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Objective: To analyze and evaluate the role of the High-throughput Drug 
Sensitivity (HDS) screening strategy in identifying highly sensitive drugs against 
esophageal squamous cell carcinoma (ESCC).

Methods: A total of 80 patients with progressive ESCC were randomly divided 
into the observation (40 cases) and the control groups (40 cases). In the 
observation group, primary ESCC cells were isolated from the tumor tissues with 
a gastroscope, and drug sensitivity screening was performed on cells derived 
from the 40 ESCC cases using the HDS method, followed by verification in a 
patient-derived tumor xenograft (PDX) mouse model. Finally, the differences in 
the therapeutic efficacy (levels of CEA, CYFRA21-1, SCCA after chemotherapy and 
the rates of overall survival, local progression, and distant metastasis at 12 months 
and 18 months time points after chemotherapy) were compared between the 
observation group (Screened drug-treated) and the control group (Paclitaxel 
combined with cisplatin regimen-treated).

Results: Forty ESCC patients were screened for nine different high-sensitive 
chemotherapeutics, with the majority showing sensitivity to Bortezomib. 
Experiments on animal models revealed that the tumor tissue mass of PDX mice 
treated with the HDS-screened drug was significantly lower than that of the 
Paclitaxel-treated mice (p < 0.05), and the therapeutic efficacy of the observation 
group was better than the control group (p < 0.05).

Conclusion: HDS screening technology can be  beneficial in screening high-
efficacy anticancer drugs for advanced-stage ESCC patients, thereby minimizing 
adverse drug toxicity in critically ill patients. Moreover, this study provides a new 
avenue for treating advanced ESCC patients with improved outcomes.
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Introduction

Esophageal carcinoma (EC) is a highly prevalent and 
dangerous malignancy of the gastrointestinal (GI) tract (1, 2), 
accounting for the seventh most common cancer worldwide as 
well as ranking sixth for cancer-related deaths (3). EC claims 
approximately 450,000 lives annually (4), with a 5-year survival 
rate of only 18% (5). Notably, the incidence of EC is increasing 
rapidly in several countries, including China, in recent times (6, 
7). In China, EC causes about 150,000 annual deaths, which 
equals 21.8% of all cancer deaths, ranking fourth in the list of 
deadliest carcinomas. The etiology of EC is complex, many 
factors such as drinking, smoking, diet, genetics, microorganisms 
and gender have been reported to be associated with elevated risk 
of EC by previous studies (5–7). Therefore, it is technically 
challenging and difficult to reduce the occurrence of EC. EC 
patients primarily undergo endoscopic diagnosis for GI 
symptoms. Esophagectomy is the major surgical intervention in 
EC patients, while other treatment modalities involve chemo 
alone or a combination of chemo and radiotherapy, depending on 
the clinical characteristic of the cancerous lesion (8, 9). Most 
often, patients are diagnosed with an advanced stage EC, leaving 
no option for radical surgery. Importantly, postoperative 
recurrence and metastasis are frequently detected in surgical EC 
patients, hence, chemotherapy is considered a potentially 
effective second line of treatment (10). Interestingly, there is a 
wide variation in EC tumor classification in different geographical 
regions, such that >90% of EC cases in Western countries are 
adenocarcinomas, while esophageal squamous cell carcinoma 
(ESCC) is the most prevalent (>90% of all cases) among the 
Chinese populations (11). Therefore, this wide range of 
variabilities hinders the universal application of the National 
Comprehensive Cancer Network (NCCN) guidelines to Chinese 
ESCC patients, directly affecting their treatment outcomes and 
tumor recurrence. Moreover, establishing an in vitro screening 
strategy for determining patient-specific sensitivity of 
chemotherapeutics may resolve the discrepancies in the 
generalized application of NCCN guidelines.

High-throughput drug sensitivity (HDS) screening strategy 
is a new method with the advantages of high efficiency, wide 
coverage, and potential adaptation to personalized therapy, which 
are promising for determining the antitumor drug sensitivity in 
liver cancer, head and neck cancer, and lymphomas (12–14). 
However, the application of this technique in antitumor drug 
screening of ESCC is rarely reported. Therefore, this study aimed 
to generate ESCC patient-derived cell models for HDS analyses 
and develop a patient-derived xenograft (PDX) model of human 
ESCC in rodents for in vivo investigation. This study provides 
optimized assay platform able to offer drug screening outcomes 

in ESCC samples with varying clinical features and guides the 
precision therapy for ESCC patients (see Figure 1).

Materials and methods

Patient selection

A total of 80 outpatient and inpatient candidates with 
progressive ESCC were recruited from the Department of 
Gastroenterology of the 901 Hospital of the Joint Logistics and 
Security Forces of the Chinese People’s Liberation Army from 
December 2018 to December 2019 and randomly assigned to 
either the observation group or the control group (n = 40 per 
group). There were no statistical differences in terms of age 
distribution, male-to-female ratio, tumor characteristics, and 
patient’s Karnofsky score (15) between the two groups (p > 0.05). 
Patients’ inclusion criteria were: (1) compliance with the 
diagnostic criteria of progressive ESCC (16); (2) availability of 
complete clinical data, and (3) no indication for surgery. On the 
other hand, patients were excluded if they had: (1) cardiovascular 
diseases; (2) penetrating ulcers; (3) hepatic and renal insufficiency; 
(4) coagulation disorder, and (5) severe immune system diseases. 
The study was approved by the Institutional Ethics Committee 
(Ethics Committee of the 901th Hospital of the Joint Support 
Force), and all participants provided their signed informed 
consent by themselves or their family members (Chinese clinical 
trial registration number: ChiCTR2300068566) (see Table 1).

Experimental animals

Severely immunodeficient (NCG) six-week-old female mice were 
purchased from Nanjing Model Animal Research Institute. The 
animal experiment protocol was approved by the Institutional Animal 
Care and Use Committee (Ethics Committee of the 901th Hospital of 
the Joint Support Force).

The main instruments and reagents that were used in this study 
are listed in Table 2.

Experimental methods

ESCC primary cell lines were derived from biopsied patient tumor 
tissue specimens and subsequently characterized as follows:

 (1) Gastroscopy and biopsy of ESCC tumors were performed using 
an Olympus CLV-260 electronic gastroscope. Hematoxylin and 
eosin (H&E) staining and immunohistochemical (IHC) 
analysis using anti-pCK, anti-p63, anti-Ki-67, and anti-Vim 
antibodies indicated that tumor tissues contained abundant 
ESCC cells (Figure 2A).

 (2) Isolation of ESCC primary cells was performed in the following 
steps: tissue washing, digestion, centrifugation, collection and 
resuspension of the cell pellet in the basal medium, 
centrifugation, removal of the supernatant and lysis of blood 
cells in appropriate buffer, and final collection of ESCC primary 
cells by centrifugation.

Abbreviations: HDS, High-throughput Drug Sensitivity; EC, Esophageal 

Carcinoma; ESCC, Esophageal Squamous Cell Carcinoma; PDX, Patient-derived 

Tumor Xenograft; OS, Overall Survival; LP, Local Progression; DM, Distant 

Metastasis; CEA, Carcinoembryonic Antigen; CYFRA21-1, Serum Cytokeratin 

Protein Fragment 19; SCCA, Squamous Epithelial Cell Carcinoma Antigen; NCCN, 

National Comprehensive Cancer Network; FDA, Food and Drug Administration; 

HGS, High-throughput Gene Sequencing.
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 (3) Culture of tumor-derived ESCC cells for (1) microscopic studies, 
(2) live cell counting, and (3) cell culture for downstream assays 
(Figure 3B).

 (4) Identification and characterization of cultured ESCC primary 
cells (Figures 3D,E).

 (5) The cells were washed with 200 μL of 0.25% trypsin for 
1 min, aspirated, and then 500 μL of 0.05% trypsin solution 

was added to each well and placed in an incubator at 
37°C with 5% CO2 for 10 min until complete cell 
detachment was observed under the microscope. After 
centrifugation at 1500 rpm for 4 min, the supernatant was 
discarded, and 500 μL of ESCC primary cell medium was 
added to resuspend and plate the cells (Figure  2B and 
Figure 3C).

FIGURE 1

Flowchart showing the entire work procedure of this study including sections of study object, core technology, animal experiment and clinical test. 
ESCC, esophageal squamous cell carcinoma; PDX, patient-derived xenograft; HDS, High-throughput drug sensitivity.

TABLE 1 Comparison of general information between the two groups of patients.

Projects Observation group Control group t/χ2 p-value

Age(y) 55.15 ± 6.25 54.85 ± 6.12 0.217 0.829

Gender 0.091 0.762

  Male 33 (82.50%) 34 (85.00%)

  Female 7 (17.50%) 6 (15.00%)

Karnofsky score 70.28 ± 3.11 70.68 ± 3.17 0.570 0.571

Histological grading 0.315 0.854

  Low differentiation 12 (30.00%) 10 (25.00%)

  Medium-high divergence 14 (35.00%) 14 (35.00%)

  Uncertain 14 (35.00%) 16 (40.00%)

Distant metastasis rate 0.457 0.499

  Transfers 16 (40.00%) 19 (47.50%)

  Not transferred 24 (60.00%) 21 (52.50%)

Tumor diameter (cm) 4.65 ± 1.03 4.85 ± 1.18 0.808 0.422
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HDS screening for drug sensitivity in 
patient-derived ESCC lines

The patient-specific primary ESCC cells were separately treated 
with different first-line and second-line drug regimens as well as 
subjected to the FDA drug library screening using the HDS method. 
Steps in this process include:

 (1) Preparation of cultured cells on petri dishes: ESCC primary 
cells were harvested by trypsin-digestion, centrifuged, and 
resuspended in DPBS buffer for cell counting by an image 
cytometer. The cell suspension was then diluted to 
6 × 104–1 × 105 cells/ml, and seeded into 384-well plates using 
50 μL of cell suspension per well.

 (2) Serial dilutions of drugs: the testing drug was serially diluted 
to different working concentrations (10 μM, 3 μM, 1 μM, 
0.3 μM, 0.1 μM, 0.03 μM, and 0.01 μM).

 (3) Drug treatments: 24 h after seeding, cells were treated with 
different doses of serially diluted drug solutions or vehicle 
control in triplicates in 384-well plates using the automated 
JANUS liquid handler workstation.

 (4) Cell viability testing: 72 h post-treatment, the cell viability 
in different treatment and control groups was measured 
using a plate reader-based CellTiter Glo assay and 
calculated by the formula, Cell viability (%) = luminescence 
value of the spiked wells/luminescence value of the control 
wells × 100%. Cell inhibition (%) = 100- Cell viability 
(Figure 3A and Table 3).

In vivo validation of drug effects in PDX 
mouse model

Model construction
Approximately 5 × 106 ESCC progenitor cells were injected into 

the ESCC fat pad and the axillary area of the right forelimb of 6-week-
old female NCG mice. The volume and growth rate of ESCC tumors 
in mice were routinely recorded every 3 days. Tumor formation was 
observed at both graft sites on day 15 post-administration. Tumor 
proliferation was evident from day 15 to day 30, indicating a successful 
model establishment.

TABLE 2 Main experimental equipment and reagents used in the experiment.

Name Manufacturers Model/Specification

Flow Image Counter Jiangsu Zhuo Wei Technology Co. JIMBIO FILE

Electron Microscope Invitrogen Corporation EVOS M500

384-well cell culture plate Perkin Elmer Corporation 608,598

High throughput automation workstation Perkin Elmer Corporation JANUS

Enzyme Labels Perkin Elmer Corporation Envision

0.05% trypsin Gibco Corporation 25,300,062

0.25% trypsin Corning Incorporated 25-053-CI

Trypan blue staining solution Biosharp Corporation BL707A

Erythrocyte lysate Sigma Corporation R7757-100ML

Fetal bovine serum EXCELL Corporation FND500

Cell Titer-Glo Assay Promega Corporation DD1101

FIGURE 2

Tumor primary cell cultures share histopathological features with patient-matched tissue and disruption of polarity. Representative images of H&E, and 
IHC of Vim (Vimentin), panCK (pan-cytokeratin), ki-67 and p63 from primary tissue (A) and patient-matched primary cell (B) (20× magnifification used 
for primary cells and tissues).
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Dose optimization
The doses of the screening drugs were set at 25, 50, and 100 mg/kg/d. 

After the model was successfully constructed, the drug treatment group 
mice were administered with designated drug regimens either by oral 
gavage or intraperitoneal (i.p) injection for 20 days, while paclitaxel 
(70 mg/kg/d) (17) treated mice served as the positive control group, and 
vehicle (DMSO)-treated mice were included in the sham group.

Treatment protocol for ESCC subjects in the 
observation and control groups

Forty ESCC patients in the control group were treated with paclitaxel 
combined with a cisplatin regimen (18). On day 1, 135 mg/m2 of paclitaxel 
injection (Jiangsu Aosikang Pharma., State Drug Quantification 
H20083848; 2 mL: 30 mg) was added to 500 mL of glucose injection 
(Jiangsu Hengrui Pharma., State Drug Quantification H32022368; 
250 mL: 12.5 g) and diluted into intravenous (i.v) drip for 3 h/d. On days 
2–4, subjects received i.v injections of 50 mg/m2 of cisplatin (Dezhou 
Deyao Pharma., State Drug Quantification H20023236; 20 mg), dissolved 
in 500 mL of 0.9% injection-grade sodium chloride solution (Shijiazhuang 
IV Pharma., State Drug Quantification H13023200; 500 mL) for 2 h each 
time in a stretch of 3 weeks. The treatment lasted six cycles.

On the other hand, 40 ESCC patients in the observation group were 
treated according to screened therapeutic agents.

We compared several parameters between these two groups, such as 
the sensitivity of different anticancer drugs in ESCC cells by the HDS 
method, the difference in tumor growth curves before and after drug 
therapy in the PDX mice as well as relative expression levels of tumor 
markers, including carcinoembryonic antigen (CEA), serum cytokeratin 
protein fragment 19 (CYFRA21-1) and squamous epithelial cell 

carcinoma antigen (SCCA) in the ESCC patients. Furthermore, 
we  compared the differences in overall survival (OS) rates, local 
progression (LP) rates, and distant metastasis (DM) rates between the 
two groups of patients at 12 and 18 months after chemotherapy. OS 
rate = number of survivors/total number × 100%. LP rate = number of 
local tumor diameter increase/total number × 100%. DM rate = number 
of new distant metastases/total number × 100%.

Statistical analysis

SPSS v22.0 software (IBM Corp., Armonk, NY, United States) was 
used for all statistical analyses. Measured and counted data were expressed 
as xs and %, respectively. The t-test was used to compare the differences 
in expressions of CEA, CYFRA21-1, and SCCA in ESSC patients before 
and after treatment with different drugs as well as tumor volumes and 
masses in PDX models under various treatment conditions. Least 
significant difference (LSD) method was used for multiple comparisons. 
Chi-square (χ2) test was used to compare the rate of local progression and 
distant metastasis between the two groups. A p-value of less than 0.05 was 
considered statistically significant.

Results

Identification of highly effective drugs 
against patient-derived ESCC cell models 
by HDS method

Forty ESCC patients were subjected to treatment with 9 different 
highly sensitive chemotherapeutic agents, with the largest number of 

FIGURE 3

In vitro culture and drug sensitivity testing in ESCC cells. (A) Primary cells derived from different ESCC patients exhibited different sensitivities to 
different drugs. (B) Representative bright field images of primary ESCC cells in culture. (C) Primary ESCC cells characterized by immunofluorescence 
(IF) staining with squamous cell carcinoma marker anti-p63 antibody. (D) Cell proliferation curve of ESCC cells. (E) There was no significant difference 
in drug susceptibility between algebraic ESCC primary cells amplified in vitro.
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patients exhibiting significant sensitivities to bortezomib, as described 
in Table 4.

HDS-screened drugs show inhibition of 
tumor growth in the PDX mice

We found that HDS-screened drug-treated PDX mice had 
significantly smaller tumor Volumes and masses compared to that in 
the vehicle-treated sham (p < 0.05), and Paclitaxel treatment groups, 
as illustrated in Figure 4.

Treatment with antitumor agents alleviates 
the expression of tumor markers in ESCC 
patients

There were no statistical differences in the expression of 
CEA, CYFRA21-1, and SCCA between the two groups at the 
baseline (t = 0.327, 0.088, 0.276; p = 0.745, 0.930, 0.783), while 
significantly lower expression levels of these protein markers 
were detected in the observation group than those in the control 
group (t = 5.692, 5.748, 10.817; p < 0.001) after chemotherapy, as 
shown in Table 5.

HDS-guided treatment enhanced the 
clinical efficacy of chemotherapeutics

We found that the OS rates at 12 months and 18 months were 
significantly higher in the observation group than those in the control 
group (p < 0.05), while rates of LP and DM at 18 months were 
significantly lower in the observation group than those in the control 
group (p < 0.05), as shown in Table 6.

Discussion

Since the majority of patients with progressive ESCC are 
diagnosed at the advanced stage, most clinicians adopt palliative 
radiotherapy, chemotherapy, biological therapy, and traditional 
Chinese medicine (TCM) therapies (19–22). Notably, due to extensive 
heterogeneity in tumor characteristics across ESCC patients, 
individualized chemotherapeutic strategies are urgently needed to 
achieve the best therapeutic outcome and minimum drug toxicity (23, 
24). Most clinical researchers exploit the patient-derived tumor cell-
derived PDX rodents to assess the cell growth inhibitory effect of 
different regimens of anticancer drugs to overcome the problem of 
adverse drug toxicity in critically ill ESCC patients (25, 26). However, 
these in vitro testing models have their limitations, such as high cost 

TABLE 3 The response rate of ESCC cells by different therapeutic drugs determined by HDS technique.

Drug Dose Response rate (%) Drug Dose Response rate (%)

Paclitaxel 200  mg/m2 4/40 (10) Doxorubicin 60 mg/m2 10/40 (25)

Carboplatin AUC5 0/40 (0) Gemcitabine 1000 mg/m2 7/40 (17.5)

Cisplatin 100 mg/m2 0/40 (0) Hydroxycamptothecine 6 mg 16/40 (40)

Fluorouracil 2600 mg/m2 0/40 (0) Vincristine 1.4 mg/m2 0/40 (0)

Oxaliplatin 130 mg/m2 1/40 (2.5) Etoposide 100 mg/m2 1/40 (2.5)

Capecitabine 1000 mg/m2 1/40 (2.5) Cytarabine 2 mg/kg 2/40 (5)

Epirubicin 50 mg/m2 0/40 (0) Pirarubicin 40 mg/m2 3/40 (7.5)

Irinotecan 300 mg/m2 3/40 (7.5) Everolimus 10 mg 0/40 (0)

Docetaxel 75 mg/m2 2/40 (5) Axitinib 10 mg PO 1/40 (2.5)

Tegafur 80 mg/m2 0/40 (0) Regorafenib 160 mg PO 3/40 (7.5)

Mitomycin 30 mg/d 4/40 (10) Sorafenib 0.8 g PO 11/40 (27.5)

Sunitinib 50 mg PO 0/40 (0) Gefitinib 250 mg PO 2/40 (5)

Apatinib 850 mg 1/40 (2.5) Erlotinib 150 mg PO 1/40 (2.5)

Pemetrexed 500 mg/m2 4/40 (10) Osimertinib 80 mg PO 2/40 (5)

Raltitrexed 3 mg/m2 0/40 (0) Vandetanib 300 mg PO 1/40 (2.5)

Lapatinib 1250 mg PO 0/40 (0) Lenvatinib 24 mg PO 1/40 (2.5)

Etoposide 200 mg/m2 1/40 (2.5) Pazopanib 800 mg PO 3/40 (7.5)

Icotinib 125 mg PO 0/40 (0) Nintedanib 100 mg 4/40 (10)

Dabrafenib 150 mg PO 1/40 (2.5) Afatinib 40 mg PO 0/40 (0)

Ceritinib 750 mg PO 2/40 (5) Crizotinib 250 mg PO 1/40 (2.5)

Dasatinib 140 mg PO 3/40 (7.5) Abiraterone 1 g PO 1/40 (2.5)

Imatinib 400 mg PO 5/40 (12.5) Bortezomib 1.3 mg/m2 30/40 (75)

Ginsenoside Rh2 TCM Monomer 2/40 (5) Tripterine TCM 1/40 (2.5)

Carmustine 100 mg/m2 0/40 (0) Lomidoxin 400 mg PO 1/40 (2.5)

TCM, traditional Chinese medicine; PO, eros; Response rate = the number of patients with inhibition rate > 50% among total patients (percentage rate of response patient number/total 
number of people × 100%).
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and limited capability in accommodating large panels of therapeutic 
drugs. Some studies have demonstrated the broader benefits of 
organoid models using patient-derived cancer stem cells mimicking 
in vivo tumor microenvironment (TME) for drug screening (27, 28). 
Again, the efficacy of this model is limited by challenges in accurately 
modeling cancer organoids, high maintenance costs, and difficulty in 
simultaneously generating numerous organoids for high-throughput 
screening strategies.

Recently, high-throughput gene sequencing (HGS) technology has 
been used for the targeted therapy of ESCC. Some groups have reported 
the genetic landscape of human ESCCs using the whole genome and 
exome sequencing approaches (29–31), which has led to promising results 
in early studies of personalized and targeted therapies (32). However, due 
to an increase in the oncogenic mutational burden, differences in cellular 
signaling pathways, and complex interactions among tumor genes, the 
same tumor gene target may respond differentially to different drugs 
affecting the overall outcome of individualized therapy (33).

In contrast, the HDS technology used by our group extended the 
scope of screening with a large panel of FDA-approved drugs for 
determining the best possible drug regimen exerting maximum cell 
growth inhibitory effects. With this technically upgraded screening 
platform, we  can rapidly identify highly sensitive and targeted 
chemotherapeutics for different ESCC patients, thereby solving most 
of the previously mentioned technical hurdles.

The primary aim of this study was to obtain high-quality primary 
tumor cells from ESCC patients and subsequently exploit them for in vitro 
drug sensitivity screening strategies as an alternative to in vivo models. 
We used fresh tumor tissue masses to isolate primary ESCC cells through 
trypsin digestion with a success rate as high as 90%, which was 
considerably higher than that reported in other studies (34). The HDS 
technique developed by our group could simultaneously measure the 
sensitivity of more than 300 drugs to patient-derived ESCC tumor cells, 
along with the screening of optimal drug concentrations to reduce the 
adverse drug toxicity effects. In this study, primary tumor cells from 40 
ESCC patients were tested for drug sensitivity against 9 different 
chemotherapeutic agents, which fully illustrated the inter-patient 
heterogeneity of tumor cells (35). Moreover, the results of this study 
further signify the importance of individualized chemotherapeutic 
regimens in treating highly heterogeneous carcinomas like 
ESCC. Through this screening assay, we noticed that most ESCC patients 
were sensitive to Bortezomib.

Bortezomib is a 20S proteasome inhibitor that exerts its antitumor 
effects by interfering with cell signaling, causing cell cycle arrest, 
inducing apoptosis, and inhibiting angiogenesis and is currently used 
mainly for the treatment of multiple myeloma (36, 37). However, one 
study (38) reported its role in enhancing the sensitivity of ESCC to 
radiotherapy. Besides, there are few a studies on the application of 
Bortezomib in chemotherapy for advanced-stage ESCC (39). Here, 
we found that Bortezomib was effective in chemotherapy for esophageal 
squamous carcinoma by in vitro HDS assay, which might provide a new 
avenue for the treatment of ESCC.

To further verify the results of in vitro experiments, the previously 
reported PDX model (40) was used to determine the therapeutic effects 
of screened anticancer drugs in vivo. We  exploited patient-derived 
primary ESCC cells for constructing the PDX mouse model to screen 
potential anticancer drugs. In addition, we used Paclitaxel (41) as the 
positive control in this animal study. The results showed that the tumor 
tissue mass and volume of PDX mice treated with screened T
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FIGURE 4

An improved inhibitory effect of HDS-screened drugs on tumor cell growth in PDX animal models compared to paclitaxel and vehicle. (A) The 
PDX mice were treated with vehicle, Bortezomib (25 mg/kg, 50 mg/kg, 100 mg/kg), or Paclitaxel (70 mg/kg) every day for 20 consecutive days. 
Tumor volumes were measured each day. The curves show the mean volume ± SD of tumor sizes. (B) Representative images of xenografts 
harvested after 20 days of treatment for comparison of tumor volumes across the groups. (C) The bar chart shows the difference in xenograft 
quality in different groups.*p < 0.05, **p < 0.01.

TABLE 5 Comparison of tumor markers’ levels before and after drug therapy between the observation and control groups.

Group Time CEA (ng/mL) CYFRA21-1 (ng/mL) SCC (μg/L)

Observation group Before treatment 9.17 ± 3.14 4.52 ± 1.61 2.33 ± 1.01

After treatment 2.37 ± 1.05ab 2.11 ± 1.09ab 0.76 ± 0.28ab

Control group Before treatment 8.94 ± 3.16 4.49 ± 1.45 2.27 ± 0.93

After treatment 4.13 ± 1.65a 3.57 ± 1.18a 1.54 ± 0.36a

ap < 0.05, compared with the control group before treatment. bp < 0.05, compared with the control group after treatment. CEA, carcinoembryonic antigen, CYFRA21-1, serum cytokeratin 
protein fragment 19; SCCA, squamous epithelial cell carcinoma antigen.

TABLE 6 Comparison of treatment results between the observation and control groups (n, %).

Group 12-month OS rates 18-month OS rates LP rates DM rates

Observation group 31 (61.5) 23 (42.7) 11 (27.5) 12 (30)

Control group 22 (49.8) 14 (29.5) 21 (70) 21 (70)

χ2 value 4.528 4.073 5.208 4.178

p value 0.033 0.044 0.023 0.041

OS, overall survival; LP, local progression; DM, distant metastasis.
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high-sensitivity drugs were significantly smaller than those treated with 
Paclitaxel or the vehicle control (p < 0.05). Finally, we determined the 
optimal drug concentration to achieve the best possible tumor growth 
inhibition in this PDX mouse model.

After achieving encouraging results in animal experiments, 
we  conducted individualized treatment for 40 ESCC patients with 
Bortezomib and compared the anticancer efficacy with 40 ESCC 
patients who received Paclitaxel combined with cisplatin chemotherapy 
in the same period of time. We  first analyzed the differences in 
expressions of tumor markers CEA, CYFRA21-1, and SCCA between 
the two groups. CEA is one of the first tumor markers found to 
be widely present in tumor cells. CYFRA21-1 is also commonly detected 
in lung and esophageal tumor cells and exhibits a high sensitivity along 
with the diagnostic value in the evaluation of therapeutic effect against 
ESCC (42). SCCA is mainly present in tumor cells of the lung, pharynx, 
and esophagus and exhibits a high sensitivity for occurrence and 
progression of ESCC with high specificity (43). Some studies (44–46) 
have reported that the combination of these three biomarkers could be a 
valuable prediction tool for the precise diagnosis of EC and for 
predicting the disease progression rate as well. Here, we found that 
CEA, CYFRA21-1, and SCCA levels were significantly lower than those 
in the control group after chemotherapy treatment in the observation 
group (p < 0.05), suggesting that the HDS-screened anticancer drug was 
effective in controlling the ESCC tumor growth in the observation 
group. Furthermore, we analyzed the treatment efficacies in the two 
groups based on clinical symptoms and found that the 12-month and 
18-month OS rates in the observation group were significantly higher 
than those in the control group (p < 0.05), while rates of LP and DM 
were significantly lower than those in the control group (p < 0.05), 
indicating promising efficacy of HDS-screened drugs against ESCC.

In summary, the HDS method is an efficient, reproducible, and 
easy-to-use drug sensitivity screening tool that can expedite the ESCC 
diagnosis, especially for terminally ill patients. Moreover, drugs for 
antitumor sensitivity on the HDS platform consistently exhibited 
significant inhibitory effects on ESCC tumor growth in disease animal 
models as well as human ESCC patients.
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