
TYPE Review
PUBLISHED 27 June 2023
DOI 10.3389/fmed.2023.1199146

OPEN ACCESS

EDITED BY

Francisca Mulero,
Spanish National Cancer Research
Center, Spain

REVIEWED BY

Calogero D’Alessandria,
Technical University of Munich, Germany
Yongkang Gai,
Huazhong University of Science and
Technology, China

*CORRESPONDENCE

Praveen Ramakrishnan Geethakumari
praveen.ramakrishnan@utsouthwestern.edu

Xiankai Sun
xiankai.sun@utsouthwestern.edu

RECEIVED 03 April 2023
ACCEPTED 25 May 2023
PUBLISHED 27 June 2023

CITATION

Mulgaonkar A, Udayakumar D, Yang Y, Harris S,
Öz OK, Ramakrishnan Geethakumari P and
Sun X (2023) Current and potential roles of
immuno-PET/-SPECT in CAR T-cell therapy.
Front. Med. 10:1199146.
doi: 10.3389/fmed.2023.1199146

COPYRIGHT

© 2023 Mulgaonkar, Udayakumar, Yang, Harris,
Öz, Ramakrishnan Geethakumari and Sun. This
is an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Current and potential roles of
immuno-PET/-SPECT in CAR
T-cell therapy

Aditi Mulgaonkar1, Durga Udayakumar1,2, Yaxing Yang1,
Shelby Harris1, Orhan K. Öz1,
Praveen Ramakrishnan Geethakumari3* and Xiankai Sun1,2*
1Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States,
2Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX,
United States, 3Section of Hematologic Malignancies/Transplant and Cell Therapy, Division of
Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States

Chimeric antigen receptor (CAR) T-cell therapies have evolved as breakthrough
treatment options for the management of hematological malignancies and
are also being developed as therapeutics for solid tumors. However, despite
the impressive patient responses from CD19-directed CAR T-cell therapies,
∼ 40%−60% of these patients’ cancers eventually relapse, with variable prognosis.
Such relapses may occur due to a combination of molecular resistance
mechanisms, including antigen loss or mutations, T-cell exhaustion, and
progression of the immunosuppressive tumor microenvironment. This class of
therapeutics is also associated with certain unique toxicities, such as cytokine
release syndrome, immune e�ector cell-associated neurotoxicity syndrome,
and other “on-target, o�-tumor” toxicities, as well as anaphylactic e�ects.
Furthermore, manufacturing limitations and challenges associated with solid
tumor infiltration have delayed extensive applications. The molecular imaging
modalities of immunological positron emission tomography and single-photon
emission computed tomography (immuno-PET/-SPECT) o�er a target-specific
and highly sensitive, quantitative, non-invasive platform for longitudinal detection
of dynamic variations in target antigen expression in the body. Leveraging these
imaging strategies as guidance tools for use with CAR T-cell therapies may enable
the timely identification of resistance mechanisms and/or toxic events when they
occur, permitting e�ective therapeutic interventions. In addition, the utilization
of these approaches in tracking the CAR T-cell pharmacokinetics during product
development and optimization may help to assess their e�cacy and accordingly
to predict treatment outcomes. In this review, we focus on current challenges
and potential opportunities in the application of immuno-PET/-SPECT imaging
strategies to address the challenges encountered with CAR T-cell therapies.
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Introduction

In recent years, strategies leveraging the human immuno-surveillance system to achieve

complete remission of cancer have revolutionized the landscape of cancer immunotherapy.

For instance, cytotoxic lymphocytes and natural killer cells, key players in the armor of

the human immune system, have been employed to mediate immune surveillance. This

approach takes advantage of their antitumor effector functions via distinct mechanisms,
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including (a) granule exocytosis resulting in the release of perforin

and granule-associated enzymes (granzymes) and (b) release of

exosomes containing Fas ligand (FasL) and tumor necrosis factor

(TNF)-related apoptosis-inducing ligand (TRAIL), leading to the

predominantly programmed apoptotic tumor cell death process

(1). Currently, a solid foundation has been laid by the successes

of T-cell-based cancer therapies in patients with metastatic cancers

(2–4) as well as in patients with malignancies that have relapsed

after, or were refractory to, the initial conventional treatments (5,

6). The redesign of a patient’s own tumor-infiltrating lymphocytes

(TILs) as cancer therapeutics, termed “adoptive cell therapy,” has

garnered increasing interest in the field of immunotherapy since

the 1960s (7). Efforts over the past three decades in adoptive T-cell

therapy have resulted in the establishment of three types of cell

therapies, namely, TIL therapies, engineered T-cell receptor (TCR)

therapies, and chimeric antigen receptor (CAR) T-cell therapies

(8, 9). In general, TIL cell therapies have achieved success in

the effective management of melanomas (10), although the time

required for donor cell expansion is a limiting factor. Moreover,

factors such as T-cell exhaustion and T-cell dysfunction in the

donor samples/starting material significantly impact the quality

of the final products. More recently, the field has evolved with

the sophisticated genetic engineering of peripheral T lymphocytes.

This approach enables the design of superior antigen-targeted

CAR T-cell therapies capable of effective tumor antigen binding

for T-cell activation and proliferation independent of the major

histocompatibility complex (MHC). Notably, the introduction of

co-stimulatory domains in second-generation CAR T-cell therapy

has enabled improved T-cell proliferation and persistence. Due

to its high specificity toward a broader spectrum of membrane-

expressed targets, CAR T-cell therapies have undergone significant

translational development for treating cancers beyond B-cell

malignancies. This has also prompted pharmaceutical companies

to proceed toward commercialization of these therapies (11, 12).

In a Phase II single-cohort, multi-center global trial, the

investigational Cluster of Differentiation 19 (CD19)-directed CAR

T-cell therapeutic CTL019 (Tisagenlecleucel, Kymriah
R©
, Novartis)

demonstrated high response rates with an overall remission rate of

81% within 3 months and overall survival of 76% at 12 months

in pediatric and young adult patients with relapsed/refractory

(R/R) B-cell acute lymphoblastic leukemia (B-ALL) (13). This

treatment received “breakthrough therapy status” and approval

from the United States Food and Drug Administration (US-FDA)

in 2017 for treating adult and pediatric R/R B-ALL (14). In yet

another pivotal global Phase II trial with CTL019, a best overall

response rate of 52% was observed in adult patients with R/R

diffuse large B-cell lymphoma (LBCL), with an estimated 65%

rate of relapse-free survival 12 months post initial response (15).

Another successful trial was with axicabtagene ciloleucel (axi-cel,

Yescarta
R©
, Gilead), an autologous anti-CD19 CAR T-cell therapy.

This received US-FDA approval in 2017 (16) for the treatment of

adults with R/R LBCL after two or more lines of systemic therapies

[ZUMA-1 trial (17)]. Recently, it has been extended for use in R/R

follicular lymphoma (FL) and in earlier lines of therapy in LBCL

with manageable adverse events (ZUMA-5, ZUMA-7, and ZUMA-

12 trials) (17–19). Other approved CD19-directed CAR T-cell

therapies include lisocabtagene maraleucel [liso-cel, Breyanzi
R©
,

Bristol Myers Squibb (BMS)] (20, 21) for R/R LBCL in the

second/third-line setting and brexucabtagene autoleucel (brexu-

cel, Tecartus
R©
, Gilead) for R/R mantle cell lymphoma (MCL)

(22) and adult B-ALL (23). Two CAR T-cell therapies targeting

the B-cell maturation antigen (BCMA), idecabtagene vicleucel

(idecel, Abecma
R©
, BMS) (24) and ciltacabtagene autoleucel

(ciltacel, Carvykti
R©
, Janssen) (25), have been approved in R/R

multiple myeloma. Additionally, other investigational CAR T-cell

therapies targeting a variety of antigens are showing promising

results in Phase I/II trials across the spectrum of hematologic

malignancies (26–30). In solid malignancies, however, CAR T-

cell therapies have encountered several hurdles resulting from

tumor target heterogeneity, tumor penetration issues, and the

immunosuppressive tumor microenvironment (TME). However,

there are several ongoing early-phase clinical trials working on

advancing these therapies to solid tumors such as brain, pulmonary,

gastrointestinal, renal, hepatic, thoracic, ovarian, and prostate

cancers (31, 32).

While overall response rates to CAR T-cell therapies have been

impressive, challenges remain including manufacturing difficulties

as a result of dysfunctional T-cells and expansion times. Toxicities

regarded as a “class-effect” with these therapies are also of major

concern. These include life-threatening forms of toxicity such as

cytokine release syndrome (CRS), immune effector cell-associated

neurotoxicity syndrome (ICANS), and others associated with “on-

target, off-tumor” recognition and anaphylaxis (33–35). While

the exact mechanisms underlying these adverse events (AEs)

remain to be elucidated, the likely cause is thought to be a

cytokine surge, which occurs with the immunological-activation

cascade triggered by effector mechanisms of CAR T-cells. Another

significant challenge is the recurrence of cancer in a significant

proportion of patients after CAR T-cell therapy. Cancer relapses

may occur due to varied combinations of intrinsic and/or extrinsic

factors in the TME during and post CAR T-cell therapy. These

include target antigen loss/mutations, peripheral and tumor-

infiltrating T-cell exhaustion or senescence, immunogenicity-

reducing alterations in the tumor mutational burden, and tumor

progression due to an immunosuppressive TME (5, 34–37).

Thus, it is imperative to identify such events when they occur

to enable timely changes in treatment. Currently, efforts have

been made to identify physiological biomarkers with prognostic

implications, which may enable better management of these cell

therapies (38).

Conventional pathology assays used in clinical practice for

cancer management [e.g., immunohistochemistry, flow cytometry,

enzyme- or polymerase chain reaction (PCR)-based assays] are

limited by the availability of biopsy tissues. Additionally, the results

obtained from these biopsied tumor samples suffer from spatial

limitations. Given that the TME is physiologically and genetically

heterogeneous, a tumor sample biopsied at any given location may

not be representative of the characteristics of the entire primary

tumor or distant metastases (39). Moreover, such tissue-based

invasive techniques lack the “real-time” detection capabilities to

capture dynamic variations in target expression during therapy or

when AEs occur.

Together with their inherent capabilities for deep tissue

penetration, “real-time” whole-body imaging, and high sensitivity
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for quantification, the non-invasive radionuclide imaging

modalities of positron emission tomography (PET) and single-

photon emission computed tomography (SPECT) are now

enabling the development of technologies to address these

challenges when equipped with radiolabeled monoclonal

antibodies (mAbs) or engineered mAb fragments (40–45).

Especially in the case of solid tumors, where CAR T-cell

therapies suffer from challenges associated with infiltration

into an immunosuppressive TME, these molecular imaging

modalities may find application for the detection of CAR T-cell

distribution, expansion, and clearance throughout the therapeutic

regimen (46).

In this review, we discuss opportunities for immuno-

PET/-SPECT imaging strategies to address the challenges

encountered with these CAR T-cell therapies, and

thereby to act as an important guidance tool for optimal

therapeutic management.

Current advances in
immuno-PET/-SPECT imaging
methods and their potential to address
the challenges with CAR T-cell therapy

The most commonly used PET radiotracer is 2-deoxy-2-

[18F]fluoroglucose ([18F]FDG). A glucose analog, [18F]FDG

is taken up by tumor cells via membrane-bound glucose

transporters, where it is phosphorylated into [18F]FDG-6-

phosphate and trapped in cells. This trapped metabolite uptake

can be quantified by PET using a standardized uptake value

(SUV) and correlates with disease severity. PET with [18F]FDG

is used in clinical practice across a wide range of cancers for

initial tumor diagnosis and staging and for the longitudinal

assessment of therapy response (47–49). However, since

[18F]FDG is primarily a metabolic radiotracer that measures

elevated glycolysis, it cannot differentiate malignancies from

co-existing non-malignant inflammatory conditions caused by

rheumatological diseases, infections, or AEs encountered with cell-

based immunotherapies (50). Owing to the increasing applications

of inherently immunogenic CAR T-cell therapies for cancers, the

development of immuno-PET/-SPECT strategies is warranted

to delineate the interactions between malignancies and these

supraphysiological immunological processes.

Early identification of the dominant resistance mechanisms

within the heterogeneous and often immunosuppressive TME

or the occurrence of toxic events associated with CAR T-cell

therapies is essential to ensure successful therapeutic interventions.

Additionally, as novel CAR T-cell therapies are developed, an

assessment of their in vivo pharmacokinetics (biodistribution

and “homing” to tumors, expansion, and clearance or potential

destruction) is critical for reliable determination of their efficacy

and prediction of the therapeutic outcome (46, 51). Combining

the intrinsic sensitivity of PET/SPECT with the superior targeting

specificity offered by mAbs (41, 42, 52, 53), immunological PET/-

SPECT (immuno-PET/-SPECT) can be leveraged or tailored to

address the following challenges encountered with CAR T-cell

therapies (Figure 1).

Antigen loss

Antigen escape is one of the most commonly encountered

mechanisms of cancer resistance to CAR T-cell therapy. It usually

occurs in cases of cancer relapse after complete remission in

patients, resulting in a phenotypically similar disease, but with

either complete loss or downregulation of the target antigen

expression. Consequently, the relapsed disease becomes non-

responsive to the CAR T-cell treatment. For example, while

remarkable response rates (70%−90%) have been observed for B-

ALL in patients treated with CD19-directed CAR T-cell therapies

such as CTL019 (54) in early-stage trials, follow-up studies have

reported leukemia recurrence in ∼50% of patients, typically 1

year post-therapy (54–56). Such cancer relapses associated with

the loss of CD19 antigen have been reported in both children

(∼18%−25%) and in adult populations (∼7%−9%) in Phase I

studies (6, 54, 57–59). Given the multitude of clinical studies

being conducted using CD19-directed CARs and bispecific T-cell

engagers (BiTEs) (60), decreased/loss of antigen expression by R/R

tumors may be attributed to various mechanisms, depending on

the subject pool of a given study. Persistent immune pressure

from CAR T-cell therapies may result in selective progression

of tumor cells with genetic alterations in the CD19 protein,

enabling antigen escape from CD19-directed CAR T-cell therapy

(61–63). For example, in one reported study, whole-exome DNA-

and RNA-sequencing analysis of baseline vs. post-relapse CD19-

negative patient samples of R/R B-ALL demonstrated acquired

frameshift mutations in CD19 exons 2–5. This likely resulted in

a truncated protein sequence lacking transmembrane anchorage,

leading to antigen escape (62). Furthermore, this study found

that the allelic frequencies of the mutations correlated with

the CD19-negative cells by flow cytometry and concluded that

homozygous bi-allelic mutations (loss of heterozygosity) in CD19

are the primary resistance mechanism for CD19-negative relapse.

Similar mechanisms for such inherited molecular resistance as a

result of target antigen modulation have been observed for other

targets of hematological malignancies, including CD22 in LBCLs

(26), BCMA in myelomas (64), and even in solid tumors such

as glioblastomas [epidermal growth factor receptor (EGFR) (65)

and interleukin 13 receptor alpha 2 (IL13Rα2) (66)]. “Lineage

switch” is another poorly understood mechanism of resistance

to CAR T-cell therapy. In lineage switch, hematological cancer

cells can undergo intrinsic changes to relapse as a clonally

similar but phenotypically different cancer sub-type (67, 68).

Such lineage plasticity is often encountered in pediatric and

infant patients with refractory B-ALLs expressing mixed-lineage

leukemia rearrangements (MLL-r). In such cases, the leukemia

cells “switch” lymphoid physiological markers to become cells of

a myeloid phenotype (68, 69). Relapses associated with MLL-r

to acute myeloid leukemia (AML) have been seen with CD19-

directed CAR T-cell therapy as well as BiTEs; however, other cases

of phenotypic variation have also been observed (70–74). Other
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FIGURE 1

Application of immuno-PET/-SPECT imaging approaches to address the challenges with CAR T-cell therapies. CAR, chimeric antigen receptor; CD,
cluster of di�erentiation; CRS, cytokine release syndrome; CTLA-4, cytotoxic T lymphocyte antigen-4; DC, dendritic cell; Gal-9, galectin 9; ICANS,
immune e�ector cell-associated neurotoxicity syndrome; IFNγ , interferon gamma; IL-6, interleukin 6; immuno-PET/-SPECT, immunological positron
emission tomography or single-photon emission computed tomography; LAG-3, lymphocyte activation gene 3 protein; MDSC, myeloid-derived
suppressor cell; MHC, major histocompatibility complex; PD-1, programmed cell death protein 1; PD-L1, programmed cell death protein ligand 1;
TAM, tumor-associated macrophage; TIM-3, T-cell immunoglobulin and mucin domain protein 3; TME, tumor microenvironment; TNFα, tumor
necrosis factor alpha, Treg, regulatory T-cell.
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reported mechanisms for antigen reduction and escape include

a phenomenon known as “trogocytosis,” whereby the CAR T-

cells can strip the neighboring lymphoma cells of their target

protein and incorporate it into the plasma membrane of the CAR

T-cells, resulting in reduced surface target density. Trogocytosis

may also result in “fratricide” by causing CD19+ T-cell death

and promoting T-cell exhaustion (75–77). Such conditions could

negatively impact the efficacy of CAR T-cell therapies (75, 76, 78,

79).

For the assessment of transient modulation, loss in antigen

expression, or loss of function due to antigen mutation, immuno-

PET/-SPECT imaging approaches using radiotracers derived

from specific mAbs against cancer-overexpressing targets would

be extremely valuable (Supplementary Table S1). Indeed, several

surface target antigens in hematological malignancies have been

considered for such imaging evaluations, including CD19, CD22,

CD20, BCMA, and CD38 (53, 80). For example, immuno-PET

imaging with a zirconium-89 ([89Zr])-labeled anti-CD20 mAb,

[89Zr]Zr-DFO-rituximab, was reported in five patients withDLBCL

(81). A correlation was found in this study between the imaging

signal and CD20 expression measured by immunohistochemical

(IHC) staining (Figure 2). More recently, a case report on immuno-

PET with the same mAb but labeled with copper-64 (64Cu),

[64Cu]Cu-DOTA-rituximab, demonstrated higher sensitivity than

[18F]FDG-PET for imaging lymphoma tumors in two patients

(82). Interestingly, although CD19 is an ideal target for CD19-

directed CAR T-cell therapy in B-cell malignancies, to the best

of our knowledge, there are no reports yet on CD19-targeted

immuno-PET/-SPECT imaging to address antigen loss. However,

a CD19-targeted immuno-PET method with [64Cu]Cu-CD19-

mAb, a murine anti-CD19, has been reported to produce a PET

signal correlating with B-cell distribution in the central nervous

system (CNS) in an experimental autoimmune encephalomyelitis

mouse model (83). Recently, with increasing efforts directed

toward the application of CAR T-cell therapies for treating

solid tumors, the target spectrum for CAR T-cell engineering

has broadened considerably. Apparently, reported immuno-PET

strategies using specific mAbs targeting solid tumor surface

antigens, including EGFR [[89Zr]Zr-cetuximab (84), [89Zr]Zr-

panitumumab (85, 86)], human epidermal growth factor receptor

2 (HER2) [[89Zr]Zr-trastuzumab (87–89), [111In]In-pertuzumab

(90)], prostate-specific membrane antigen (PSMA) [[89Zr]Zr-

J591 (91)], vascular endothelial growth factor (VEGF) [[89Zr]Zr-

bevacizumab (92)], can be leveraged to non-invasively monitor

antigen expression throughout the duration of CAR T-cell therapy

(93). Furthermore, immuno-PET imaging methods may play an

instrumental role in the detection of transient shifts in antigen

expression, especially in ambiguous-lineage hematological cancers.

For instance, longitudinal tracking of lymphoid lineage-specific

surface antigens, such as CD19, CD20, CD3, and CD4, by specific

mAbs or their fragments may enable the detection of resistance

induced by “lineage switching” in rare high-risk ambiguous-

lineage leukemias [such as in the case of mixed-phenotype acute

leukemia (MPAL) switching to B- or T-cell ALL or vice versa

(74, 94), or in MLL switching to AML (67)]. Of course, such

rare malignancies often involve variations in multiple lymphoid

or myeloid lineage surface markers, necessitating additional

investigations on a case-by-case basis regarding the practicality

of using immuno-PET/-SPECT imaging as a guidance tool for

their management. It is noteworthy that immuno-SPECT is

capable of simultaneous imaging of multiple surface markers

if the corresponding surface antigens are targeted with mAbs

labeled with radionuclides emitting differentiable gamma energies.

Indeed, SPECT imaging with dual radiotracers has been reported in

clinical applications (95–99) and preclinical studies (100–102). To

date, non-invasive assessment of multiple biomarkers/molecular

processes via a single immuno-SPECT scan has been made possible

by the use of solid-state cadmium zinc telluride (CZT) gamma

detectors, which offer higher energy resolution and detection

sensitivity than the conventional sodium iodide (NaI) detectors,

as well as the current implementation of novel image processing

algorithms (96, 103).

Given the long circulation half-lives of antibodies in the

blood, immuno-PET/-SPECT imaging requires a half-life-matched

radionuclide to label a mAb or an engineered fragment. Recently,
89Zr with a half-life (t1/2) of 3.27 days and 64Cu (t1/2 = 12.7 h) have

gained popularity for labeling of antibodies and fragments because

they can be produced in-house by a biomedical cyclotron equipped

with solid-target capability. In terms of imaging sensitivity,

immuno-PET is preferred over immuno-SPECT (53), while the

latter can be readily performed when a radioimmunotheranostic

agent is used. The decay of therapeutic radionuclides, such as

lutetium-177 (177Lu, t1/2 = 6.65 days) and copper-67 (67Cu,

t1/2 = 2.57 days), usually involves gamma rays that can be

imaged with a SPECT scanner (42, 46). As shown in Figure 3, we

reported on a study with [67Cu]Cu-pertuzumab in murine HER-

2-positive xenografts demonstrating the specificity of immuno-

SPECT imaging as well as the improved therapeutic efficiency

resulting from the increase in molar activity of the radiotracer

(42). Of note, if imaging sensitivity is desired, the therapeutic

radionuclides can be replaced or paired with proper positron-

emitting radionuclides [e.g., iodine-131 (131I, t1/2 = 8 days) with

iodine-124 (124I, t1/2 = 4.2 days), 67Cu with 64Cu, yttrium-90 (90Y,

t1/2 = 2.7 days) with yttrium-86 (86Y, t1/2 = 14.7 hours), and 177Lu

(177Lu, t1/2 = 6.6 days) with gallium-68 (68Ga, t1/2 = 68min)] for

immuno-PET without drastically altering the targeting properties

and in vivo kinetics of the radioimmunotheranostic agents. Such

theranostic agents may find a greater role in the non-invasive

monitoring of dynamic changes in antigen levels for precision CAR

T-cell therapies.

T-cell exhaustion and senescence

T-cell exhaustion and senescence are two dysfunctional states

that heavily influence cancer management and patient outcomes

with CAR T-cell therapies (104–106). While T-cell senescence is

often associated with aging, it also occurs in chronic infections

and in certain cancers (107). T-cell senescence is characterized

by events including telomere shortening (during cell division),

phenotypic changes (loss of CD28 domain), and cell cycle arrest,

where the T-cells are live and metabolically active, but incapable

of further proliferation or differentiation. This results in the loss

of naïve and effector T-cells and dysregulation of the immune

system (108, 109). T-cell exhaustion is a “hypo-responsive” state
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FIGURE 2

Immuno-PET imaging with [89Zr]Zr-Rituximab in patients with DLBCL treated with a therapeutic dose of rituximab. (A) Immuno-PET imaging shows
intense tumor uptake (top panel) concordant with CD20-positive IHC staining of the inguinal lymph node biopsy sample (B, top panel).
Corresponding [18F]FDG-PET images are shown in the bottom panel (A). (C) CD20-negative tumor shows no appreciable uptake of [89Zr]Zr-Rituximab
(top panel) concordant with IHC staining of the biopsy (B, bottom panel). In contrast, the tumor exhibits a focal spot on [18F]FDG-PET images (C,
bottom panel). Shown in (A) and (C) are attenuation-corrected PET, low-dose CT, and fused PET/CT images from left to right. Reproduced with slight
format modifications from the open-access article in ref. (81) under the Creative Commons license (http://creativecommons.org/licenses/by/4.0/).

attained by T-cells after losing their effector functions as a result of

persistent activation by antigens in response to chronic infections

or tumor progression. In acute infections, the effector T-cell (Teff)

population is gradually deactivated after the antigen is cleared or

destructed, with the retention of a functional memory phenotype

(Tmem). However, under conditions of persistent activation by CAR

T-cell therapy, or during pathological chronic antigen stimulation,

the CD8+ Teff cell population eventually differentiates into an

exhausted phenotype (Tex) characterized by a lack of further

differentiation and loss of effector function (107, 110, 111).

Notably, the immunosuppressive TME plays an important role in

driving the Teff population toward exhaustion and senescence (37,

105, 112). While senescent T-cells share overlapping phenotypes

with exhausted T-cells, each has distinct mechanisms. Current

studies indicate that while mitogen-activated protein kinase

regulates T-cell senescence, T-cell exhaustion is mediated by

inhibitory checkpoint proteins in the immunosuppressive TME

and characterized by decreased cytokine secretion (106).

Some classic immune checkpoint receptors, which are T-cell

exhaustion markers, include programmed cell death protein 1

(PD-1), lymphocyte activation gene 3 protein (LAG-3), T-cell

immunoglobulin and mucin domain protein 3 (TIM-3), cytotoxic

T lymphocyte antigen-4 (CTLA-4), B and T lymphocyte attenuator

(BTLA), V-domain immunoglobulin-containing suppressor of

T-cell activation (VISTA), and T-cell immunoglobulin and

immunoreceptor tyrosine-based inhibitory motif domain (TIGIT)

(69, 106, 107, 111, 113–115). Among the comprehensively studied

proteins, binding of PD-1 to its ligand PD-L1 is reported to regulate

T-cell immunosuppression by initiating the inhibitory downstream

signaling of zeta-chain-associated protein kinase 70-extracellular

signal-regulated kinase (ZAP70-ERK) and phosphatidylinositol-3

kinase-protein kinase B (PI3K-AKT) via the recruitment of Src

homology 2 domain-containing tyrosine phosphatases 1 and 2

(SHP1 and SHP2), and can arrest T-cell proliferation via inhibition

of cyclin-dependent kinases (106, 116). CAR T-cell therapies with

CD28 stimulation domain (rather than 4-1BB) have shown more

susceptibility to inhibition via the PD-1/PD-L1 checkpoint axis

by direct inactivation of the CD28 signaling domain (106, 117–

119). Interestingly, clinical trials combining immune checkpoint

inhibitor (ICI) antibodies with CD19-directed CART-cell therapies

(120–124) and novel CAR T-cell design strategies blocking the PD-

1/PD-L1 interactions (119, 125–127) have demonstrated prolonged

T-cell persistence and promising treatment outcomes.

Thus far, immuno-PET has advanced to a point

enabling imaging evaluation of T-cell exhaustion

pathways and immunosuppressive biomarkers in the TME
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FIGURE 3

Immuno-SPECT/CT imaging of HCC1954 HER2+ tumor-bearing mice injected with [67Cu]Cu-NOTA-Pertuzumab. (A) Representative maximum
intensity projection (MIP) of SPECT/CT images in mouse groups as indicated at days 2 and 5 post-treatment (yellow arrows indicate the tumors). (B)
Actual radioactivity concentration in tumors (MBq/ml) on days 2 and 5 (without decay correction). Reproduced from the open access article in ref.
(42) under the Creative Commons license (http://creativecommons.org/licenses/by/4.0/).

(Supplementary Table S2). Promising clinical data using

radiolabeled intact mAbs targeting the inhibitory checkpoint

proteins, such as PD-1 (128, 129), PD-L1 (41, 130–132), and

CTLA-4 (133, 134), have fundamentally validated the immuno-

PET approach. For instance, clinical studies with [89Zr]-labeled

atezolizumab have demonstrated that ICI treatment outcomes

can be better predicted with immuno-PET performed before

ICI than with other tissue-based methods (e.g., ribonucleic acid

(RNA)-sequencing or IHC) in three solid tumor types (triple-

negative breast cancer, bladder cancer, and non-small cell lung

cancer) (130). As shown in Figure 4, immuno-PET with this

radiotracer has also shown potential for stratification of patients

with renal cell carcinomas based on imaging-assessed PD-L1

expression in patient-derived tumor grafts and in a clinical report

(41, 131). In addition to intact mAbs of PD-L1, immuno-PET

with radiotracers derived from small adnectin proteins have also

produced encouraging results in multiple clinical studies (135–

137). More recently, alternative inhibitory immune checkpoint

receptor/ligand pathways (e.g., TIGIT, LAG-3, and TIM-3) have

been employed to design immunotherapies that can avert the

toxicities associated with anti–PD-1/PD-L1 and anti-CTLA-4

ICIs and improve treatment efficacy as combination therapies.

These immunotherapies can be readily adapted for immuno-PET

imaging. Indeed, such imaging methods have demonstrated

the capability to capture variation in these checkpoint proteins

(138–141). For instance, with variable but high expression on TILs

in solid tumors, TIGIT is also present on activated CD8+ T-cells,

activated CD4+ regulatory T-cells, and natural killer (NK) cells

(138, 142). This protein mediates inhibition of innate and adaptive

immunity through inhibition of T-cell and NK cell immune

responses (143, 144). Immuno-PET with TIGIT-specific [64Cu]Cu-

TIGIT-mAb and [89Zr]Zr-TIGIT-mAb has demonstrated high

specificity for TIGIT expression in xenograft (HeLa-TIGIT in

nu/nu mice) and allograft (B16 melanoma in B6 mice) models

(138). These results suggest the feasibility of utilizing immuno-PET

for non-invasive patient stratification based on TIGIT expression

for anti-TIGIT therapy. Such imaging methods hold great potential

to guide combination ICI treatment (145) in order to overcome

T-cell exhaustion during CAR T-cell therapies.

In contrast to the well-documented roles of T-cell exhaustion

in cancer relapse/resistance against CAR T-cell therapies, the

mechanisms of T-cell senescence mediated by the TME remain

largely unknown (146, 147). The senescent T-cell phenotype is

associated with substantial downregulation of CD28 and CD27

stimulatory markers and an increase in beta-galactosidase (SA-β-

gal) activity (147, 148). Other T-cell senescence-associated markers

include TIM-3, CD57, and killer cell lectin-like receptor subfamily

G member 1 (KLRG-1) (149–152). Moreover, a unique senescence-

associated secretory phenotype (SASP) has been reported with

senescent T-cells; this phenotype generates large amounts of pro-

inflammatory cytokines, such as interleukin 2 (IL-2), IL-6, IL-

8, TNF-α, and interferon gamma (IFN-γ), in addition to the

suppressive cytokines IL-10 and transforming growth factor β

(TGF-β) (146, 153, 154). As such, PET has been employed to detect

T-cell senescence via imaging of surrogate markers, such as TIM-

3 (141), overexpression of SA-β-gal enzyme (155–157), IL-2 (158),

TNF-α (159), and IFN-γ (160) (Supplementary Tables S2–S4).

There are several important factors to consider in the

development of radiolabeled antibodies for immuno-PET/-SPECT

imaging: for instance, the Fc-receptor interactions. Although these
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FIGURE 4

Integrated immuno-PET, IHC, and hematoxylin and eosin (H&E) images of mouse tumorgraft lines from corresponding patient tumors with high and
low PD- L1 expression groups. (Top) Schematic representative of the workflow. (Middle) Representative whole-body MIP immuno-PET images
(posterior view) of mice, one from each group. The corresponding PD-L1 expression ranges measured by IHC and the volume of the tumor in the
mouse as indicated are shown below (n = 3–4 for each line; a single remaining XP258 mouse is not included). Tumors are indicated with a yellow
lasso. (Bottom) PD-L1 IHC and H&E staining of the corresponding tumor tissues explanted from the TG models. Patient tumor samples shown as a
reference. A part of this figure has been reproduced from the referenced article (41) under reuse permission from standard copyright in AACR
journals for authors.
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interactions may be advantageous for some therapeutic mAbs

due to the resulting prolongation of their systemic half-lives

and accentuation of their effector functions (161), they may

expose patients to higher doses of radiation when radiolabeled for

radiotherapy or imaging. In addition, such Fc interactions may

compromise the desired antigen-targeted immuno-PET signal due

to a high non-target uptake (162). To overcome this issue, it is

plausible to silence the Fc domain (163) [e.g., through selection

of mAbs such as atezolizumab (164)] or to use engineered mAb

fragments (e.g., minibodies, diabodies, and BiTEs) (165). Other

issues with this approach include the solubility of target antigens

in plasma (166–168).

CAR T-cell distribution

For manufacturing of CAR T-cell products, the recipient

patient’s own (autologous) T-cells are the preferred source

in order to avoid the possibility of graft-vs.-host reactions

due to the use of donor T-cells. However, adherence to this

personalized adoptive cell therapy can jeopardize the extension

of treatment benefits to a larger cohort of patients (126). In

general, CAR T-cell therapies inherently suffer frommanufacturing

limitations associated with long production times due to the

required T-cell selection and expansion processes to ensure a

high-quality product (34). Moreover, most patients receiving

these CAR T-cell therapies suffer from advanced cancers and

have previously undergone conventional chemotherapies or

other immunotherapies. Consequently, these patients may be

lymphopenic with a high possibility of dysfunctional or exhausted

T-cells (169). This can be a severe limiting factor for product

development, significantly impacting the treatment outcome (170–

172). To address these challenges, the development of allogeneic

CAR T-cells from donors has gained impetus as an alternative

strategy enabling a large scale universal production for “off-the-

shelf ” doses of the CAR T-cell product. Novel research strategies

may also involve designing combination CAR T-cells and CAR T-

cells with BiTE formulations (60, 126, 173). Moreover, “universal

CARs” can be designed with dual targeting capabilities to overcome

resistance to CAR T-cell therapy owing to the loss of a single

antigen (174, 175). Nevertheless, the risks associated with potential

toxicities, such as graft-vs.-host and autoimmunity reactions,

require careful consideration in the context of such strategies (176).

To avoid toxicities, standard-of-care CAR T-cell therapy protocols

recommend the injection of only a limited number of CAR T-

cells (∼105 to 106 cells per kg of body weight) (177). With the

capability for direct tracking of the in vivo dynamic distribution

of CAR T-cells and TILs, immuno-PET/-SPECT may provide

pivotal information for the optimization therapeutic outcomes and

enable evaluation of therapy-induced alterations and detection of

resistance mechanisms (43, 178). Because others have reviewed

these approaches in detail (46, 51, 179), we provide only a few

highlights below and in Supplementary Table S3.

In the TME and in the systemic circulation, TILs, cytotoxic

CD8+ and helper CD4+ T-cells, play a key role in driving the

antitumor immunological responses in immunotherapies. With

radiolabeled CD8- and CD4-specific minibodies (72, 180, 181)

and cys-diabodies (43, 182), immuno-PET imaging has been

proven with the capability to reveal T-cell-enriched tissues, such

as the lymph nodes, spleen, and thymus in mouse models. For

instance, immuno-PET with 89Zr-labeled anti-CD8 cys-diabody

has been found to be able to detect the mobilization of CD8-

expressing T lymphocytes from the systemic circulation to tumors

in syngeneic mouse models when subjected to immunotherapies

with an agonistic mAb (anti-CD137/4-1BB), checkpoint blockade

mAb (anti–PD-L1), and ACT (182). Recently, a 89Zr-labeled

anti-CD8 minibody (89Zr-Df-IAB22M2C) has advanced to early-

phase clinical trials in subjects with primary (183) (Figure 5) and

metastatic solid tumors (melanoma, non-small cell lung cancer,

and hepatocellular carcinomas) (184). Furthermore, another report

using 64Cu labeled IAB22M2C has described similar applications

in brain tumors (66, 180). Notably, bispecific antibody constructs

consisting of two ScFv arms have been seen in this endeavor,

one targeting the tumor antigen and the other often targeting

CD3 markers on T-cells. However, in such bispecific constructs,

the target with the stronger affinity to the radiotracer may likely

predominate in the radiotracer’s biodistribution. For example,

in a first-in-human imaging study with a carcinoembryonic

antigen (CEA)/CD3-targeting radiotracer, 89Zr-AMG 211, intra-

and inter-subject heterogeneous tumor uptake was observed, which

was largely dominated by the CD3 arm. As such, the imaging

results likely depicted T-cell distribution (166, 185). While the

faster clearance and earlier imaging time points seen with mAb

fragments are clinically advantageous, their imaging sensitivity

and specificity remain to be improved, as their specific binding

affinities are inevitably compromised as compared to their mAb

counterparts (186).

In vivo tracking of CAR T-cells can be realized by direct

labeling with 111In, 89Zr, 99mTc, or 68Ga (187–191). However, these

techniques face major challenges for longitudinal in vivo tracking

due to the loss of radiolabels during subsequent passages of CAR

T-cells and decay of the radionuclide (192). Moreover, this type

of radiolabeling technique cannot distinguish between live and

dead CAR T-cells, although the latter are likely to be digested

or sequestered in the liver or spleen. Therefore, transduction

of CAR T-cells with a protein reporter has been employed for

pairing with a well-established PET imagingmethod. To date, many

such reporter/radiotracer pairs have been developed to capture

the spatiotemporal expansion of CAR T-cells in preclinical mouse

models (51, 178, 193): for instance, PSMA can be paired with

[18F]F-DCFPyL, a PSMA-specific PET agent (194). PSMA was

chosen because of its well-accepted role in theranostic treatment of

cancers (195, 196). Another protein of interest is the somatostatin

receptor 2 (SSTR2), a G-protein-coupled membrane receptor with

basal expression in normal tissues and overexpression in many

neuroendocrine tumors (NETs) (197–199). Notably, a recent study

has gone one step further to investigate the potential of using the

SSTR2 reporter as a suicide switch to destroy the CAR T-cells

when they generate toxic AEs. In this approach, a maytansine–

octreotate conjugate, PEN-221 (Tarveda), was used for imaging and

elimination of CAR T-cells when they became toxic (200). Another

interesting study used an engineered antibody against DOTA

(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid; DAbR1)

for both cell tracking and a potential antibody–drug conjugate
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FIGURE 5

Whole-body immuno-PET imaging with [89Zr]Zr-IAB22M2C in a
patient at 24h post-injection. (A) Intense uptake is noted in lymph
nodes. (B, C) Fusion image at 24h shows [89Zr]Zr-IAB22M2C uptake
in lesion and deltoid (B), which were also [18F]FDG positive (C). (D)
H&E stained section shows melanoma tumor nodules on the right
within skeletal muscle. (E) IHC highlights the presence of CD8+

T-cells at the periphery and infiltrating tumors [reproduced with
permission from original publication Pandit-Taskar et al. (183)].

(201). DAbR1 contains a single-chain fragment of the anti–

lanthanoid-DOTA antibody 2D12.5/G54C fused to the human

CD4-transmembrane domain and binds irreversibly to lanthanoid

(S)-2-(4-acrylamidobenzyl)-DOTA (AABD) (202) for imaging of

DAbR1-positive T-cells when labeled with 86Y (201).

While most of these reporter/radiotracer studies are still at

the preclinical stages, a successful first-in-human trial tracking

CAR T-cells has been reported in the case of a 57-year-old man

with grade IV glioblastoma whose autologous CD8+ T-cells were

genetically engineered to express the herpes simplex virus type 1

thymidine kinase (HSV1-tk) suicide gene for PET imaging with

9-[4-[18F]fluoro-3-(hydroxymethyl)butyl]guanine ([18F]F-FHBG)

(203). This approach was further validated in a subsequent clinical

trial with a cohort of six patients with glioblastoma (204). It is

noteworthy that, while these studies have set the stage for clinical

CAR T-cell imaging, the challenges are also evident in terms of their

limited clinical practicality (e.g., extrinsic viral proteins are required

and signal-to-noise ratios are suboptimal) (205).

T-cell activation

While imaging of T-cell lineage markers (e.g., CD3, CD4,

and CD8) can provide information regarding mobilization and

tumor retention of the T-cells (both CAR T-cell therapies

and other T-cells), it is essential to know whether these T-

cells are activated. Immuno-PET imaging of proteins specifically

upregulated during T-cell activation can function as biomarkers to

address this issue (Supplementary Table S4). For instance, inducible

T-cell costimulator (ICOS) is a T-cell co-stimulatory molecule

upregulated during T-cell activation. Using a 89Zr-labeled anti-

ICOS mAb, the activation, expansion, and tumor retention of

CD19-directed CAR T-cells have been investigated in a mouse

model of B-cell lymphoma (44, 206). Absent in resting naïve T-

cells, CD134 or OX40 could also be used as T-cell activation

markers (207). Furthermore, cytokines generated in response to T-

cell activation, such as IFN-γ (160) and IL-2 (Figure 6) (158, 208),

have also been reported on for use in immuno-PET imaging of

T-cell activation.

Molecular imaging of T-cell distribution and activation is

capable of providing an immune signature of ongoing cytotoxic

responses or possibly of resistance to immunotherapies (209, 210).

Recent reports on a PET agent that targets human granzyme

B, 68Ga-NOTA-GZP, are noteworthy (209, 211, 212). Granzyme

B is a pro-apoptotic serine protease, secreted and activated via

granular exocytosis along with perforin by activated cytotoxic T-

cells andNK cells. It initiates the target cell death cascade by caspase

activation (213, 214). Interestingly, 68Ga-NOTA-GZP only targets

the active secreted form of the enzyme (biological t1/2 = 14 days),

making it an ideal candidate for detection of the extent of cytotoxic

response, or lack thereof, in the TME (212). Interestingly, PET

with 68Ga-NOTA-GZP has been found to be able to reveal distinct

immune signatures associated with immunoactivation in tumors

and tumor-draining lymph nodes.

Adverse toxic events

CAR T-cell therapies as a class have been found to be

associated with certain unique toxicities due to the immunological

surge of cytokines that follows the CAR T-cell-based T-cell

activation cascade. These AEs are termed CRS and ICANS, which

encompass the most notable CAR T-cell toxicities. Additionally,

other toxicities such as “on-target, off-tumor” and anaphylactic

effects have been reported. Unlike side effects observed with other

chemotherapeutics, which are often non-specific, the toxicities

observed in CAR T-cell therapy are on-target and reversible in

most cases. Minimization of these toxic events is highly desirable

in clinical management with CAR T-cell therapies (33).

To date, several pathophysiological mechanisms behind the

occurrence of CRS and ICANS have been elucidated in the

literature (215–217). Usually, CRS is triggered within days after

CAR T-cell activation post-infusion, although delayed AEs may

occur up to 3 weeks post-infusion due to prolonged systemic

circulation of the CAR T-cells (218). The symptoms of CRS

are mainly perpetuated by elevated circulating levels of pro-

inflammatory cytokines, including IFN-γ, TNF-α granulocyte-

macrophage colony-stimulating factor (GM-CSF), IL-10, IL-1,

and IL-6, as well as other inflammatory mediators such as

nitric oxide (216, 219). These AEs range from mild (grade 1)

flu-like symptoms to more severe (grade 3–4) manifestations,

including hypotension, tachycardia, difficulty breathing, hypoxia

and capillary leak, hypoalbuminemia, coagulopathy, shock, and,

in some rare cases, multiple organ injury/failure, which need

immediate medical attention (220–222). CRS-related AEs are in

fact quite commonly encountered in patients treated with CAR T-

cell therapeutics, with ∼53%−93% experiencing different grades
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FIGURE 6

Representative [18F]FB-IL2 PET images of human melanoma. (A) Transversal PET/CT image of three regions showing high [18F]FB-IL2 uptake. (B) MIP
image of the same patient showing multiple areas of high radiotracer accumulation in the lungs. Reproduced from the open access article in ref.
(158) under the Creative Commons license (http://creativecommons.org/licenses/by/4.0/).

of CRS-related AEs, ∼13%−14% undergoing severe (≥ grade 3)

reactions, and ∼20%−50% needing to be transferred to intensive

care units (30, 216, 223, 224). These AEs are not limited by

disease phenotype (they are seen in lymphomas, leukemias, and

even myelomas) or by the type of antigen being targeted, although

the CRS AEs and neurotoxicity are more commonly seen with

CD19-directed CAR T-cell therapies than others (30, 219, 220,

225). Notably, CRS is not limited to CAR T-cell therapies and

may be seen with other agents (215, 226) and immunopathologic

conditions thatmay affect B- and/or T-cell function (216). ICANS is

the second major form of toxicity seen with CAR T-cell therapies as

well as BiTEs, with symptoms including encephalopathy, aphasia,

delirium, tremor, and seizures (225). The pathophysiology of

ICANS is still largely unknown as compared to CRS. Under the

mechanisms that have been proposed, initial pro-inflammatory

cytokine activation mediated by CAR T-cells may result in

endothelial activation and increased microvascular permeability,

which may lead to disruption of the blood–brain barrier and

subsequent passive diffusion of CAR T-cells and cytokines in the

central nervous system (CNS). These events may further trigger

a positive immunoactivation feedback loop for manifestation of

ICANS (216, 217). While they are more commonly seen with

CD19-directed CAR T-cells, neurotoxic AEs also occur with other

non-CD19-targeting CAR T-cell therapies (225). Although less

common than CRS, ICANS is known to occur in ∼21%−66% of

all patients treated with CAR T-cell therapies, with severe ICANS

AEs (≥ grade 3) occurring in ∼12%−45% (225, 227). Elevated

cytokine levels in CRS may often precede neurotoxic events.

However, ICANS may occur concurrently, after CRS has subsided,

or even independently of CRS. The symptoms of ICANS may be

relatively mild without CRS interplay (216, 217). As CAR T-cell

therapies progress toward applications in solid tumors, unique “on-

target, off-tumor” forms of toxicity have been encountered. Such

toxicities may occur in non-diseased tissues, wherein CAR T-cells

primed to attack the tumors overexpressing the target antigen may

also affect normal tissues with basal antigen expression (228). In

these situations, the expression level of the target antigen on the

non-diseased tissues becomes a determinant of the severity of the

AE (33, 229). Other rare instances of toxicity include symptoms

such as anaphylaxis following an immune response to the CAR

(230); in most instances, these occur as a result of the mAb-derived

antigen-recognition domains in the CAR structure (231).

Currently, there are no approved preventive measures for these

toxicities (232). However, whole-body PET or SPECT imaging has

the capability to locate these AEs as they occur anywhere in the

body, which can be leveraged to guide therapeutic interventions

(233). In clinical practice, [18F]FDG-PET plays a role in the

management of CAR T-cell therapies, but it cannot differentiate

neoplastic disease or other inflammatory events from a hyper-

inflammatory episode such as CRS (233). To the best of our

knowledge, no immuno-PET approaches have been reported for

imaging of these toxicities. As a wide array of cytokines are

upregulated at different points during the CRS cascade (216),

imaging specificity is difficult to achieve. Another major hurdle

is the lack of a suitable mouse model for investigation of CRS

events, although two humanized mouse models have been reported

for CRS and ICANS that may be useful for proof-of-concept

studies (234, 235). To date, sufficient evidence has shown IL-6

serum cytokine levels to be the most significantly elevated during

CRS (215, 236, 237). Clinically, tocilizumab, a mAb inhibitor of

IL-6 receptor (IL-6R), has therapeutic applications as a first-line

agent with corticosteroids to treat grade 2 CRS AEs in patients

receiving CAR T-cell therapies (237, 238). Therefore, immuno-

SPECT with 99mTc-labeled tocilizumab and optical imaging with

Cy7-tagged tocilizumab have been reported for preclinical imaging

of myelomas (239–241). Siltuximab is another IL-6 inhibitor mAb

that is used as an alternative third-line treatment in patients

with CRS and ICANS who are unresponsive to tocilizumab and

corticosteroids (220, 242). Both mAbs can be considered for

immuno-PET imaging in CRS. IL-1 is another key player generated

early in CRS initiation, and Anakinra
R©
, a recombinant human IL-

1 antagonist, has demonstrated favorable efficacy against CRS and

ICANS based on a study in humanized models and early clinical

trials (234, 235). While 18F and 99mTc radiolabeling methods
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have been reported for peptides inhibiting IL-1, in vivo imaging

remains to be evaluated for these probes (243–246). Moreover,

immuno-PET imaging with [89Zr]Zr-α-IL-1β has been found to

be able to detect colonic inflammation in murine dextran sodium

sulfate-treated colitic models, which correlates with the severity

of the disease (247). Rather than directly targeting individual

cytokines mediating CRS or ICANS, targeting of their common

upregulated downstream immune checkpoints (indirect targeting)

may hold promise for imaging of these toxicities. For instance,

PD-L1 is known to be upregulated by multiple cytokines as

an inhibitory ligand in the PD-1/PD-L1 checkpoint axis; this

synergistic upregulation may provide a strong imaging signal

enhancement for sensitive detection (41, 114, 248, 249). As such,

the validated methods for immuno-PET imaging of PD-L1 remain

to be tested for imaging of these AEs.

Notably, crosstalk between cancer cells and the TME plays

an important role in targeted therapies for cancer. Advanced

solid malignancies often feature a hypoxic and immunosuppressive

TME, which acts as a barrier impairing the effectiveness

of therapies. In fact, despite impressive clinical outcomes in

patients with advanced R/R B-cell hematological malignancies

and multiple myelomas, CAR T-cell therapy faces hurdles in

treating solid tumors with an immunosuppressive TME (31, 250).

Moreover, the neovasculature encompassing solid tumors often

restricts infiltration of the TME by CAR T-cells. TME is a

specialized environment consisting of dynamic interplays between

varieties of cells in the milieu of aberrant metabolites and cell

signals (251, 252). Cancer cells can gain survival advantages by

manipulating innate cellular mechanisms, for instance, by hijacking

immunomodulation pathways to evade immune surveillance or

to escape killing by immunotherapies. Due to the dynamic

nature of the TME, it can be morphologically, phenotypically,

and functionally heterogeneous across time, subjects, and tumor

sites (primary vs. metastases), and even across regions within

the same tumor (32, 253). Immuno-PET/-SPECT imaging can be

leveraged to non-invasively track dynamic changes in the TME

in real-time, thus providing invaluable information for precision

treatment strategies.

The “hyper-metabolic” state of aggressive malignancies often

produces conditions of nutritional deficit, hypoxia, pH reduction

(acidosis due to lactic acid generation post-glycolysis) of the TME,

and oxidative stress (37). It is well-known that hypoxic conditions

stabilize hypoxia-inducible factors that promote angiogenesis.

Recently, it has been found that hypoxia induces immune

evasion by upregulating the immune checkpoint proteins [e.g.,

PD-L1, PD-L2, human leukocyte antigen-G (HLA-G), and

soluble CD137] (254, 255), impairs the expansion of CAR T-

cells, and reduces immune activation (256). Therefore, recent

CAR T-cell therapy strategies have been expanded to include

transduction of the CAR design with hypoxia-sensing domains

(257) and targeting of antigens upregulated in hypoxia [e.g.,

carbonic anhydrase IX (CAIX) (258)] in order to improve the

therapeutic efficacy (32, 259). Of note, immuno-PET with 124I

or 89Zr-labeled girentuximab, an anti-CAIX mAb, has advanced

to clinical trials in patients with renal cell carcinoma (260–

262) and urothelial cancers (263), while the 89Zr-labeled mAb

has demonstrated improved detection sensitivity due to the

residualizing properties of the radionuclide (264). Immuno-PET/-

SPECT with radiolabeled pH-selective mAbs, which has not yet

been reported, might find application in non-invasive assessment

of TME acidosis (265).

Conclusion

Adoptive cell therapy has brought about a paradigm

shift in cancer treatment using innovative immunotherapy

approaches. Evidently, these novel drugs come with their own

unknowns, challenges, and certain unique toxicities. Molecular

resistance mechanisms, such as antigen loss and T-cell exhaustion,

particularly in the immunosuppressive TME, are still the most

significant challenges faced by CAR T-cell therapy. Consequently,

there is an urgent unmet clinical need for early identification

and tracking of these mechanisms in order to implement timely

treatment interventions. In recent years, synergizing of the highly

sensitive PET and SPECT functional imaging modalities with

anatomical/physiological computed tomography or magnetic

resonance imaging has generated a multifaceted, highly sensitive,

non-invasive platform for real-time detection of dynamic events

in live subjects. To date, this platform has been validated for

use in clinical diagnosis and disease management in various

diseases and conditions, including cancer. Moreover, recent

technological advancements and sophisticated algorithms for

SPECT have advanced its capability for simultaneous imaging

of two radionuclides with differentiable emission energies, thus

enabling non-invasive assessment of the simultaneous occurrences

of two biological events (266–268). In addition, recent solid-state

detectors and advanced reconstruction algorithms have further

improved the sensitivity and spatial resolution of SPECT. As such,

we expect to see accelerated progresses in immuno-PET/-SPECT

imaging and their applications in immunotherapies. In conjunction

with the explosive development of innovative strategies in the realm

of spatial-omics (transcriptomics, proteomics, and metabolomics),

novel targets will certainly emerge for the future development of

more practical immuno-PET/-SPECT imaging methodologies to

address the challenges of CAR T-cell therapy (269). To add to this

arsenal, deep learning-based radiomic analysis of image features

extracted from the vast datasets of available images could further

move the field forward.
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