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Background: Unanticipated difficult mask ventilation (DMV) is a potentially life-
threatening event in anesthesia. Nevertheless, predicting DMV currently remains a 
challenge. This study aimed to verify whether three dimensional (3D) facial scans 
could predict DMV in patients scheduled for general anesthesia.

Methods: The 3D facial scans were taken on 669 adult patients scheduled for 
elective surgery under general anesthesia. Clinical variables currently used as 
predictors of DMV were also collected. The DMV was defined as the inability to 
provide adequate and stable ventilation. Spatially dense landmarks were digitized 
on 3D scans to describe sufficient details for facial features and then processed 
by 3D geometric morphometrics. Ten different machine learning (ML) algorithms, 
varying from simple to more advanced, were introduced. The performance of 
ML models for DMV prediction was compared with that of the DIFFMASK score. 
The area under the receiver operating characteristic curves (AUC) with its 95% 
confidence interval (95% CI) as well as the specificity and sensitivity were used to 
evaluate the predictive value of the model.

Results: The incidence of DMV was 35/669 (5.23%). The logistic regression (LR) 
model performed best among the 10 ML models. The AUC of the LR model was 
0.825 (95% CI, 0.765–0.885). The sensitivity and specificity of the model were 
0.829 (95% CI, 0.629–0.914) and 0.733 (95% CI, 0.532–0.819), respectively. 
The LR model demonstrated better predictive performance than the DIFFMASK 
score, which obtained an AUC of 0.785 (95% CI, 0.710–0.860) and a sensitivity of 
0.686 (95% CI, 0.578–0.847). Notably, we identified a significant morphological 
difference in the mandibular region between the DMV group and the easy mask 
ventilation group.

Conclusion: Our study indicated a distinct morphological difference in the 
mandibular region between the DMV group and the easy mask ventilation 
group.  3D geometric morphometrics with ML could be  a rapid, efficient, and 
non-invasive tool for DMV prediction to improve anesthesia safety.
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1. Introduction

Airway management is a critical aspect of ensuring the safety and 
quality of anesthesia. Mask ventilation (MV) is a cornerstone of 
airway management, serving as both an initial ventilation technique 
and a rescue method during difficult or failed tracheal intubation (1). 
Difficult mask ventilation (DMV) was reported to be an essential 
factor for severe airway-related complications such as death or 
hypoxic brain injury in anesthesia (2). As a result, it is essential to 
conduct a thorough assessment of the patient’s airway before the 
induction of anesthesia. For patients with a high risk of DMV, the 
anesthesiologists can prepare alternative approaches in advance such 
as a plan for awake fiberoptic intubation to ensure safety (3).

Abnormal facial features can directly impact external mask fit, 
which potentially makes mask ventilation more challenging, and thus, 
the patient’s morphology may be  a relevant predictor for 
DMV. Recently, two-dimensional (2D) images and three-dimensional 
(3D) scans have been employed to characterize the maxillofacial 
structure and predict diseases (4, 5). In the field of anesthesia, 2D 
images have been implemented to construct a predictive model for the 
classification of difficult intubation (6, 7). However, 2D images are 
susceptible to external factors such as lighting, which may affect their 
accuracy. Moreover, human faces are inherently 3D objects, and 2D 
images are merely projections of the face on a flat surface, thus 
potentially resulting in a loss of important characteristics. To address 
these limitations, 3D scans are more suitable for examining the 
complex structures of facial shapes with greater reliability.

Conventional morphometric analysis that relies on linear 
measurements such as angles or lengths may not capture the complex 
variation in 3D shapes. Geometric morphometrics is a more effective 
tool as it can retain geometric information such as the relative position 
of each structure, allowing for quantification and visualization of 
morphometric results (8). For instance, the recent development in 3D 
craniofacial scans and geometric morphometric analysis has shown 
promising results in predicting obstructive sleep apnea (OSA), 
surpassing the performance of traditional questionnaires (9). It has 
been verified that there is a relationship between DMV and OSAS 
(10), and they share common morphological features, such as 
retrognathia and a thick neck.

No study has explored the relationship between 3D facial scans 
and DMV to our knowledge, so here we proposed that 3D geometric 
morphometric analysis of facial scans combined with machine 
learning (ML) algorithms could be an alternative tool to predict DMV 
in patients scheduled for general anesthesia.

2. Materials and methods

2.1. Patients

This observational study was conducted between June 2021 and 
January 2022 after obtaining approval from the Ethics Committee of 
Shanghai Ninth People’s Hospital (no. SH9H-2020-T233-1). The 
protocol is registered on ClinicalTrials.gov (trial registration no. NCT 
04458220). The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

The inclusion criteria for the study were adult patients scheduled 
for elective surgery under general anesthesia. The exclusion criteria 

were as follows: with mental or central nervous system disease; with 
stupefaction or disturbance of consciousness; with terrible injury; with 
difficulties in communicating; cannot follow instructions to make 
standardized postures; participated in other relevant clinical 
investigation in the past 3 months. Informed consent was provided by 
each participant before their inclusion.

2.2. Preoperative airway assessment

The demographic properties of patients’ age, gender, weight, 
height, and body mass index (BMI) were collected during the 
preoperative visit. Drawing inspiration from a previous study that 
developed a weighted risk score for DMV prediction named 
DIFFMASK score (11), we collected additional data including the 
history of snoring, history of obstructive sleep apnea, history of neck 
radiation, history of difficult tracheal intubation, modified Mallampati 
test (MMT), and thyromental distance (TMD).

All researchers received repeated training before this trial to 
reduce measurement bias. The modified Mallampati test (MMT) was 
conducted with patients in full neck extension, while being asked to 
open their mouths widely and protrude their tongues, without 
vocalizing (12). The thyromental distance was determined by 
measuring the distance between the uppermost border of the thyroid 
cartilage and the mentum, with the neck in an extended position (12).

2.3. 3D geometric morphometrics of the 
craniofacial structure

2.3.1. Facial surface imaging
All 3D scans were acquired in the Shanghai Ninth People’s 

Hospital by the same researcher who was specifically trained prior to 
the trial to ensure the uniformity of data.

A 3D face scanner, FaceGo pro (Revopoint, China) was utilized to 
generate 3D facial models with an accuracy of 0.1 mm. Participants 
were instructed to fully expose their face and neck region, maintain a 
neutral facial expression, and look parallelly at the camera during the 
scanning process, with their heads in a natural position. Each 
participant was asked to keep the head still during the whole scan 
which could be finished in 1 min.

2.3.2. Manual annotation
The models were saved in OBJ format and subsequently processed 

using Meshmixer (release 3.5.474)1 to eliminate the redundant parts. 
Each facial scan in OBJ format was imported into the 3D Slicer 
(release 5.0.3)2 which is an open-source biomedical visualization and 
image analysis software supported by the National Institutes of Health 
(NIH) (13) to digitize 8 anchoring points (pronasale, right earlobe, left 
earlobe, right cheilion, left cheilion, tip of the chin, hyoid bone, and 
thyroid notch) in a fixed order (Figures  1A,B). The placement of 
anchoring points was performed by a single researcher to minimize 
potential user bias.

1 https://meshmixer.com/

2 https://www.slicer.org/
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2.3.3. Spatially dense surface registration
All acquisitions were mapped using MeshMonk, an open-source 

software toolbox available at https://github.com/TheWebMonks/
meshmonk, within MATLAB 2018b. MeshMonk facilitates spatially 
dense registration of 3D surfaces (14). Through iterative rigid and 
non-rigid registration algorithms, MeshMonk enables the alignment 
of each 3D surface to a reference mesh.

A single patient with a fully exposed head and neck region and 
minimal caveats was selected as the reference mesh. The choice of 
reference mesh has little impact on statistics, as long as it fulfills the 
criteria of having no significant holes and uniform vertex coverage (15).

The reference mesh was subsequently cleaned and prepared using 
Meshmixer (version 3.5.474), accessible at https://meshmixer.com/. The 
cleanup process aimed to retain the area below the eyes and above the 
plane of the thyroid cartilage, as it held significant interest for DMV 
shown in Figure 1C. Our hypothesis was that this region, from below the 
eyes to above the jaw, could affect mask ventilation by influencing mask 
fit while the region of mandible and neck could potentially interfere with 

mask ventilation by impacting airflow. Following the cleanup, the 
reference mesh consisted of 9,578 vertices. The reference mesh in OBJ 
format could be found in Supplementary file.

Subsequently, the reference mesh underwent iterative rigid and 
non-rigid registration algorithms to align each facial image. As the 
same reference mesh was used, the landmarks redefined on each facial 
sample were matched point-to-point consistently across all 
samples (16).

To explore the potential impact of using different reference 
meshes from different patients, we randomly selected three additional 
patients. Subsequently, each facial image was aligned to different 
reference mesh for subsequent analyses.

2.3.4. Generalized procrustes analysis
A Generalized Procrustes analysis (GPA) was then applied to 

re-align all meshes into a common coordinate system, using a total of 
9,578 quasi-landmarks which removed among configuration 
variations in size, location, and orientation (17).

FIGURE 1

Demonstration of facial mapping. (A) Digitization of eight anchoring points on a 3D model in a right lateral view. (B) Digitization of eight anchoring 
points on a 3D model in a right left view. (C) The reference mesh, consisting of 9,578 vertices and 18,812 faces formed by three adjacent vertices, was 
illustrated as a wireframe model. (D) Spatially dense facial landmarks (blue) were mapped onto reference mesh shown in a lateral view illustrated as a 
point cloud model.
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2.4. Dimensionality reduction

A total of 9,578 quasi-landmarks were available to characterize 
each patient’s maxillofacial and neck shape. A principal component 
analysis (PCA) was then applied to the Procrustes-aligned coordinates 
to reduce the dimensionality of the data and extract a smaller set of 
orthogonal dimensions that captured the variability in the dataset. A 
linear discriminant analysis (LDA) was employed using a simple 
Leave-One-Out Cross-Validation (LOOCV) technique systematically 
increasing the number of principal components (PCs) from 1 to 50 as 
input to determine the optimal number of PCs for predicting DMV. In 
LOOCV, one sample was used as the validation data, while the rest 
were used as the training data. This process was repeated such that 
each sample in the dataset was used once as the validation data. The 
optimal number of PCs for predicting DMV was determined based on 
the highest value of the area under the receiver operating characteristic 
curve (AUC).

The morphometric data was processed by the R project software 
program (R 4.2.2)3 mainly using geomorph (18) and Morpho packages 
(19). The LDA used MASS packages and the self-generated code was 
developed to implement LOOCV.

2.5. Induction of anesthesia and MV 
evaluation

Airway management was conducted by an anesthesiologist with 
over 3 years of experience. General anesthesia was induced with a 
combination of midazolam 0.05 mg/kg, fentanyl 2–4 μg/kg, propofol 
2–2.5 mg/kg, and rocuronium 0.6 mg/kg. The patient’s head was 
placed in the ‘sniffing position’ by extending the neck and throughout 
the procedure, electrocardiography, noninvasive blood pressure, 
end-tidal carbon dioxide, and peripheral oxygen saturation (SpO2) 
were continuously monitored.

During the induction of anesthesia, the anesthesiologist was 
instructed to employ a one-handed technique for airway opening. This 
involved holding the anesthesia full-face mask (Flexicare, 
United Kingdom; sizes 3 and 4) with their thumb and index fingers 
while positioning the third and fourth fingers on the left mandibular 
ramus, and placing the fifth finger at the left mandibular angle.

Following the induction of anesthesia, pressure-controlled 
ventilation was initiated through the full-face mask via an anesthesia 
machine ventilator, with a peak inspiratory pressure of 15 cm H2O, 
positive end-expiratory pressure of 0, I: E ratio of 0.4, and a respiratory 
rate of 15 cycles per minute for a duration of 2 min.

During face mask ventilation, one-handed technique without 
adjuvant (such as oral airway and jaw thrust) by an unassisted 
anesthesiologist was routinely utilized. DMV was defined as the 
inability to achieve adequate ventilation using this technique. The 
inadequate ventilation was defined according to Langeron et al. (20) 
as follows: (1) the inability of an unassisted anesthesiologist to 
maintain oxygen saturation, as measured by SpO2 < 92% with 100% 
oxygen and positive-pressure mask ventilation; (2) important gas flow 
leakage around the face mask; (3) the need to increase the gas flow to 

3 https://cran.r-project.org/bin/windows/base/

more than 15 L/min and use the oxygen flush valve more than twice 
(4) absence of visible chest movement; (5) the necessity to switch to a 
two-handed mask ventilation technique; (6) the need for 
operator substitution.

In clinical practice, we  observed that the perceptible chest 
movement was subjective so we also considered ventilation inadequate 
if the tidal volume was less than 5 mL/kg ideal body weight, following 
the study by Sato et al. (10).

To ensure the safety of patients if inadequate ventilation was 
encountered, steps were taken to address the situation effectively as 
recommended by the guidelines (21). This involved inserting an 
appropriately sized oral airway and applying an optimal jaw thrust 
technique while securely holding the mask with both hands. If these 
measures were unsuccessful, seeking help, changing the operator, or 
involving a two-person technique was considered. If adequate 
ventilation cannot be achieved, careful consideration is given to either 
waking patients using sugammadex to reverse the neuromuscular 
blockade induced by rocuronium or promptly establishing a 
noninvasive artificial airway, such as a supraglottic airway or 
endotracheal intubation. If these interventions also fail, 
cricothyrotomy should be performed immediately.

2.6. Machine learning algorithms

For the purpose of building a prediction model, a total of 10 ML 
algorithms, including Naive Bayes, linear discriminant analyses 
(LDA), quadratic discriminant analysis (QDA), logistic regression 
(LR), support vector machine (SVM), random forest (RF), extra 
trees, artificial neural network (ANN), adaptive boosting 
(AdaBoost), and extreme gradient boosting (XGBoost), 
representing diverse categories were performed using the 
morphometric data (22). Each algorithm has its own advantages 
and disadvantages, and our aim was to identify the most appropriate 
algorithm for our data. The model’s performance was assessed using 
the 10-fold cross-validation method (23). This approach involved 
dividing the cohort into ten folds. In each iteration of the cross-
validation process, one fold was set aside for evaluation purposes, 
while the remaining nine folds were utilized for training the model. 
By iteratively changing the validation fold in each round of the 
cross-validation process, each part of the cohort served as the 
validation set exactly once. This process enhanced the robustness of 
the evaluation and contributed to a more reliable assessment of the 
model’s performance.

2.7. Statistical analysis

The measurement data were presented as mean ± standard 
deviation (SD), whereas categorical variables were expressed as 
frequency (%). The hypothesis was tested using one-way analysis of 
variance (ANOVA), the Mann–Whitney U test, and Fisher’s exact 
probability method. Statistical significance was defined as p < 0.05. To 
assess classification performance, the area under the receiver operating 
characteristic curve (AUC) with its 95% confidence interval (95% CI), 
as well as the sensitivity and specificity, were utilized as primary 
metrics. All data analysis was conducted utilizing the R project 
software program (R 4.2.2) (see footnote 3).
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We used the method by Riley et al. to calculate for the efficient 
sample size (24). We did not calculate the sample size in advance 
because we utilized all accessible data throughout the study period. 
However, we did a post hoc sample size calculation to verify whether 
the developed models ensure accurate prediction. In our study, 
selecting an estimated C statistic of 0.825, a prevalence of DMV 5.23%, 
and a predictor parameters of 3, model development required at least 
331 cases. Our total sample size included 669 patients which satisfied 
the minimum sample size requirement.

3. Results

3.1. Baseline characteristics

A total of 734 patients initially screened. Thirty-eight patients 
were excluded because of the poor quality of 3D scans. Twenty-five 
patients were excluded because of postponed surgery, and 2 patients 
were excluded because they underwent awake intubation. Finally, 669 

patients were enrolled, including 634 patients with easy MV and 35 
patients with DMV. A flow chart of the study is shown in Figure 2. The 
baseline characteristics of the study population are presented in 
Table  1. Statistical analysis revealed significant differences in age, 
gender, BMI, and snoring history between the DMV group and the 
easy MV group. Only a single patient in the DMV group had a history 
of neck radiation and difficult intubation. None of the patients 
received sugammadex or rescue ventilation devices.

3.2. The principal component analysis

Principal component analysis (PCA) demonstrated that the first 
three principal components (PCs) were responsible for describing 
42.63% of the total variance in the data. 75% of the total variance can 
be described only by 14 PCs. The LDA was performed using a range 
of a range of PCs from 1 to 50 as input, with a LOOCV technique. The 
results showed that the highest AUC of 0.819 (95% CI, 0.758–0.880) 
was achieved when only the first 3 PCs were processed, with a 
sensitivity of 0.829 (95% CI, 0.657–0.943) and a specificity of 0.700 
(95% CI, 0.513–0.765) when the highest point of the Youden index 
was the threshold.

After that, there was a brief decline in the performance of the 
model as the number of PCs increased, and then there was some 
improvement when with the first 14 PCs as input, but it still did not 
exceed the performance of using the first 3 PCs and after that the 
performance of the model continued decline as the number of PCs 
increased (Figure  3). This is the cost of dimensionality based on 
morphometric data in classification.

Using scans from 3 random participants as the reference mesh, 
realigned them with all patients’ scans, had a negligible effect on the 
performance of the models (Supplementary Table S1).

3.3. DMV prediction from morphometric 
data

Based on the preliminary test results, we observed two peaks in 
the first 2 to 5 PCs and the first 13 to 15 PCs. Consequently, we chose 
to explore the first 2 to 5 PCs and 13 to first 13 to 15 PCs to further 
investigate the optimal number of PCs and identify the best algorithm 
for our analysis. The predictive performance was evaluated using the 
10-fold cross-validation method (Table 2). The SVM, extra trees, and 
AdaBoost showed relatively poor performance. However, the other 
algorithms exhibited good predictive performance, with AUC over 
0.80. At this step, the LR model was selected as the preferred algorithm 
due to its speed and superior performance. When only 3 PCs were 
input, this model achieved an AUC of 0.825 (95% CI, 0.765–0.885) by 
the 10-fold cross-validation method with a sensitivity of 0.829 (95% 
CI, 0.629–0.914), and a specificity of 0.733 (95% CI, 0.532–0.819) 
(Figure 4).

3.4. Comparison to DIFFMASK score

The DIFFMASK score got an AUC of 0.785 (95% CI, 0.710–
0.860). The Youden index identified a score ≥ 4 as the optimal cut-off 
value for DMV prediction, with a sensitivity of 0.686 (95% CI, 

TABLE 1 The baseline demographic properties and risk factors for 
patients included.

Risk 
factors

Overall 
(n =  669)

Easy MV 
(n =  634)

DMV 
(n =  35)

p value

Age (years) 34.67 ± 11.53 34.32 ±11.38 40.94 ±12.61 0.001

Gender <0.001

Female 375 (56.1) 366 (57.7) 9 (25.7)

Male 294 (43.9) 268 (42.3) 26 (74.3)

BMI (kg/m2) 22.18 ± 3.41 21.90 ± 3.16 27.30 ± 3.64 <0.001

TMD (cm) 9.52 ± 1.35 9.50 ± 1.36 9.76 ± 1.13 0.269

Snoring 

history

<0.001

Yes 282 (42.2) 256 (40.4) 26 (74.3)

No 387 (57.8) 378 (59.6) 9 (25.7)

Neck 

radiation 

history

0.044

Yes 1 (0.1) 0 (0) 1 (2.9)

No 668 (99.9) 634 (100.0) 34 (97.1)

DI history 0.044

Yes 1 (0.1) 0 (0) 1 (2.9)

No 668 (99.9) 634 (100.0) 34 (97.1)

Sleep apnea 1.000

Yes 1 (0.1) 1 (0.2) 0 (0)

No 668 (99.9) 633 (99.8) 35 (100.0)

MMT 0.735

1 152 (22.7) 145 (22.9) 7 (20.0)

2 223 (33.3) 212 (33.4) 11 (31.4)

3 262 (39.2) 248 (39.1) 14 (40.0)

4 32 (4.8) 29 (4.6) 3 (8.6)

Data are shown as number (percentage) or mean ± SD; SD, standard deviation; MV, mask 
ventilation; DMV, difficult mask ventilation; BMI, body mass index; TMD, thyromental 
distance; DI, difficult intubation; MMT, modified Mallampati test.
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0.578–0.847) and a specificity of 0.785 (95% CI, 0.589–0.848). The 
performance of the morphometric data surpassed those of the 
DIFFMASK scores.

3.5. Visual prediction of DMV

The average shape was computed based on all the sample shape 
vectors in the DMV group and easy MV group (Figures 5A,B). The 
differences in shape between the DMV group and the easy MV group 
was shown in Figure 5C. The most obvious difference between the two 
groups could be observed in the mandibular region.

4. Discussion

This study aimed to demonstrate the association between 
maxillofacial geometry and the risk of DMV while developing a 
prediction model for DMV with morphometric data and ML 
algorithms. Our study suggested that using only the first 3 PCs as 
inputs, with the LR algorithm allowed for effective DMV prediction, 
achieving an AUC of 0.825 (95% CI, 0.765–0.885), which 
outperformed the DIFFMASK score.

During the preliminary test, the model exhibited its best 
performance with only the first 3 PCs. However, as the number of 
PCs increased, the overall trend was a decline in performance. 
This suggests that the first 3 PCs were sufficient in capturing the 
essential characteristics of the 3D morphological data. After 14 
PCs, the performance of the model continued to decline which 
can be attributed to the curse of dimensionality commonly seen 
in morphometric data-based classification tasks (25). The later 
PCs might capture noise rather than meaningful information, 
thereby increasing data complexity and necessitating larger 
sample sizes.

Based on the results obtained from the preliminary test, when 
modeling with the first 2–5 PCs and the first 13–15 PCs, the best-
performing model among the 10 ML algorithms tested was achieved 
by using the first 3 PCs with LR. LR is commonly employed as a 
modeling approach for binary outcomes in epidemiology and 
medicine (26). Despite the growing popularity of more complex ML 
algorithms, LR consistently demonstrated comparable performance 
and, in some cases, can even outperform these complex ML algorithms 
(27, 28). Across different ML algorithms in clinical risk prediction, 
there was considerable variability, whereas LR was generally regarded 
as stable (29). Complex ML algorithms such as ANN and SVM have 
the advantage in capturing nonlinear relationships in the data, but our 
data might not have exhibited strong nonlinear patterns. Furthermore, 
complex ML algorithms are most suitable for medical prediction 

FIGURE 2

Flow chart of the study.

FIGURE 3

Influence of the number of PCs retained on the AUC score. PC, 
principal component; AUC, The area under the receiver operating 
characteristic curves.
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problems with large datasets, whereas LR modeling requires less data 
and is particularly advantageous when working with relatively small 
datasets (30).

The human face contains a wealth of pathophysiological 
information, numerous studies have investigated the relationship 
between facial images and diseases such as coronary artery disease 

TABLE 2 The AUC (95% CI) of the models evaluated by 10-fold cross-validation using various machine learning algorithms with 2 to 5 PCs and 13 to 15 
PCs inputs.

Variables 2 PCs
(95% CI)

3 PCs
(95% CI)

4 PCs
(95% CI)

5 PCs
(95% CI)

… 13 PCs
(95% CI)

14 PCs
(95% CI)

15 PCs
(95% CI)

Naive Bayes 0.818

(0.754–0.881)

0.810

(0.746–0.872)

0.798

(0.731–0.865)

0.786

(0.713–0.860)

… 0.775

(0.702–0.847)

0.774

(0.702–0.846)

0.768

(0.696–0.841)

LDA 0.820

(0.759–0.882)

0.823

(0.764–0.882)

0.818

(0.758–0.877)

0.799

(0.728–0.870)

… 0.815

(0.746–0.884)

0.814

(0.746–0.882)

0.810

(0.740–0.881)

QDA 0.812

(0.747–0.878)

0.797

(0.728–0.867)

0.778

(0.707–0.850)

0.774

(0.698–0.851)

… 0.718

(0.627–0.809)

0.757

(0.672–0.843)

0.746

(0.665–0.826)

LR 0.823

(0.762–0.884)

0.825

(0.765–0.885)

0.820

(0.760–0.880)

0.805

(0.737–0.872)

… 0.818

(0.753–0.883)

0.818

(0.755–0.881)

0.815

(0.749–0.881)

SVM 0.560

(0.470–0.650)

0.608

(0.500–0.716)

0.569

(0.474–0.664)

0.546

(0.452–0.639)

… 0.706

(0.623–0.790)

0.645

(0.560–0.730)

0.678

(0.587–0.770)

RF 0.765

(0.683–0.846)

0.758

(0.678–0.837)

0.810

(0.733–0.887)

0.799

(0.717–0.881)

… 0.758

(0.667–0.849)

0.759

(0.664–0.855)

0.773

(0.685–0.862)

Extra trees 0.673

(0.579–0.766)

0.612

(0.514–0.711)

0.618

(0.521–0.715)

0.614

(0.521–0.708)

… 0.691

(0.602–0.781)

0.681

(0.587–0.774)

0.681

(0.587–0.774)

ANN 0.778

(0.700–0.856)

0.810

(0.741–0.877)

0.794

(0.720–0.868)

0.782

(0.701–0.862)

… 0.805

(0.732–0.878)

0.761

(0.684–0.839)

0.773

(0.695–0.852)

AdaBoost 0.726

(0.630–0.823)

0.686

(0.598–0.774)

0.759

(0.668–0.851)

0.761

(0.671–0.851)

… 0.761

(0.677–0.846)

0.725

(0.623–0.827)

0.732

(0.634–0.831)

XGBOOST 0.788

(0.700–0.876)

0.803

(0.725–0.881)

0.797

(0.718–0.875)

0.781

(0.694–0.868)

… 0.809

(0.732–0.886)

0.807

(0.729–0.885)

0.808

(0.730–0.886)

AUC, the area under the receiver operating characteristic curves; CI, confidence interval; PCs, principal components; LDA, linear discriminant analyses; QDA, quadratic discriminant analysis; 
LR, logistic regression; SVM, support vector machine; RF, random forest; ANN, artificial neural network; AdaBoost, adaptative boosting; XGBOOST, eXtreme Gradient Boosting.

FIGURE 4

The ROC curve for the LR model with 10-fold cross-validation using the first 3 PCs as input. ROC, receiver operating characteristic; PC, principal 
component.
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(31) and acromegaly (32). In the field of anesthesia, facial images have 
been developed to classify intubation difficulty which showed a good 
performance with an AUC of 0.864 (6). Although 2D image 
acquisition is straightforward, it is more susceptible to variations such 
as camera angle, focal depth, and lighting. Counterintuitively, 2D 
images are more complicated than 3D meshes due to their high 
dimensional and intricate color image variation that is nonlinear. 
Consequently, processing 2D data requires the use of large, complex, 
nonlinear network architectures and substantial training datasets. 
Conversely, the distribution of 3D meshes can be  efficiently 
approximated by multivariate Gaussian distributions and analyzed 
using geometric morphometrics (33). With the development of 3D 
devices, the potential of 3D scans for predicting disease has been 
validated. For example, 3D facial morphology has been introduced in 
the discrimination of genetic syndromes such as 22q11 deletion 
syndromes and fetal alcohol syndrome (34, 35). More recently, 3D 
craniofacial scans have been developed to build the prediction model 
of OSAS with an AUC of 0.70 and a sensitivity of 74% (9).

Our study exemplified the application of 3D scans to DMV 
predicition. Mask ventilation is a fundamental technique used in 

general anesthesia. Currently, the prediction of DMV relies mainly on 
patient history and traditional bedside examinations (36). A 
prospective study of 1,502 patients identified five risk factors to 
be  significantly associated with DMV including age > 55 years, 
BMI > 26 kg/m2, lack of teeth, history of snoring, and presence of a 
beard (20). Similarly, our study found that age, BMI and history of 
snoring showed significant differences among DMV and easy MV 
group. However, the diagnostic accuracy of DMV prediction based on 
these factors has been proven to be poor, with up to 94% of DMV 
patients ultimately failing to be predicted (37). For this reason, the 
DIFFMASK score (which incorporated age, sex, BMI, history of 
difficult intubation, history of snoring, thyromental distance, Modified 
Mallampati test, beard, sleep apnea, and history of neck radiation) 
ranging from 0 to 18 points was developed and validated in a large 
cohort of 46,804 patients (11). Patients with a sum score ≥ 5 were 
deemed to be at risk for DMV. Our study validated the predictive 
value of this score, with an AUC of 0.785, and different from the 
previous study, the optimal cut-off value was 4. This might 
be attributed to the absence of patients with a beard and relatively few 
patients with a history of neck radiation and sleep apnea. In our study, 
the LR model with morphometric data outperformed the DIFFMASK 
score. This may potentially be explained by the extensive range of 
information carried by facial morphology, including age (38), gender 
(39), and most notably, the distribution of soft tissue across the region 
of the face and neck, which cannot be described through BMI.

We computed the average shapes of the DMV group and easy MV 
group, it was apparent that the DMV group exhibited excessive soft 
tissue in the mandibular region, which potentially altered compliance 
of the upper airway wall and narrowed the upper airway lumen, 
resulting in airway collapse during anesthesia.

To our knowledge, no prior studies have explored the relationship 
between facial anatomy and DMV. However, several studies have 
identified specific craniofacial features in patients with difficult 
intubation (DI). There was a relationship between DMV and the 
incidence of DI. The past study verified that patients with DMV 
experienced a higher incidence of DI compared to those with easy MV 
(20). A study conducted among Japanese reported that patients who 
had difficulty with intubation had an increased submandible angle, 
which is formed by the intersection of the line between the tragus and 
the mentum with the submandible line (40). Another study conducted 
on 80 Caucasian males revealed that individuals with DI had a 
significantly greater jaw-neck slope compared to those with easy 
intubation (41). Similarly, our study confirmed that patients with 
DMV had such maxillofacial structures. These morphological 
differences can partially explain the association between DMV and DI.

The incidence of DMV varies among reported studies, possibly 
due to the absence of standard criteria for its definition. The ASA Task 
Force’s definition was subjective and vague (42) while Han et al.’s was 
considered too stringent and potentially led to an underestimation of 
DMV incidence (43). Therefore, the definition by Langeron et al. (20) 
was utilized in this study. It is important to note that different 
definitions of DMV may result in variations in incidence and can 
potentially impact the performance of predictive models.

There were still some limitations in this study. Firstly, the sample 
was limited to Chinese Han adults and may not be generalizable to 
other ethnic groups or younger populations. Given that facial 
morphology differs across races and age groups, further investigations 
including diverse populations are warranted to determine the 
association between facial features and DMV. Secondly, the study 

FIGURE 5

Visualization of the DMV group and the easy MV group. (A) Mean 
shape for the DMV group. (B) Mean shape for the easy MV group. 
(C) Colors represent the distances from the mean shape of the DMV 
group and the mean shape of the easy MV group. DMV, difficult 
mask ventilation; MV, mask ventilation.
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exclusively focused on patients scheduled for elective surgery who 
were able to undergo a 3D scan while awake and cooperative. 
Consequently, the model developed may not be applicable to critically 
ill patients or emergency surgical scenarios. Lastly, it is important to 
note that further research is needed to validate the prediction model’s 
performance on various 3D scanning devices, including handheld 
ones, to support its use in clinical practice.

In conclusion, this was the first study to use 3D facial scans 
combined with a machine learning algorithm (here is LR) to build the 
prediction model for DMV which achieved a good performance. The 
visualization demonstrated the shape differences between DMV and 
the easy MV group. This non-invasive and convenient approach has 
promising applications for DMV prediction. Nevertheless, further 
studies are required to validate the generalizability and clinical utility 
of this novel tool on a larger scale.
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