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Introduction: Precise delineation of glioblastoma in multi-parameter magnetic

resonance images is pivotal for neurosurgery and subsequent treatment

monitoring. Transformer models have shown promise in brain tumor

segmentation, but their e�cacy heavily depends on a substantial amount of

annotated data. To address the scarcity of annotated data and improve model

robustness, self-supervised learning methods using masked autoencoders have

been devised. Nevertheless, these methods have not incorporated the anatomical

priors of brain structures.

Methods: This study proposed an anatomical prior-informed masking strategy to

enhance the pre-training of masked autoencoders, which combines data-driven

reconstruction with anatomical knowledge. We investigate the likelihood of tumor

presence in various brain structures, and this information is then utilized to guide

the masking procedure.

Results: Compared with random masking, our method enables the pre-training

to concentrate on regions that are more pertinent to downstream segmentation.

Experiments conducted on the BraTS21 dataset demonstrate that our proposed

method surpasses the performance of state-of-the-art self-supervised learning

techniques. It enhances brain tumor segmentation in terms of both accuracy and

data e�ciency.

Discussion: Tailored mechanisms designed to extract valuable information

from extensive data could enhance computational e�ciency and performance,

resulting in increased precision. It’s still promising to integrate anatomical priors

and vision approaches.

KEYWORDS

masked autoencoder, anatomical priors, transformer, brain tumor segmentation,

magnetic resonance image, self-supervised learning

1. Introduction

Glioblastoma (GBM) is one of the most aggressive brain cancers among adults (1).

Multi-parameter magnetic resonance imaging (MRI) provides valuable information for

characterizing the size, invasiveness, and intrinsic heterogeneity of brain tumors (2, 3).

Accurate delineation of GBM on multi-parameter MRI is crucial for clinical diagnosis

and treatment, such as assisting surgical planning for maximum glioblastoma resection

while preserving neurological function. However, the current clinical routine still relies on

manual delineation, which is time-consuming and requires expert knowledge. There is a

high demand for automatic brain tumor segmentation to enhance the efficiency of diagnostic

procedures, facilitate surgical planning, and contribute to prognostic analyses (4).
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In the last decade, there have been extensive studies on

automatic brain tumor segmentation (5), and most of them are

based on convolutional neural networks (CNNs) (6–8). However,

due to limited receptive field, CNNs often struggle to capture

long-range dependencies and global context (9, 10), potentially

leading to inaccurate segmentation predictions. The recent success

of transformer architecture in vision tasks (11, 12) has shown

benefits in learning global contextual information. New network

designs with vision transformers have emerged for medical

image segmentation (13, 14) and achieved state-of-the-art (SOTA)

performance in brain tumor segmentation (15–17). However, the

supervised training of vision transformers typically requires a large

amount of densely annotated images, otherwise there is a high risk

of overfitting.

To combat the challenge of data scarcity in medical image

segmentation, self-supervised learning (SSL) has proven to be

a promising solution (18). In general, a pretext SSL task is

designed to pre-train the network using unannotated data, and the

learned encoder weights are further optimized in the downstream

segmentation task. Since no manual annotation is needed for

SSL, it can be applied to utilize large unannotated datasets.

Recently, one of the most successful SSL frameworks is the masked

language modeling (MLM), which has achieved great success in

numerous natural language processing tasks with transformer-

based architecture (19–21). Motivated by MLM, masked image

modeling (MIM) was also proposed for pre-training vision

transformers. In MIM, the model predicts masked image patches

from unmasked patches. The prediction target can be either token

features or raw pixel values of the masked patches. BEiT (22)

utilizes a discrete variational autoencoder (dVAE) to transform all

image patches into discrete tokens, which are then used to pre-

train a vision transformer at the token level. However, tokenizing

the image patches requires additional training of a dVAE. In

contrast, He et al. (23) introduced the masked autoencoder

(MAE), which randomly masks a subset of image patches and

reconstructs the masked pixels from unmasked patches. The high

masking ratio of MAE enables efficient pre-training of vision

transformers with large annotated datasets. The success of MAE

has motivated a series of variants in vision tasks (24–27) and

applications in medical image analysis using MIM techniques. For

instance, Tang et al. (28) utilized masked inpainting for the pre-

training of a Swin UNETR (Shifted-window UNet transformer) in

abdominal segmentation tasks. Chen et al. (29) compared multiple

MIM approaches in abdominal segmentation. Zhou et al. (30)

applied MAE pre-training with UNETR (UNet Transformer)

and obtained performance gains in both abdominal and brain

tumor segmentation.

Building a masked image is a crucial step in MIM pre-

training. As shown in Figure 1, the smallest masking unit of

MLM, such as BERT (19), is typically the vocabulary, which

preserves contextual information. However, MIM employs random

masking, which can disrupt the spatial context and regions

with the same semantic meaning, given the absence of the

concept of words commonly observed in MLM. This, in turn,

makes it challenging for the representation learning process

to obtain high-quality pretrained network, especially when the

masking ratio reaches a high percentage. Recently, several studies

demonstrated that the masking strategy has a substantial effect

on model performance in downstream tasks (31, 32). Although

random masking is widely used, recent advances have shown that

appropriate masking strategies can achieve better performance,

such as region-based masking (33), attention-based masking (34),

and adaptive masking (AdaMAE) (31). These masking strategies

take the patch context into account, leading to more effective and

efficient pre-training.

In the context of medical images, anatomical knowledge

could help improve the pre-training. Huang et al. (35)

incorporated the symmetry characteristics of brain structures

into the pre-training by constructing symmetric positional

encodings. However, few studies have integrated the more

precise brain atlas (36) into the masking strategy. Inspired by

the performance gains achieved by weighted masking strategies,

we propose an anatomical prior-informed masking strategy

for the MAE pre-training. We hypothesize that the tumor

distribution among brain structures can guide the MAE pre-

training, therefore improving the downstream brain tumor

segmentation. To achieve this, we analyze the tumor occurrence

in the SRI-24 space and establish an anatomical prior-informed

probability map for image masking. This strategy allows us

to select more informative patches for MAE pre-training. By

combining the data-driven MAE with anatomical knowledge,

we aim to improve the accuracy and data-efficiency of brain

tumor segmentation.

In this study, our contributions are as follows:

(1) An anatomical prior-informed masking strategy is proposed

to enhance the pre-training of masked autoencoder. This

strategy is designed to preserve contextual information in

3D medical images and allows the pre-training process to

concentrate on regions that aremore relevant to the downstream

segmentation task.

(2) By incorporating prior-informed weighted sampling, we

construct an anatomical prior-informed masked autoencoder,

referred to as API-MAE. This self-supervised pre-training

approach utilizes 6,415 skull-stripped brain T1 MR

images and combines data-driven reconstruction with

anatomical priors.

(3) Inheriting the pretrained encoder weights, our method

demonstrates superior performance in the downstream

segmentation task on the BraTS21 dataset, outperforming

several transformer models and surpassing state-of-the-art

self-supervised learning methods. Subsequent experiments

demonstrate that our method exhibits greater efficiency

compared with a regular masked autoencoder and maintains

a satisfactory trade-off between segmentation accuracy and

computational consumption.

2. Methodology

2.1. Overview of proposed method

We propose a novel masking strategy for improved MAE

pre-training and downstream brain tumor segmentation in
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FIGURE 2

Overview of our proposed method.

MRI. As shown in Figure 2, our proposed method consists

of two stages: (1) pre-training a masked autoencoder with

anatomical prior-informed masking strategy on the unannotated

dataset and (2) transferring the pre-trained weights of the

encoder and fine-tuning the segmentation network on the

annotated dataset.

Frontiers inMedicine 03 frontiersin.org

https://doi.org/10.3389/fmed.2023.1211800
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Wang et al. 10.3389/fmed.2023.1211800

2.2. Statistical analysis of tumor occurrence

2.2.1. Registration to standard brain template
To represent the anatomical priors, we first align all images

with the standard brain template. The DICOM image data are

transformed into Nifti format, and the brain is extracted using

FSL tools (37). After that, we transform each image into the SRI-

24 standard space (36) via affine registration. Using the optimized

affine transformation matrix M∗, all images are aligned in the

SRI-24 space.

M∗ = arg min
M

C(If , Affine(Im;M))

I = Affine(Im;M
∗)

(1)

where Im represents the moving image, which corresponds to

the MRI image of each sample. The fixed image, denoted as

If , refers to the T1 template of the SRI-24 standard space. In

this study, the operation C(Im, If ) represents the cost function

used to quantify disparities between the fixed image Im and the

moving image during the registration optimization process, where

a correction ratio is applied (38). The notation Affine(I;M) signifies

the affine operation that maps the floating image I to the fixed

image using the affine matrixM. Moreover, I represents the output

registrated image.

2.2.2. Sampling weight map derived from brain
tumor occurrence

We conduct a statistical analysis of enhanced tumor (ET)

across BraTS21 dataset (39–41) and obatin a distribution map of

ET occurrence in the SRI-24 standard space. To implement this

analysis, we utilize a brain parcellation atlas building upon the

parc116plus atlas (36). Some excessively small regions are merged

into larger ones, resulting in 128 parcellation regions of the entire

skull-stripped brain. To obtain the sampling probability of each

voxel, the average sampling probability for each parcellation is

defined as follows:

PRi =

∑
j fi,j

VRi ·
∑

i

∑
j fi,j

(i = 1, 2, . . . , 128; j = 1, 2, . . . ,NRi ) (2)

where Ri represents the i-th brain parcellation, PRi denotes the

average sampling probability per volume of region Ri, fi,j is the

occurrence frequency of the ET region in the j-th voxel within the i-

th parcellation, VRi represents the volume of Ri, and NRi represents

the number of voxel in Ri. Consequently, the sampling weight

map W, depicted in Figure 3, can be generated by assigning voxels

within the parcellation region Ri the identical probability value PRi .

2.3. Anatomical prior-informed masked
auto-encoder

As shown in Figure 3, our proposed Anatomical Prior-

Informed Masked AutoEncoder (API-MAE) consists of five

components as follows: (1) Anatomical Prior-informed Masking,

(2) Patch embedding, (3) Transformer Encoder, (4) Transformer

Decoder, and (5) Discriminator.

2.3.1. Anatomical prior-informed masking
strategy

Instead of the random masking strategy used in standard MAE

pre-training, we propose a dedicated masking strategy to select

informative patches based on the derived sampling weight map.

The input image I and sampling weights mapW are center-cropped

with a size of 128, i.e., I ∈ R
128×128×128, W ∈ R

128×128×128.

Subsequently, I and W are transformed into patches represented

as X = {xi}
n
i=1 and W = {wi}

n
i=1, respectively. Here, n signifies

the quantity of patches, and the patch size is configured at 8, a

choice consistent with previous studies (35). This configuration

leads to n = 16 × 16 × 16, aligning with the concept of vision

transformers (12) splitting the 2D image into 16 × 16 tokens. The

sample probability of each patch is determined by the probability

vector p = [p1, p2, . . . , pn]
⊺, where pi =

∑
j wi,j/

∑
i,j wi,j, and wi,j

denotes the sampling weight of the j-th voxel within the i-th patch

corresponding to the voxels xi,j of the image patch. Consequently,

the visible patches that are fed into the encoder can be sampled

as follows:

Xvis = Sampling(X , p) (3)

where Xvis = {xi}
k
i=1 represents visible patches sampled from

the original image patches X , and k = η · n represent the

number of visible patches, η = 0.25 is the sampling ratio which

aligned with the 75% masking ratio of MAE. The Sampling(X , p)

operation involves utilizing a multinomial probability distribution

with the probability vector p to select tokens from X for sampling,

which then constitute the visible tokens. The sampling procedure

is implemented using the multinomial API from PyTorch. As

depicted in Figure 4, the prior-informed sampling maintains

superior structural consistency compared to random masking,

which is advantageous for the calculation of region-based sampling

weights.

2.3.2. Patch embedding
The input visible patches in Xvis are first flattened into one-

dimensional vectors, then mapped to the feature dimension D via

learnable patch tokenizer g(·). The input of the transformer encoder

xenc is calculated as follows:

xenc = g(xi)+ PE ∈ R
D (4)

where xi ∈ Xvis, and PE is the sinusoidal positional encoding.

PE(pos, 2i) = sin
( pos

100002i/D

)

PE(pos, 2i+ 1) = cos
( pos

100002i/D

) (5)

where pos = 1, 2, . . . ,T represents the token position, i represents

the i-th dimension.

2.3.3. Transformer encoder
We adopt a shifted window vision transformer, known as SW-

ViT (35), as the transformer encoder in API-MAE. As shown in

Figures 3C, D, the multi-head self-attention (MSA) in the original
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FIGURE 3

Architecture of Anatomical Prior-Informed Masked Autoencoder (API-MAE). (A) Is the architecture of Anatomical Prior-Informed Masked

Autoencoder. (B) Is the Discriminator used for reconstruction. (C) If the Transformer block. (D) Is the linear Swin Transformer block.

transformer block is replaced with linear window-based multi-

head self-attention (LW-MSA) and shifted linear window-based

multi-head self-attention (SLW-MSA) in the Swin transformer

block. Both LW-MSA and SLW-MSA reduce parameters and

computations among each head, which improves the network

efficiency without significant accuracy loss. The transformer

encoder serves as the feature extractor in API-MAE and the

segmentation network. The output of the transformer encoder will

undergo a linear projection to fit the higher feature dimension of

the transformer decoder.

2.3.4. Transformer decoder
We use a shallow transformer decoder to reconstruct the

original image in API-MAE. The inputs to the decoder consist of

both visible tokens and masked tokens with positional encodings.

The output of the decoder is the reconstructed image tokens ŷi for

each input patch. The reconstruction loss function is the standard

L2 loss:

LRec =
1

2

∑

i

||ŷi − xi||2, i = 1, 2, . . . ,m (6)

where xi denotes the i-th image patch andm represents the number

of masked tokens. It should be noted that only masked tokens are

calculated for reconstructed loss.

2.3.5. Reconstruction Discriminator
Recent advancements in self-supervised learning, such as

DiRA (42), have demonstrated that the collaborative learning

of self-supervised and adversarial tasks can lead to a more

generalizable representation, encompassing fine-grained semantic

representation. Moreover, discriminators have been proven

beneficial for the masked autoencoder (32, 43). In API-MAE,

we introduced a reconstruction discriminator, envisioning its

potential synergistic effect when integrated into MAE decoder.

This combination aims to enhance the learning representation

and improve visual quality of the reconstructed output. The

discriminator is constructed as a shallower convolutional neural
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FIGURE 4

Example of visualizing a T1 MR image using di�erent masking strategies with a masking ratio of 0.75. This image is center-cropped with a shape of

128× 128× 128, and each token has a patch size of 8× 8× 8.

network, comprising five convolutional layers tasked with

distinguishing between the reconstructed and real images. The

adversarial loss employed for the discriminator is represented as

an L2 loss as follows:

LAdv =
1

2

∑

i

(||D(xi)− 1||2 + ||D(ŷi)||2), i = 1, 2, . . . , n (7)

where xi is the i-th image patch, ŷi is the corresponding

reconstructed patch, and n is the token number of the original

image. Thus, the total loss of API-MAE is a combination of

reconstruction loss and adversarial loss as follows:

LAPI-MAE = LRec + LAdv (8)

2.4. Segmentation network

After the pre-training of API-MAE, we discard the transformer

decoder and keep the transformer encoder for the brain tumor

segmentation task. The architecture of the segmentation network

is shown in Figure 5. The segmentation network contains three

parts as follows: (1) encoder, which contains patch embedding

and transformer blocks, (2) encoder propagation, and (3) decoder.

The patch embedding layer maps the input multi-parameter

MRI (i.e., T1, T1Gd, T2-FLAIR, and T2 image) patches to

the embedding features. The transformer blocks share the same

architecture and are initialized with the pre-training weight of the

transformer encoder in API-MAE. The encoder propagation and

decoder parts utilize features from the original image (i.e., z0) and

specific transformer layers (2nd, 4th, 6th, 8th, and last layer, i.e.,

z2, z4, z6, z8, z12) to propagate features and segment the image into

three target classes as follows: whole tumor (WT), tumor core

(TC), and enhanced tumor (ET). To obtain better segmentation,

the segmentation network adopts cross-entropy and Dice loss with

deep supervision as the segmentation loss as follows:

LSeg =

4∑

i=1

1

2i−1
· (CrossEntropy(Si, Ŝi)+ Dice(Si, Ŝi)) (9)

where i represents the stage of deep supervision, Ŝi denotes the

prediction of stage i, and Si represents the ground truth resized to

match the corresponding prediction.

3. Experiments

We pre-train the MAE model on an unannotated brain

MRI dataset and evaluate the segmentation performance on an

annotated brain tumor MRI dataset.
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FIGURE 5

Architecture of the baseline segmentation network. This network is made up of three parts, i.e., the Encoder part for feature extraction, the Encoder

Propagation part used for channel and spatial normalization and skip connection, and the Decoder parts used for upsampling and predicting the

segmentation results. The convolution blocks with skip=2 in the Encoder Propagation part are used for downsampling, and the UNetrUpBlock used

in the decoder part is used for upsampling and each block contains a deconvolution block and two residual convolution blocks.

3.1. Datasets

3.1.1. ADNI dataset
Alzheimer’s Disease Neuroimaging Initiative (ADNI)

dataset (44) is derived from a longitudinal multicenter study

aimed at early detection and tracking of Alzheimer’s disease

(AD). In this study, we collected 7,945 skull-stripped T1

MR images and subsequently handpicked 6,415 images of

superior visual quality for utilization in the pre-training dataset.

This selection was made following a visual inspection of the

registration results.

3.1.2. BraTS21 dataset
The BraTS21 dataset (39–41) consists of 1,251 multi-parameter

MRI scans. Each case includes four different modalities as follows:

a) native (T1), b) post-contrast T1-weighted (T1Gd), c) T2-

weighted (T2), and d) T2 Fluid Attenuated Inversion Recovery

(T2-FLAIR) images, acquired from various protocols and scanners

across multiple institutions. Each scan has been annotated by

experienced radiologists with three different subregions as follows:

enhancing tumor (ET), peritumoral edematous/invaded tissue

(ED), and necrotic tumor core (NCR). In this study, we divide the

1,251 samples into training, validation, and testing sets at a ratio of

7:1:2, following previous studies (35).

3.2. Evaluation metrics

Both the volumetric metric dice similarity coefficient (DSC)

and surface metric Hausdorff distance (HD) are used for

performance evaluation. DSC quantifies the overlap between

segmentation results and annotations in voxel space, while the 95th
percentile of Hausdorff distance (HD95) measures the distances

between the segmentation surface and ground-truth surface. The

calculation of HD95 is performed by the MedPy package using the

analysis framework from nnFormer (45).

3.3. Implementation details

Experimental settings: All the experiments are implemented

using the PyTorch 1.2 framework. We use 4 NVIDIA A100 GPUs

(40 GB VRAM) for MAE pre-training and NVIDIA RTX3090 GPU

(24 GB VRAM) for segmentation training and inference.

Data preprocessing: In the preprocessing section, we employ

affine registration to align individual images with the standard

space. Here, the cost function during the image registration

optimization is correlation ratio (38). To prevent the registration

results from being flipped upside down, we defined the rotation

search space for affine registration as follows: [−30◦, 30◦] for X-

axis rotation, [−30◦, 30◦] for Y-axis rotation, and [−180◦, 180◦] for

Z-axis rotation. This configuration is aimed to emphasize rotation

in the X-Y plane and prevent upside-down flipping along the
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FIGURE 6

The occurrence frequency in SRI-24 standard space among 1,251 cases from BraTS21 dataset. The five columns represent the standard brain T1 MR

image, brain atlas (enhanced parc116 plus) in SRI-24 Space, Enhanced Tumor (ET) occurrence, Tumor Core (TC) Tumor occurrence, and Whole

Tumor (WT) occurrence, respectively.

Z-axis. It performed effectively with our dataset of 6,415 pre-

training samples. The registration optimization and transformation

processing were executed using the FLIRT (46) toolbox from FSL.

Trilinear interpolation was utilized to compute the intensity of new

voxels during affine mapping. For the pre-training data, we employ

the MONAI (47) library for data normalization and cropping.

Additionally, we utilize the segmentation data preprocessing

pipeline provided by nnUNet (7), to handle the multi-modality

segmentation data.

Model architecture: In API-MAE, the transformer encoder

contains 12 layers of linear swin transformer blocks with a feature

dimension D = 384. The transformer decoder comprises 8 layers

of vanilla transformer blocks with a feature dimension of 384. The

discriminator consists of four convolution blocks with a kernel size

of k = 3 and a convolution block with a kernel size of k = 1. In

the segmentation network, the weights of encoder propagation and

decoder parts are initialized with the He initialization (48).

Model training: ForMAE training, the AdamWoptimizer with

a batch size of 12 is trained for 300 epochs. The initial learning

rate is 1e-3. Weight decay of 5e-2 is also adopted for model

regularization. For the segmentation procedure, we apply the (45)

training framework and default parameter for 1,000 epochs.

4. Results

4.1. Pre-training results of anatomical
prior-informed MAE

As presented in Figure 6, we note distinct differences in

the spatial distribution of tumor occurrence within the SRI24

space. Specifically, gliomas are more frequently observed in the

white matter regions of the middle and posterior sections of the

brain, with comparatively lower frequencies in the brainstem and

cerebellar regions. Table 1 shows the normalized probability of

tumor occurrence among all 128 brain parcellations. Considering

that ET is the most challenging region to segment, we employ the

probability of the ET region for probabilistic masking.

The masking and reconstruction results are shown in Figure 7.

It can be observed that random masking tends to distribute

masked patches uniformly across the entire image, whereas our

proposed weighted sampling strategy enables concentration on

more valuable, concentrated, and relatively contiguous regions.

The disruption of contextual information in random masking

makes the reconstruction task challenging and results in a blurry

reconstructed image. In contrast, the proposed weighted sampling

method canmaintain the integrity of semantic regions, allowing for

better reconstruction results.

4.2. Segmentation results on BraTS21
dataset

4.2.1. Segmentation performance on BraTS21
dataset

To validate the effectiveness of the proposed SSL pre-

training approach in downstream segmentation task, we conducted

validation experiments using the BraTS21 dataset. The downstream

brain tumor segmentation network is initialized with the pre-

trained API-MAE encoder weights and subsequently fine-tuned

using the BraTS21 dataset. We conducted a comparison of
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TABLE 1 The normalized occurrence of tumor regions within di�erent brain parcellations in enhanced SRI-24 atlas analyzed from 1,251 training cases of the BraTS21 dataset.

Atlas No. Occurrence (‰) Atlas No. Occurrence (‰) Atlas No. Occurrence (‰) Atlas No. Occurrence (‰)

ET TC WT ET TC WT ET TC WT ET TC WT

1 4.752 6.232 7.804 33 9.670 9.221 8.695 65 6.924 6.237 6.478 97 0.234 0.371 0.451

2 6.076 7.487 9.324 34 10.018 8.920 9.074 66 5.039 5.836 6.568 98 0.566 0.627 0.660

3 4.488 5.667 6.900 35 8.562 6.641 5.224 67 5.838 5.624 5.486 99 0.432 0.359 0.365

4 7.042 7.193 7.949 36 7.492 5.694 4.343 68 5.379 4.854 4.737 100 0.346 0.406 0.432

5 4.258 4.047 4.198 37 22.961 19.311 16.840 69 3.144 3.872 4.267 101 0.511 0.250 0.221

6 2.253 3.679 3.666 38 20.812 18.402 15.837 70 3.148 3.553 4.698 102 0.006 0.020 0.108

7 5.058 5.902 7.232 39 10.437 8.829 8.304 71 17.277 18.222 16.062 103 0.443 0.244 0.238

8 7.983 8.575 8.887 40 8.959 8.447 7.602 72 17.632 19.147 18.173 104 0.077 0.102 0.154

9 4.697 4.000 4.069 41 20.511 17.402 15.713 73 21.153 20.498 20.578 105 0.234 0.234 0.324

10 4.302 4.591 4.235 42 19.540 18.639 16.355 74 22.365 23.167 22.596 106 0.297 0.236 0.338

11 10.660 11.250 12.304 43 3.381 3.224 3.248 75 16.388 16.856 17.372 107 0.000 0.048 0.104

12 12.720 13.980 14.909 44 2.699 2.668 2.584 76 19.246 19.615 18.951 108 0.109 0.091 0.130

13 6.800 6.684 7.671 45 5.139 4.690 4.523 77 10.394 10.765 11.793 109 0.571 0.502 0.674

14 8.131 8.618 8.160 46 4.073 3.794 3.657 78 16.606 14.655 15.036 110 0.332 0.496 0.603

15 8.506 7.635 7.178 47 1.932 1.842 1.673 79 20.442 19.811 21.291 111 0.649 0.531 0.665

16 6.499 6.783 6.170 48 2.241 1.949 1.706 80 23.945 25.019 22.553 112 0.385 0.244 0.307

17 13.663 14.048 16.044 49 6.592 5.891 5.982 81 13.914 14.137 15.073 113 0.513 0.320 0.336

18 17.307 17.339 17.131 50 4.727 4.686 5.243 82 15.253 15.150 14.987 114 0.212 0.342 0.395

19 3.260 4.923 5.407 51 4.827 4.206 4.233 83 18.236 16.137 15.620 115 17.195 15.945 14.050

20 3.897 4.862 5.722 52 4.906 4.636 4.816 84 13.306 13.089 12.785 116 8.231 8.323 9.206

21 7.835 8.926 9.186 53 1.949 1.836 1.902 85 11.423 10.749 11.322 117 6.310 7.011 9.164

22 7.424 9.238 8.825 54 2.332 2.017 1.918 86 9.425 10.035 10.850 118 6.761 7.458 9.569

23 5.723 7.193 6.791 55 7.666 6.745 6.341 87 11.912 10.302 11.184 119 19.636 18.910 16.956

24 8.352 8.358 8.053 56 6.645 6.265 5.671 88 9.728 8.737 8.556 120 21.037 20.192 18.556

25 5.593 5.984 6.282 57 5.545 6.162 7.175 89 9.253 8.937 9.267 121 2.881 7.415 6.751

26 5.275 5.768 6.391 58 7.017 7.076 8.576 90 7.208 7.937 7.986 122 3.018 7.112 6.942

27 3.380 3.943 3.972 59 6.488 6.475 6.568 91 0.382 0.253 0.251 123 15.209 15.058 16.662

28 2.602 3.767 3.784 60 5.566 5.746 7.283 92 0.046 0.066 0.137 124 16.987 16.541 18.001

29 22.308 22.074 20.767 61 7.063 6.733 6.843 93 0.425 0.228 0.177 125 7.655 7.821 7.360

30 22.077 23.383 20.966 62 7.861 7.588 9.150 94 0.000 0.033 0.110 126 7.681 8.149 7.542

31 15.676 14.889 13.405 63 6.903 6.783 7.793 95 0.233 0.461 0.587 127 3.154 3.684 3.294

32 17.266 15.530 13.671 64 8.235 7.420 7.827 96 0.462 0.396 0.585 128 3.571 4.070 3.562

The occurrence is expressed in permillage format. ET, enhanced tumor; TC, means tumor core; WT, the whole tumor.
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FIGURE 7

The visible example of masking images and the reconstruction results of MAE and API-MAE. The five columns represent the origin brain T1 MR

image, the random masking strategy used in MAE, the masking image generated from API token sampling, and the reconstruction results of API-MAE,

respectively.

TABLE 2 E�ciency analysis.

Metric nnFormer TransBTS UNETR SW-ViT

FLOPs (G) 271.64 527.46 2141.32 860.03

Params (M) 37.48 30.62 91.04 85.29

CPU inference time (s) 1.425 16.011 21.953 5.030

GPU inference time (s) 0.010 0.006 0.008 0.106

FLOPs stands for Floating Point Operations, which are recorded in units of gigaflops. Params refers to the learnable parameters of different network architectures, recorded in units of millions.

Inference time is computed using an input tensor with dimensions of 2× 128× 128× 128.

our method against several transformer-based models, including

nnFormer (45), TransBTS (16), and UNETR (13) without pre-

training. Additionally, we compared against several SSL pre-

training methods used in medical imaging, namely, 3D-RPL and

3D-Jig (49), as well as the current state-of-the-art ASA in brain

tumor segmentation (35).

As shown in Table 2, we observed that the pre-trained models

demonstrate better performance, and our proposed API-MAE

achieved the best performance in terms of the Dice similarity

coefficient (DSC) metrics for whole tumor (WT) and tumor core

(TC) and the best average performance of all three regions.

4.2.2. Ablation study on masking strategies
To evaluate the effectiveness of our proposed masking

strategy, we conduct an ablation study on different MAE masking

strategies. The comparison methods include the baseline without

pre-training, MAE pre-trained with random masking, and our

proposed API-MAE pre-trained with anatomical prior-informed

masking strategy. Table 3 shows that our proposed API-MAE

showed improved performance for all regions compared with

vanilla MAE and baseline. This demonstrates the effectiveness

of our anatomical prior-informed masking compared with the

random masking strategy. However, the marginal improvement

indicates that in the presence of enough annotated data (more

than 1,000 cases in BraTS21), transformer-based models already

achieve satisfactory performance, and the benefit of pre-training is

not substantial.

4.2.3. Data-e�ciency analysis
To validate the data efficiency of our pre-trained model, we

further train the segmentation model on a small subset of the

whole training dataset. We randomly sampled 100 cases from the
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TABLE 3 Ablation study on the segmentation performance trained on the BraTS21 dataset.

Methods DSC (%)↑ HD95 (mm)↓

WT TC ET Mean WT TC ET Mean

Baseline 93.96 91.06 85.83 90.28 3.700 3.600 2.566 3.288

MAE 93.84 90.78 86.20 90.27 3.977 3.619 2.758 3.451

Ours 94.07 91.47 86.53 90.69 3.825 3.172 2.680 3.225

DSCmeans the Dice similarity coefficient, andHD95means the 95th percentile Hausdoff distance. ↑ indicates higher is better and ↓ indicates lower is better. Bold indicates the best performance.

TABLE 4 Comparison of model performance trained with 100 cases sampling from BraTS21 dataset.

Metric Methods WT TC ET Mean

DSC (%)↑

Baseline 91.83± 0.16 87.43± 1.88 83.11± 1.44 87.46

MAE 91.96 ± 0.03 87.89± 0.53 83.75± 0.59 87.87

API-MAE 91.95± 0.19 88.02 ± 0.68 84.25 ± 0.67 88.07

HD95 (mm)↓

Baseline 6.489± 0.426 5.563± 0.377 3.985± 0.226 5.346

MAE 6.262 ± 0.358 5.513± 0.722 4.093± 0.692 5.289

API-MAE 6.285± 0.694 4.979 ± 0.424 3.856 ± 0.384 5.040

Results from four independent sampling processes are reported with mean±std.↑ indicates higher is better and ↓ indicates lower is better. Bold indicates the best performance.

FIGURE 8

Example of tumor segmentation results from a testing image with 100 training cases. The three rows are from the axial, coronal, and sagittal views.

The green region represents the necrotic tumor core (NCR), the blue region represents the Gd-enhancing tumor (ET), and the red region represents

the peritumoral edematous/invaded tissue (ED).

original training cases, while the validation and testing sets were

kept the same as the whole dataset. The compared methods include

the baseline without pre-training, MAE pre-trained with random

masking, and our proposed API-MAE pre-trained with anatomical

prior-informed masking strategy. The sampling process is repeated

four times to mitigate the selective bias.

The segmentation results on the small training set are shown

in Table 4. It is observed that MAE pre-training benefits the

segmentation performance and improves the model robustness

in most scenarios. The improvement by pre-training is more

prominent in this small-dataset setting compared with the whole

dataset. The best segmentation performance for ET and TC

regions is obtained by API-MAE, in terms of DSC metrics,

which matches the purpose of using ET occurrence map for

weighted sampling. As shown in Figure 8, training with the MAE

paradigm tends to reduce the erroneous falsely predicted regions

and reduce the prediction error of ET regions, particularly in

difficult-to-segment regions.
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TABLE 5 Comparision results on BraTS21 dataset.

Methods DSC (%)↑ HD95 (mm)↓

WT TC ET Mean WT TC ET Mean

nnFormer (45) 91.46 87.42 82.22 87.03 10.15 9.59 16.78 12.17

TransBTS (16) 92.06 88.20 79.46 86.57 4.98 4.86 16.32 8.72

UNETR (13) 92.12 88.32 79.61 86.68 4.91 4.67 16.32 8.63

3D-RPL (49) 93.92 90.13 85.92 89.99 3.74 3.98 13.71 7.14

3D-Jig (49) 93.87 90.14 86.01 90.01 3.85 3.94 11.79 6.53

ASA (35) 94.03 90.29 86.76 90.36 3.61 3.78 10.25 5.88

Ours 94.07 91.47 86.53 90.69 3.82 3.17 2.68 3.23

DSCmeans the Dice similarity coefficient, and HD95means the 95th percentile Hausdoff distance. ↑ indicates higher is better and ↓ indicates lower is better. Bold indicates the best performance

and the results of previous studies are adopted from (35).

To further investigate the efficiency of proposed method, we

conducted an efficiency analysis of the segmentation phase for the

methods, as shown in Table 5. Since different SSL methods share

the same segmentation network, specifically SW-ViT, the variations

in performance arise from the encoder weights inherited from

diverse SSL pre-training tasks. This comparison involves distinct

network architectures, namely, nnFormer, TransBTS, UNETR, and

SW-ViT. All the methods were reproduced using the original code

on a local server equipped with an AMD Ryzen 9 5900X CPU (3.7

GHz), 128 GB RAM (DDR4 2400MT/s), and an NVIDIA RTX3090

GPU. For fair comparison, we modified UNETR by adjusting its

input channels to 4 and configuring the patch size as 8 × 8 × 8,

in alignment with SW-ViT. The computation consumption was

calculated utilizing the thop package. This process entails inputting

a tensor with dimensions of 2× 128× 128× 128 into the network

for computation and the standard segmentation procedure.

Combining the data fromTables 2, 4, we observe that nnFormer

exhibits the best inference efficiency. This superiority can be

attributed to the dimension of the embedding feature in the

Transformer module of the network, which is [96, 192, 384, 768]. In

contrast, other Transformer models often have embedding feature

dimensions of 384 or 768. This relatively shallower transformer

architecture contributes to its enhanced computational efficiency.

However, it may result in slightly lower segmentation performance.

Higher segmentation accuracy can be achieved in both WT and

TC components in models with increased transformer layers.

However, when using a high-layer transformer encoder such

as UNETR, the number of floating point operations (FLOPs)

and learnable parameters will increase rapidly. While the SW-

ViT could reduce the FLOPs and parameters with the help

of shifted window-based linear transformer modules. Enhanced

with SSL pre-training tasks, particularly our proposed API-

MAE, the methods using SW-ViT obtain the best segmentation

performance while maintaining a favorable balance in terms

of segmentation time consumption. Due to the presence of

certain operations within the network architecture that do not

parallelize efficiently during GPU computation, the proposed

method does not achieve optimal computational efficiency on the

GPU. However, the proposed method could attain decent CPU

time consumption, which maintains a reasonable balance between

accuracy and efficiency.

5. Discussion

Recently, transformer-based models have emerged as state-

of-the-art methods for 3D medical image segmentation, owing

to their superiority in modeling long-range dependencies and

leveraging global contextual information over fully convolutional

neural networks. However, such methods often rely on a vast

of training data for network optimization. A major challenge in

training such models is the limited availability of annotated data. In

this study, we address this challenge by utilizing 6,415 unannotated

T1-weighted MR images from the ADNI dataset for pre-training.

Our approach consistently improved the segmentation accuracy

in scenarios with both large and small training sets. Although

only T1-weighted images are used for pre-training, the learned

weights benefit the downstream brain tumor segmentation on

multi-parameter MRI. This highlights the potential of pre-training

for improved medical image segmentation.

The MAE used in computer vision typically employs random

masking with a high masking ratio of 0.75 and utilizes 25%

unmasked patches for encoder training. The high masking ratio

can lead to the loss of contextual information in high-dimensional

medical images, making image reconstruction challenging

and potentially affecting the learning of generalizable features.

Therefore, it is important to consider tailored sampling strategies

that take into account the specific characteristics and requirements

of the task at hand. In this study, we introduce an anatomical

prior-informed masking strategy, where brain regions with higher

tumor occurrence are more frequently sampled for pre-training.

The experiments demonstrate that our proposed pre-training

method enhances the performance of brain tumor segmentation,

which outperforms other self-learning approaches. This indicates

that incorporating anatomical priors into the pre-training stage

leads to performance improvements in downstream tasks.

Additionally, our anatomical prior-informed sampling strategy

can be considered as an attention mechanism in selecting valuable

and task-related patches forMAE pre-training. In general, attention

mechanisms usually help models filter out high-value information

from large amount of data, thereby improving computational

efficiency and performance and making computing more precise

and efficient. Given a large number of image patches in the

unannotated dataset, it is important to let the pre-training process
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attend the informative patches. By incorporating the tumor

occurrence rate and brain template into the construction of an

attentive sampling strategy, our approach integrates anatomical

priors with masked image modeling pre-training. This enables

efficient sampling and the most use of unannotated data.

There are some limitations of this study. Our proposed

method requires the pre-registration of the sampling weighting

map for each individual, a process typically executed on the

CPU and incurring a time cost. In future study, this procedure

can be expedited through the utilization of deep learning-based

networks, enabling accurate and rapid registration. We showcase

the advantage of integrating anatomical priors during the pre-

training stage, leveraging only tumor occurrence information. In

future, the exploration of more advanced anatomical priors, such

as symmetric brain structure or active learning strategies (50), holds

potential for further investigation.

6. Conclusion

In this study, we introduce a novel pre-training technique for

brain tumor segmentation utilizing transformer networks. This

technique involves the integration of an anatomical prior-informed

masking strategy into the masked image modeling process.

Informative image patches from brain parcellations with higher

tumor occurrence are sampled more frequently, facilitating the

mask autoencoder to focus on the regions of interest. The proposed

approach demonstrates promising performance in the brain tumor

segmentation task, surpassing compared self-learning methods.
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