1a1 (Santa Cruz Ca# sc-25,974, 1:100), β-catenin 
(Abcam Ca# ab32572, 1:100), and snail1 (Abcam Ca# ab53519; 
1:100). The sections were then incubated with secondary 
antibodies for 1 h. Color development was achieved using 
diaminobenzidine (DAB). Histological changes in the tissue were 
examined using a light microscope (Nikon E800 microscope).

Transmission electron microscopy

Transmission electron microscopy (TEM) was performed to examine 
the ultrastructural changes in podocytes. The renal cortex was sectioned into 
1 mm3 pieces, which were then fixed in 3.75% glutaraldehyde for 4 h. 
Subsequently, the specimens were treated with 1% osmic acid for 2 h. After 
gradual dehydration of tissues in acetone and ethanol, the specimens were 
embedded in epoxy resin (SPI, Indianapolis, IN, United States). Ultrathin 
slices were stained with uranyl acetate and lead citrate. GBM and podocytes 
were examined using transmission electron microscopy (Hitachi 7,500, 
Tokyo, Japan). The thickness of the GBM and the width of the podocyte foot 
process were measured and calculated as previously described in the 
literature (19).

Western blot analysis

Cortical kidney specimens from mice were placed on ice and lysed 
using RIPA buffer. Protein concentrations were determined using the 
bicinchoninic acid protein assay kit (Pierce Thermo-Scientific, Rockford, 
IL). Samples with equal amounts of total protein (50 μg/mL) were 
separated by 12% SDS–PAGE under reducing conditions and subjected 
to Western blot (WB) analysis. The membranes were incubated 
overnight at 4°C with primary antibodies against WT1 (Abcam Cat# 
ab89901; 1:1000), ZO-1 (GeneTex Cat# GTX636399; 1:1000), Col1a1 
(Cell Signaling Technology Cat# 72026; 1:2000), snail1 (Abcam Cat# 
ab53519; 1:1000), β-catenin (Abcam Ca# ab32572; 1:1000) and 
α-tubulin (Abcam ca# ab7291; 1:2000), Subsequently, the membranes 
were incubated with horseradish peroxidase (HRP)-conjugated 
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secondary antibodies for 1 h. Finally, the immunoreactive bands were 
visualized using an ECL kit (Amersham Biosciences, UK).

Quantitative real-time PCR

Total RNA from renal cortex tissues was isolated using TRIzol 
reagent (Invitrogen cat# 15596018). Subsequently, the extracted RNA 
was reverse-transcribed into cDNA using a commercial kit (Vazyme 
Cat# R111-02). Gene expression levels were detected by real-time 
qRT‒PCR (Vazyme Cat# Q141–02) and an ABI7300 Sequence 
Detection System (Applied Biosystems, CA). The relative amount of 
mRNA, normalized against β-actin mRNA, was calculated as 
2-∆∆CT. The primer sequences are listed in Table 1.

Statistical analysis

All data are presented as the means ± SDs, comparisons of continuous 
variables between two groups were tested by using Student’s t tests, and 
comparisons of continuous variables among multiple groups were tested 
by using one-way ANOVA. Statistical analysis was executed using SPSS 
software version 22.0, and  p < 0.05 was defined as statistically significant.

Results

Effects of KXC on blood and urine 
biochemical parameters in mice

We specifically chose 8-week-old db/db mice because they exhibit 
significant metabolic disturbances and increased albuminuria at this 
stage (20). Confirming our expectations, the db/db mice exhibited 
considerably higher levels of FBG and urinary UACR than the db/m 
group. During the 4-week treatment period, administration of KXC 
resulted in a marked reduction in UACR, and this therapeutic effect 
became more pronounced with extended treatment duration 
(Figure  1A). Interestingly, there were no noticeable differences in 
blood glucose levels between the KXC group and the untreated db/db 
group at the end of the treatment period (Figure 1B). Furthermore, 

TABLE 1 The sequences of primers for qRT-PCR analysis.

Gene Forward Backward

Col1a1 GCTCCTCTTAGGGGCCACT CCACGTCTCACCATTGGGG

WT1 GAGAGCCAGCCTACCATCC GGGTCCTCGTGTTTGAAGGAA

ZO-1 GACTTGTCAGCTCAGCCA GT GGCTCCTCTCTTGCCAACTT

β-actin GGCTGTATTCCCCTCCATCG CCAGTTGGTAACAATGCCATGT

WT1, Wilms tumor 1; ZO-1, zona occludens-1; Col1a1, collagen type I alpha I.

FIGURE 1

Effects of KXC treatment on the urinary albumin-to-creatinine ratio (UACR) and biochemical parameters in db/db mice. Changes in UACR (A), FBG (B), 
Scr (C), ALT (D) and AST (E). The results are expressed as the mean ± SD (n = 6). ***p < 0.001 and ****p < 0.0001 vs. db/m; #p < 0.05 and ##p < 0.01 vs. db/
db.
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FIGURE 2

Effects of KXC treatment on renal morphology in db/db mice. (A) Representative PAS staining of kidney sections. (B) Semiquantitative analyses of the 
mesangial expansion index as shown by PAS staining. (C) Representative TEM images from each group of mice, scale bar=2 μm. Quantitative analysis 
of (D) GBM thickness and (E) podocyte foot process width. The results are expressed as the mean ± SD (n = 6). The arrow represents podocyte foot 
process effacement in db/db mice. ***p < 0.001, ****p < 0.0001.

we observed no remarkable variations in the levels of Scr (Figure 1C), 
ALT (Figure 1D), and AST (Figure 1E) between the KXC group and 
the untreated db/db group. These findings indicate that KXC 
administration effectively mitigated albuminuria in db/db mice with 
DKD, without affecting blood glucose levels or causing notable 
hepatotoxicity or renotoxicity.

Effects of KXC on renal morphology

Histological analysis of kidney sections stained with PAS revealed a 
remarkable expansion of the mesangial matrix in db/db mice compared 
to db/m mice, indicative of DKD. However, administration of KXC 
resulted in a marked amelioration of glomerular mesangial expansion, 
surpassing the observed levels in untreated db/db mice (Figures 2A,B). 
Furthermore, TEM examination of podocyte ultrastructure revealed 
notable thickening of the GBM and effacement of podocyte foot 
processes in db/db mice compared to db/m mice (Figures  2C,D). 
Interestingly, treatment with KXC prominently attenuated these 
histological changes, indicating its protective effects on podocyte 
structure and function. These findings hightlight the potential of KXC 
as a therapeutic intervention for DKD, specifically targeting mesangial 
matrix expansion and podocyte ultrastructural alterations.

Therapeutic potential of KXC in modulating 
podocyte EMT

Previous studies have consistently emphasized the pivotal role of 
podocyte EMT in the development of podocyte malfunction and 

proteinuria in DKD (21–26). To evaluate the effect of KXC on podocyte 
EMT, we utilized a comprehensive approach involving qPCR, WB 
analysis, and immunohistochemistry to assess the expression of key 
markers, including WT1, ZO-1, and Col1a1. Immunostaining revealed 
a significant decrease in the expression of WT1 and ZO-1 in db/db 
mice compared to db/m mice, indicating podocyte dysfunction in the 
diabetic state. Remarkably, KXC treatment led to a clear reversal of 
these decreases, suggesting its potential in restoring podocyte integrity 
and function. Moreover, we  observed a notable increase in the 
expression of Col1a1 in db/db mice compared to db/m mice. However, 
this increase was significantly attenuated following KXC administration 
(Figures 3A–D). The immunohistochemical staining findings were 
further supported by WB and qPCR analyses, which consistently 
demonstrated alterations in the protein (Figures 3E–H) and mRNA 
(Figures  3I–K) expression levels of Col1a1, WT1, and ZO-1. 
Collectively, these results provide compelling evidence for the 
therapeutic potential of KXC in modulating podocyte EMT in DKD.

Modulation of β-catenin signaling by KXC 
in mediating podocyte EMT

Previous studies have extensively demonstrated the pivotal role of 
β-catenin signaling activation in mediating podocyte EMT and 
proteinuria (27–30). To assess the impact of KXC on β-catenin signaling, 
we evaluated the expression levels of β-catenin and snail1. Western blot 
(WB) analysis revealed a significant increase in β-catenin and snail1 
protein expression in db/db mice. Notably, following KXC treatment, 
we  observed a marked decrease in the expression of these proteins 
(Figures 4D–F). Furthermore, immunohistochemical staining provided 
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additional confirmation of our results, illustrating the changes in 
β-catenin and snail1 expression (Figures 4A–C). This comprehensive 
analysis supported the notion that KXC treatment exerts a beneficial effect 
on β-catenin signaling, which may contribute to the preservation of 
podocyte integrity and the amelioration of proteinuria in DKD.

Discussion

DKD has emerged as a significant global public health challenge 
(6, 31, 32). Proteinuria and declining kidney function are major 
clinical manifestations of DKD, serving as markers of disease severity 

and indicators to assess therapeutic effects (33, 34). Accumulating 
evidence supports podocyte injury as a pivotal factor in the occurrence 
of proteinuria and the progression of DKD (35, 36). Consequently, 
targeting podocytes has gained attention as an attractive strategy for 
developing novel treatments to prevent the progression of DKD.

This study provides evidence demonstrating the renoprotective 
effects of KXC on kidneys affected by diabetes. Our findings 
demonstrate significant improvement in the structural and functional 
abnormalities associated with DKD (including albuminuria excretion, 
glomerular mesangial matric accumulation, GBM thickening and 
podocyte foot process effacement) following KXC treatment. The 
underlying mechanisms may involve the alleviation of podocyte EMT 

FIGURE 3

Expression of WT1, ZO-1 and Col1a1 in the kidneys of db/m mice and db/db mice with or without KXC treatment. (A) Representative images of WT1, 
ZO-1, and col1a1 stained by immunohistochemistry in the kidney sections. Semiquantitative analysis of immunostaining for the expression of 
glomerular (B) WT1, (C) ZO-1, and (D) col1a1 from db/m mice and db/db mice with or without KXC treatment. (E) Representative immunoblots and 
semiquantitative analysis of (F) WT1, (G) ZO-1, and (H) Col1a1 expression in the renal cortex from db/m mice and db/db mice with or without KXC 
treatment. mRNA expression of (I) WT1, (J) ZO-1, and (K) Col1a1 assessed using real-time PCR. The results are expressed as the mean ± SD (n = 6). 
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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FIGURE 4

Expression of β-catenin and snail1 in the kidneys of db/m mice and db/db mice with or without KXC treatment. (A) Representative images of IHC 
staining of β-catenin and Snail1 in kidney sections. Semiquantitative analysis of immunostaining for glomerular (B) β-catenin and (C) snail1 expression 
in db/m mice and db/db mice with or without KXC treatment. (D) Representative immunoblotting analysis and semiquantitative analysis of 
(E) β-catenin and (F) snail1 expression in the renal cortex from db/m mice and db/db mice with or without KXC treatment. The results are expressed as 
the mean ± SD (n = 6). The arrow represents the protein expression of β-catenin and snail1 in db/db mouse glomeruli. *p < 0.05, **p < 0.01, ***p < 0.001, 
****p < 0.0001.

through inhibition of β-catenin signaling. These results suggest that 
KXC has the potential to be a treatment option for preventing the 
progression of DKD.

Podocytes, highly specialized epithelial cells in mature kidneys with 
minimal proliferative capacity, are vulnerable to various injuries that result 
in dysfunction and loss. As essential functional cells, podocytes play a 
crucial role in maintaining the integrity of the glomerular filtration barrier 
(37). As mentioned earlier, proteinuria is a critical hallmark of DKD, and 
the relationship between podocyte injury and proteinuria has been 
extensively documented in both animal experiments and clinical studies 
(38–40). Several factors can contribute to podocyte injury (37). Emerging 
evidence highlights podocyte EMT as a key driver of podocyte 
dysfunction in DKD. Under diabetic conditions, podocytes can undergo 
phenotypic switching marked by the downregulation of epithelial markers 
(e.g., WT1, ZO-1, nephrin, and P-cadherin) and the upregulation of 
mesenchymal markers (e.g., desmin, Col1a1, and fibronectin). EMT 
enhances the motility of podocytes, resulting in their detachment from 
the GBM and ultimately impairing the integrity of renal filtration (21–23, 
25, 26, 41). Therefore, inhibiting podocyte EMT represents a novel 
treatment option for DKD.

In this study, we  observed increased protein and mRNA 
expression of Col1a1 and decreased expression of WT1 and ZO-1 in 
the glomeruli of db/db mice. These changes were reversed after 
8 weeks of KXC treatment, which correlated with the improvement in 
UACR excretion and histological impairment in db/db mice. Based on 

our findings, we deduced that KXC may have a significant suppressive 
effect on podocyte EMT in db/db mice.

The mechanism underlying the renoprotective effects of KXC, 
particularly in alleviating podocyte EMT in DKD, has received limited 
investigation. Emerging evidence demonstrates that the Wnt/β-catenin 
pathway plays a significant role in facilitating podocyte EMT (27). 
Moreover, numerous previous studies have consistently shown the 
activation of the Wnt/β-catenin pathway in podocytes of both diabetic 
patients and experimental mouse models (27–29, 42). Activation of this 
pathway leads to the nuclear translocation of β-catenin and subsequent 
transcriptional upregulation of downstream target genes (43). Snail1, a 
critical downstream target gene of β-catenin, plays a crucial role in 
expediting podocyte EMT (44–46). Studies have shown that the activation 
of β-catenin leads to upregulated expression of snail1 in podocytes, which 
induces podocyte EMT in DKD (27, 47). Hence, targeting the Wnt/β-
catenin pathway could be a promising protective approach for alleviating 
podocyte EMT in DKD. Our findings demonstrated that the expression 
of β-catenin and snail1 in the glomeruli was significantly increased, which 
was reversed after KXC treatment. These findings suggest that the 
alleviation of podocyte EMT by KXC may be partially attributed to the 
inhibition of Wnt/β-catenin pathway activation.

KXC has been proven to be  a safe medication in numerous 
previous clinical studies (12–16). Consistently, no noticeable liver or 
kidney toxicity was observed in our animal model, as confirmed by 
the lack of influence on the levels of AST, ALT and Scr. Additionally, 
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our study revealed no apparent impact of KXC on blood sugar levels, 
suggesting that the renoprotective effects of KXC may be independent 
of its hypoglycemic effects.

There was a limitation in our study. Since KXC is a TCM with 
multiple components and targets, additional research is required to 
elucidate other potential mechanisms underlying its protective effects 
against podocyte injury in DKD.

In summary, our study demonstrated that KXC has the potential 
to protect podocytes during DKD by alleviating podocyte EMT 
through inactivating β-catenin signaling. These results suggest that 
KXC could be a promising novel therapeutic agent for preventing the 
progression of DKD. Additional clinical trials should be conducted to 
confirm its safety and effectiveness among individuals with DKD.
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