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Randomized controlled trials are considered the ‘gold standard’ to reduce bias by 
randomizing patients to an experimental intervention, versus placebo or standard 
of care cohort. There are inherent challenges to enrolling a standard of care 
or cohorts: costs, site engagement logistics, socioeconomic variability, patient 
willingness, ethics of placebo interventions, cannibalizing the treatment arm 
population, and extending study duration. The COVID-19 pandemic has magnified 
aspects of constraints in trial recruitment and logistics, spurring innovative 
approaches to reducing trial sizes, accelerating trial accrual while preserving 
statistical rigor. Using data from medical records and databases allows for 
construction of external control arms that reduce the costs of an external control 
arm (ECA) randomized to standard of care. Simultaneously examining covariates 
of the clinical outcomes in ECAs that are being measured in the interventional arm 
can be particularly useful in phase 2 trials to better understand social and genetic 
determinants of clinical outcomes that might inform pivotal trial design. The FDA 
and EMA have promulgated a number of publicly available guidance documents 
and qualification reports that inform the use of this regulatory science tool to 
streamline clinical development, of phase 4 surveillance, and policy aspects of 
clinical outcomes research. Availability and quality of real-world data (RWD) are 
a prevalent impediment to the use of ECAs given such data is not collected with 
the rigor and deliberateness that characterizes prospective interventional control 
arm data. Conversely, in the case of contemporary control arms, a clinical trial 
outcome can be compared to a contemporary standard of care in cases where 
the standard of care is evolving at a fast pace, such as the use of checkpoint 
inhibitors in cancer care. Innovative statistical methods are an essential aspect of 
an ECA strategy and regulatory paths for these innovative approaches have been 
navigated, qualified, and in some cases published.
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1. Introduction

Randomized controlled trials (RCTs) have been considered the 
‘gold standard’ in clinical research, despite recent concerns about 
external generalizability and feasibility (1–3). Traditionally using 1:1 
randomization to assign patients into the experimental (i.e., study 
intervention) and control (i.e., standard of care) study arms, RCTs 
often take years to complete. Further, RCTs are often impractical study 
designs for rare diseases. Generalizability can be  limited by RCT 
enrollment criteria that often excludes common comorbidities. While 
multi-institutional trials are intended to overcome the inefficiencies, 
recruitment challenges, and costs of RCTs within an institution, these 
multi- institutional trials often do not expand the eligibility criteria of 
the Phase II efficacy trial to make the study more generalizable (4).

Clinical trial models have evolved to improve the sensitivity and 
efficiency of analysis. Reducing the overall number of study 
participants needed to evaluate trial outcomes statistically places fewer 
patients at risk for harm and reduces the number of patients 
randomized to a potentially less effective therapeutic control arm. The 
size of the intervention arm and the size of the control arm have 
different ethical and practical considerations but reducing each can 
have benefits to patients and study sponsors. In rare diseases, a control 
arm may be impractical, unethical, or otherwise impossible (5). Batten 
disease, a rare fatal inherited disorder, is a type of neuronal ceroid 
lipofuscinosis, in which the nervous system is unable to recycle certain 
degradation products. In clinical trial designs, the choice of a control 
arm is an especially critical aspect of trial design in which ethical and 
scientific issues are deeply entwined (6). A clinical trial for cerliponase 
alfa faced the challenge of very few patients available to enroll, and an 
ethical quandary about the best comparator to show efficacy with 
scientific rigor. The only practical control was to compare to disease 
progression in a historical standard of care cohort (7) using a curated 
global registry enabled this approach to clinical validation with 
cerliponase alfa (8).

The purposes of this paper are to: (1) highlight innovative 
statistical methods and document methodological challenges with 
clinical trials conducted during the COVID-19 pandemic in the US 
and internationally; and (2) offer recommendations for alternative 
approaches to capture real world data and utilize external control arms 
in clinical trials.

2. Clinical trials during the COVID-19 
pandemic

2.1. Changing best practices

Long-awaited reforms to generally accepted best practices for 
clinical trials were underscored during the COVID-19 pandemic. 
Using global technological advances, clinical outcomes were rapidly 
shared, often outside of formal clinical trials, due to the dire need to 
support patients and understand the pathophysiology of the disease. 
In contrast to the rapid identification and development of therapeutics 
and vaccine development for COVID-19, traditional development of 
therapeutics is highly inefficient before clinical validation and 
deployment is reached (9). This was particularly evident during the 
COVID-19 pandemic when the ethics of therapeutic randomization 
were questioned because best supportive care was ill-defined and 
rapidly changing (10). Many generally accepted clinical trial practices, 
were at odds with the immediate medical imperatives, and had to 
be  reconsidered during the COVID-19 pandemic. Specifically for 
oncology, there was a call to rethink clinical trial dogma and revamp 
clinical trial design to increase efficiency, avoid highly restrictive 
eligibility criteria, and address the clinical needs of patients (11–13).

2.2. Limitations in traditional RCT 
approaches

Multiple attempts were made at conducting RCTs to validate 
therapeutics during the COVID-19 pandemic illustrating limitations 
in traditional RCT approaches. We  provide several examples 
highlighting challenges in interpretation of findings:

(i) For example, patients (n = 596) with moderate COVID-19 
presentations (defined as having pulmonary infiltrates and room-air 
oxygen saturation of >94%) were enrolled in a study from March 15 
through April 18, 2020 at 105 hospitals in the United States, Europe, 
and Asia (14). Patients were randomized to receive remdesivir or 
standard care. Using a 1:1:1 ratio, patients either received a 10- day 
course of remdesivir (n = 197), a 5-day course of remdesivir (n = 199), 
or standard care (n = 200). Four months later, the published results 
showed no statistically significant difference between a 10- day course 
of remdesivir and standard care. While a 5-day course of remdesivir 
resulted in a statistically significant improvement in status, the 
difference was of “uncertain clinical importance.” There were 
significant study limitations as hospital discharge rates varied greatly 
across regions, the open-label design potentially led to bias, some 
laboratory parameters were not collected, and viral loads were not 
assessed (15). This illustrates inherent challenge of achieving a perfect 
comparator group in a RCT. Put another way, an RCT is theoretically 
ideal but sometimes an imperfect and impractical assessment of a 
therapeutic in a real-world setting.

(ii) In another example, retrospective meta-analysis was 
performed using pooled data from 7 RCTs, conducted from February 
26, 2020 to June 9, 2020, in 12 countries that evaluated the efficacy of 
three corticosteroid regimens in the treatment of COVID-19. The 
three corticosteroid regimens were systemic dexamethasone (3 trials, 
1,282 patients, and 527 deaths), hydrocortisone (3 trials, 374 patients, 
and 94 deaths), and methylprednisolone (1 trial, 47 patients, and 26 
deaths). The study included a total of 1,703 critically ill COVID-19 
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patients out of the 1,920 patients that were planned for statistical 
analysis. There was little inconsistency between individual study 
outcomes, resulting in few differences observed in the meta-analysis. 
All studies showed that systemic corticosteroids significantly lowered 
the 28-day all-cause mortality compared with usual care or placebo. 
The odds ratio (OR) for mortality with dexamethasone was 0.64 (95% 
CI, 0.50–0.82; p < 0.001), hydrocortisone was 0.69 (95% CI, 0.43–
01.12; p = 0.13), and methylprednisolone was 0.91 (95% CI, 0.29–2.87; 
p = 0.87) (14).

(iii) In another case, an attempt was made to conduct a multicenter 
randomized double- blinded sequential trial in France that evaluated 
the effectiveness of hydrocortisone in COVID-19 intensive care unit 
(ICU) patients with respiratory failure. The primary outcome measure, 
treatment failure on day 21, was defined as death or persistent 
dependence on a ventilator or high-flow oxygen therapy. The study 
began March 7, 2020, and was stopped on June 29, 2020 when an 
interim analysis was performed. Although likely underpowered to 
identify a statistically and clinically important difference in the study 
endpoint, the trial was stopped early after 149 of the 290 patients were 
enrolled based on the strength of the interim results of this and other 
studies (16).

2.3. Studies evaluating quality of RCTs

We also note two studies explicitly evaluating the quality of 
randomized clinical trials. The first is a survey of the 516 COVID-19 
randomized clinical trials, registered in ClinicalTrials.gov and the 
World Health Organization International Clinical Trials Registry 
Platform between January 1 and April 9, 2020, conducted 
approximately a year later in October 2020. The survey evaluated 
whether the trials recruited 75% or more of their target sample size, 
stopped before reaching 75% recruitment, or continued to recruit 
patients but had not yet met the 75% accrual (either on schedule or 
delayed). Of the 516 randomized trials, only 53 (10.3%) of the 56 
completed studies had been published (30%), had not started or were 
discontinued, and 24 (4.6%) were terminated early. The remaining 
studies were ongoing but only 126 (24.4%) were on schedule. Of the 
RCTs initiated in the first 100 days of the pandemic, 30% did not begin 
recruitment and only 10% had results reported by mid- October 2020. 
Of the 24 terminated and 46 discontinued trials, 14 RCT investigators 
communicated that the trials were discontinued due to decreasing 
COVID-19 cases (8 trials [57.1%]), emerging data regarding safety (6 
trials [42.9%]), or futility (2 trials [14.3%]). Importantly, the 
statistically significant safety concerns, affirmed through peer-review, 
were derived from observational studies before a RCT could 
be completed (17). A high rate of multiplicity was noted during a June 
8, 2020, review of the COVID-19 trials on ClinicalTrials.gov. This 
multiplicity was thought to enhance the likelihood of finding a 
positive result through chance alone resulting in the widespread 
administration of a potentially ineffective therapeutic. Fragmentation 
of efforts also lead to competition for study participants that 
compromised clinical trial accrual and the statistical power of all 
trials (18).

Second, a cross-sectional analysis was conducted of the 
characteristics and the strength of evidence of COVID-19 studies 
registered on ClinicalTrials.gov on May 19, 2020. There were 640 
observational and 664 RCTs. Over 75% (n = 1,180) of the RCTs and 

observational COVID-19 studies were conducted at a single center, 
and only 29.1% of the COVID-19 studies (RCTs and observational) 
could potentially yield the OCEBM level 2 evidence, or the highest 
level of evidence (19). Among the RCTs, only 35.8% of studies had 
planned enrollment of more than 100 participants, and 17% involved 
at least 2 study centers, which is required for the highest level of 
evidence. Also, to fulfill the highest level of evidence criteria, only 
29.1% of the RCTs were placebo-controlled, and only 11.3% of the 
placebo-controlled RCTs were blinded and conducted in at least two 
centers. Among the observational studies, 80.8% were conducted in a 
single center, and only 13.6% were prospective cohort studies that 
could yield the highest level of evidence (19).

2.4. Observational and therapeutic reports

By necessity, many of the COVID-19 studies were observational 
and single-arm therapeutic reports. These studies followed the 
Strengthening the Reporting of Observational Studies in Epidemiology 
(STROBE) Guideline for Cohort Studies. Research consortia were also 
developed to evaluate the variabilities in therapeutic approaches, and 
to pool sufficient patient numbers for statistical analysis. An 
observational study of 2,483 consecutive admissions for confirmed 
COVID-19 was conducted from a 5-hospital health system. The 
outcomes of remdesivir (administered with or without a 
corticosteroid) were compared to matched-COVID-19 patients who 
did not receive remdesivir; matching was performed using time-
invariant covariates and time-dependent covariates. From this study, 
remdesivir alone was associated with faster clinical improvement as 
evidenced by a 2-day shorter time to clinical improvement (adjusted 
hazard ratio 1.47; 95% CI 1.22–1.79) and a 7.7% (vs. 14.0%) 28-day 
mortality rate (adjusted hazard ratio 0.70; 95% CI 0.38–1.28) 
compared to matched controls (20). During the period of highest 
COVID-19-related mortality, from March 7, 2020, to June 17, 2020, a 
voluntary statewide collaborative initiative was established among 
41% of the 92 noncritical access- nonfederal hospitals in Michigan to 
evaluate adherence to venous thromboembolism (VTE) 
anticoagulation regimens. Some of the hospitals included all 
COVID-19 patients, while high-volume hospitals used a pseudo-
random sampling process to select cases given the limited availability 
of data abstraction resources. Pseudo-randomization, resulting from 
logistical constraints, involved evaluating all the potentially eligible 
patients; each day, one patient was selected for the study out of many 
eligible study patients based solely upon the time of hospital 
discharge (21).

3. Alternative approaches for external 
control arms

3.1. Real world data

In the best of circumstances, RCTs encounter difficulties in 
efficiently fulfilling study enrollment. During the restrictions and 
stressors of the COVID-19 pandemic, conducting and completing a 
RCT was made even more difficult. Providing information regarding 
the transmission and treatment of a novel virus, single-arm trials and 
the analysis of Real World Data (RWD) made significant scientific 
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contributions to understanding the epidemiology of severe disease, 
and the efficacy of an evolving therapeutic model during the 
COVID-19 pandemic.

When a RCT is not feasible for either rare diseases or ethical 
reasons, historical or external control arms, derived from RWD, have 
been used (22). Additionally, historical or external control arms often 
are more accurate comparators as RCTs are not perfectly representative 
of adherence and public health factors affecting how a therapy may 
be used in the real world. A combination of regulatory policy shifts, 
legislation, clinical data availability, and next-generation sequencing 
have catalyzed the feasibility of ECAs (23). Using the dynamic 
borrowing model, in which a historical or RWD control group closely 
matches a small concurrent control group in the study, there is 
minimal impact on the final study conclusions. This minimal impact 
is maintained when up to 80% of a trial’s control group consists of 
closely matched historical or RWD controls (22).

3.2. Regulatory guidance

In December 2016, Section 3022 of the 21st Century America 
Cures Act was enacted and directed the U.S. Food and Drug 
Administration (FDA) to accept statistical methods that include RWD 
and Real World Evidence (RWE) (23). The FDA’s Center for Devices 
and Radiological Health (CDRH) and Center for Biologics Evaluation 
and Research (CBER) issued guidance on August 31, 2017 regarding 
the submission of RWD and RWE to the FDA (24, 25). To improve the 
regulation of combination products, the Cures Act also directed the 
FDA to create inter-center institutes to coordinate initiatives in the 
development of drugs, biologics, and devices. The Oncology Center 
of Excellence was the first inter-center institute created.

After the FDA guidance was issued, the CDRH reported that the 
use of RWE in premarket and post- market regulatory decisions 
increased by 193% compared to the 2015 baseline (26). However, an 

RCT was the statistical model used for approximately 60% of the 
studies investigating new therapeutic agents/devices (27). Given the 
inherent concerns for the safe administration of an agent/device, the 
enrolled clinical trial population may not be representative of the real 
world patient populations in which the agent is intended to 
be administered (Table 1). In general, the patient populations within 
RCTs are younger, more homogenous, and have fewer comorbidities 
than the actual patient populations (28, 29). Nearly 80% of clinical 
trials fail to meet the initial enrollment projection, and less than 10% 
of new therapeutic agents receive FDA commercial approval (30–33). 
RCTs may not always be representative of safety and efficacy within 
real world populations due to numerous and overlapping public health 
factors such as adherence, socioeconomic, genetics, polypharmacy 
and polychronic disease factors. Even after FDA approval based on an 
RCT, the marketing approval may be  revoked or the FDA label 
changed (i.e., black box warnings) may occur because of unexpected 
adverse events within a real world population (34).

RWD and RWE have 4 roles as defined by regulatory guidance. In 
the first role, the FDA uses RWD and RWE to monitor post-market 
safety (adverse events) and efficacy that resulted in regulatory decisions. 
Second, to expedite approval of innovative therapeutic approaches, 
RWD and RWE support clinical trial designs, including approval of new 
indications for approved drugs. Third, RWD and RWE are used to: (a) 
develop therapeutic guidelines and decision support tools for clinical 
practice; and (b) to support healthcare insurance coverage and 
reimbursement decisions. Specific examples include: (a) generating and 
refining hypotheses to be  tested in a prospective clinical study; (b) 
identify, demonstrate, or support the clinical validity of a biomarker; (c) 
support label expansion for approved drugs; and (d) for public health 
surveillance and policy efforts (17, 18, 35).

The sources of RWD are broad and incorporate both governmental 
and commercial data sources. Accepted sources of RWD include 
electronic health records (EHRs), claims and billings databases, 
product and disease registries, patient-generated data, and health 

TABLE 1 Practical pros and cons of external control groups.

RCT control groups External control groups

Single institution Multi-institution Historical Traditional Contemporaneous

Allow for changes in standards of care N N P Y Y

Decreased patient number required for 

clinical trial

N N Y Y Y

Ability to use digital twins P P Y Y Y

Decreased time required for clinical trial N N Y Y Y

Control arms receive current standard of 

care

Y Y P Y Y

Ethical concerns regarding inferior care in 

control arm

P P N N N

Receive treatment in real world healthcare 

setting

P P Y Y Y

Interim analysis possible Y Y N N Y

Acceptance by FDA Y Y Y Y Y

Increased time in getting novel treatments 

to clinic

Y Y N N N

Y represents-yes; N represents-no; P represents-perhaps.
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status data gathered from other sources, including mobile devices. The 
analysis of RWD provides information about, or enables comparisons 
of, the clinical outcomes associated with a therapeutic intervention 
and characterizes standards-of-care. These therapeutic outcomes 
generate RWE from a wide range of study designs that include data 
mining, observational, and interventional studies.

To improve access to innovative medical devices, the FDA formally 
approved the use of RWD and RWE to reduce premarket data collection, 
and to monitor safety and efficacy in the post-market setting (36, 37). 
As in all clinical investigations, the FDA requires that all data be reliable, 
accurate, and verifiable with robust quality control. RWD is also 
required to be  large enough to evaluate the medical product in the 
specific regulatory context. Three determining factors for the use of 
RWD are whether: (1) sufficient patient numbers and detail is available 
for analysis; (2) confounding factors can be addressed; and (3) the 
database is generalizable to the involved population. For example, RWD 
may need to account for the off-label use of an agent.

In clinical trials, reliable and relevant RWD can be applied when 
traditional prospective data collection models are impractical, and 
ethical issues arise regarding treatment assignment (38–40). The FDA 
guidance emphasizes the role of external controls derived from RWD 
in the regulatory evaluation of medical devices, and for rare or life-
threatening disease (41–44). The guidance also states that 
randomization does not guarantee the absence of bias; rather, it 
mitigates the known sources of bias. Multiple international agencies 
and academic groups have also advocated for and accepted 
non-randomized evidence within clinical trials (45, 46). The use of 
RWE has expanded along with next-generation sequencing (NGS)-
based testing and other forms of high-content bioanalysis (47, 48). The 
population paradox is defined as understanding the clinical relevance 
of molecular differences within a population. The population paradox 
enables the use of clinicogenomics databases for therapeutic 
development, clinical trials design, and therapeutic decision making 
for individualized medical care (49–52). Evidence gaps, however, 
remain for the use of NGS with RWE in health insurance coverage 
decision-making with the exception of pharmacogenomics testing, 
suspected pediatric genetic disorders, and oncology (48).

To mitigate potential bias, the use of RWD also requires a well-
defined study design, clinical endpoints, bias mitigation strategy, and 
statistical analysis that is comparable to traditional RCTs (53, 54). 
Especially when multiple data sources are used, a more diverse patient 
population may be possible. However, the data source must be reliable, 
and the data should be  anonymized to protect the privacy of the 
patient privacy. If patient-specific data is needed, such as a biomarker 
result, the data can be tokenized through an intermediary to link the 
result to the anonymous data point. When RWE is submitted to the 
FDA, both the RWD and RWE must conform to recognized data 
standards for file formats and data structures using standardized 
variables and definitions (55).

3.3. External control arm

Medical paradigms are changing. The intended use and labeling of 
therapeutics are increasingly agnostic of medical subspecialty, target 
tissue or organ, or pathologic characterization (56). Inter- connecting 
biological pathways now define risks for the development of disease or 
a disease process, and the corresponding therapeutic strategy. Relevant 

outcomes are expanding beyond survival (57, 58). Instead, outcomes of 
interest now reflect the importance of controlling the symptoms and 
trajectory of the disease (58), quality of life indicators, and/or 
downstream healthcare utilization (59).

Greater emphasis is also placed on outcomes that occur after 
completion of the clinical trial and in real world populations (60). Real 
world outcomes can be used to better estimate the cost-of-illness from 
both the patient and societal perspective (61). Innovative statistical 
approaches are increasingly accepted within and outside the construct 
of RCTs, resulting in an evolution in the design and efficiency of 
conducting clinical trials (62). External control arms (ECAs), derived 
from RWD, are increasingly used to reduce the number of patients 
and time required for study completion (5). ECAs and historical 
control arms have been used for decades to evaluate new therapeutics 
in rare diseases (63). Most importantly, from an ethical perspective, 
ECAs also place fewer patients within a clinical trial at risk for adverse 
events and potentially limited therapeutic benefit (64).

3.4. Innovative statistical methods

Statistical methods have been developed to minimize the number 
of patients randomized to a control arm, while retaining sufficient 
power for primary endpoints and safety evaluations. Inefficiencies in 
conducting clinical trials often slow the availability of breakthrough 
therapies for patients. Chapple and Thall (65) introduced a novel and 
more efficient semi-parametric stochastic ordering (SPSO) model for 
Phase I-II trials. This new statistical model uses a flexible monotone 
increasing the toxicity model and a semi-parametric stochastic 
ordering model for efficacy probabilities. A novel sensitivity analysis 
of the range of correlations between toxicity and efficacy was then 
performed. As a previously unreported finding, they found that all 
prospective clinical study designs performed worse when there was a 
negative correlation between toxicity and efficacy.

Digital twins are commonly used in industry to build predictive 
models for clinical trial performance and the real-world implementation 
of a new therapy. The approach involves developing a statistical model 
using external data from a patient population that can predict the 
trajectory of the disease for a standard of care or control arm. Reducing 
the number of patients accessioned to the study by 30–50%, that 
standard of care arm is then used as a synthetic control that is compared 
to a single-armed interventional clinical trial. Comprehensive 
forecasting of Alzheimer’s Disease progression was accomplished using 
the unsupervised Conditional Restricted Boltzmann Machine (CRBM) 
learning model that incorporated 44 clinical variables in 1909 patients 
with mild manifestations of disease. The generated synthetic patient 
data, including the Alzheimer’s Disease Assessment Scale-Cognitive 
Subscale (ADAS-Cog) score, accurately reflected the means, standard 
deviations, and correlations of each variable over time. The accuracy of 
the Alzheimer’s Disease trajectory from the actual data could not 
be distinguished from the synthetic control by a logistic regression (66). 
Biological markers are used with greater frequency to personalize 
therapeutics and reduce risk from futile care. In oncology an ECA, 
derived from a de-identified clinico-genomic database, closely replicated 
the control arm from the randomized IMblaze370 study of metastatic 
colorectal cancer (67, 68). Such databases can not only match patients 
within the control arm but, potentially more important, may also more 
closely match patients randomized to the therapeutic arm of an RCT.
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Confounders, such as comorbidities, may limit the generalizability 
of RCT results to the population identified within the FDA approved 
product label. Once FDA approved, unless specifically excluded in the 
FDA product label, a confounding factor may result in significant 
unanticipated adverse events that could outweigh the derived 
therapeutic benefit. The use of ECAs could support subsequent 
additional prospective single-arm Phase II-III studies that have a more 
expansive eligibility criteria in a limited patient cohort (69, 70). 
Substantially reducing the number of patients at risk, these prospective 
studies could provide critical toxicity and efficacy information more 
rapidly than a RWE retrospective review of large populations. This more 
rapid evaluation of relevant populations might find therapeutic benefit 
to a patient subpopulation that was not included in the foundational 
RCT, and/or prevent adverse events by identifying previously unknown 
risk factors. Using pharmacogenomic registry data, the genetic and 
pharmacologic co-variants of efficacy, safety and tolerability could also 
be determined (71). Known variants of CYP2C19 and CYP2D6 (72, 73), 
emergent α36 variants of ER (74), and drug–drug interactions with 
serotonin reuptake inhibitors (75) all have clinically relevant impacts on 
outcomes of breast cancer patients treated with tamoxifen. Covariates, 
that influence clinical outcomes, can be identified in clinical trials that 
use ECAs and a relatively small number of patients. Identifying 
covariates within product registration and Phase IV clinical trial designs 
can improve overall response and reduce toxicity rates.

External control arms and single-arm trials are increasingly 
accepted by regulators for drug approval, and Health Technology 
Assessment (HTA) bodies (63). ECAs have also been used to provide 
clinical context. A 13-fold increase in the use of ECAs was observed 
among the 433 single-arm trial submissions between 2011 and 2019 
(76). Between 2015 and 2019, the use of ECAs increased 22%, and 
approximately half (52%; 226/433) of the submissions included ECAs 
(76). The ECAs included historical controls from prior clinical trials 
(24%; 104), and from RWD (20%; 87), while 40% (175) of single-arm 
trials did not incorporate an ECA (76). The overall acceptance rate for 
single-arm trial submissions was 48%, increasing to 59% with RWD 
ECAs. The acceptance rate of single-arm trials increased from 41% from 
2015 to 2017 to 61% in 2018–2019 (76). Between 2015 and 2019, the 
acceptance rate for single- arm trials with historical controls as ECAs 
decreased by 10%, and with no ECAs decreased by 329 (16%) (54).

A proof-of concept study showed that the control arms in RCTs 
could be replicated by ECAs from curated electronic health record data. 
Applying study eligibility criteria, 9 advanced non-small-cell lung 
cancer trials were evaluated. Key aspects of the trials ranged from 
biomarker availability, study start dates, and overall survival as an 
endpoint. A comparison of the log hazard ratios among all RCTs and 
ECAs resulted in a 0.86 Pearson correlation coefficient (77). As an 
example, advanced non-small-cell lung cancer trials have used ECAs 
derived from de-identified contemporaneous electronic health records 
to determine overall survival within single-arm trials.

3.5. Contemporaneous external control 
arm

External control arms are useful as a comparator to validate the 
control arm of a RCT by revealing potential biases inherent in the study 
environment or enrolled population. Within an RCT, the goal is for the 
control group to mirror the experimental arm cohort as much as 

possible. With restricted study eligibility criteria, the RCT control and 
experimental arms may be  matched to each other in terms of 
demographics and comorbidities, but these cohorts may not always 
be representative of the real- world patient population. Variations in 
outcomes may occur based on access to care, insurance payer, practice 
patterns, and health-system resources. Indeed, zip code is a major 
determinant of clinical trial variations in recruitment (78) and health 
outcomes (79). RCTs conducted within a single institution in a single 
location, versus a multi-Institutional study, will generally not account for 
population diversity. Diversity in outcomes, especially related to 
healthcare resource utilization and cost, are often attributable to the 
provider, payer and/or population factors. For example, many factors 
differ between academic medical centers in large urban areas vs. 
community oncology clinics, including health system resources and the 
social determinants of health.

As a specific illustration, outcomes were compared among 
de-identified patients with advanced non- small-cell lung cancer 
treated with programmed death 1/programmed death-ligand 1 
inhibitors. The comparison involved RWD from an insurance claims 
database and EHRs obtained from 6 healthcare organizations (70). 
The datasets ranged from 269 to 6,924 patients. Correlations between 
real world time-to-treatment-discontinuation (rwTTD), time-to-
next-treatment, and overall survival (rwOS) ranged between 0.6 and 
0.9, with rwTTD being the most consistent endpoint. Real world 
endpoints were also consistent between institutions. At 1-year, rwOS 
ranged between 40 and 57%; these results were within the range of the 
median OS values from published clinical trials (69, 70). Two key 
conclusions were determined from this study: (1) real world endpoints 
are valid and should be used to support regulatory and payer decision-
making; and (2) observed differences likely reflected true differences 
between real world and clinical trial populations and practices. Being 
conscious of these differences can inform risk mitigation for 
downstream clinical development and post-market surveillance.

As pharmacogenomics practice expands, the relative frequency of 
pharmacogene variants (drug-gene interactions), polypharmacy 
permutations (drug–drug interactions), and correlations related to 
drug- class adverse reactions might inform rare adverse effects. These 
toxicities, that are often difficult to detect within an RCT, might not 
be  identified prior to FDA approval. Several drugs have been 
withdrawn from the market despite compelling RCT results resulting 
in FDA approval. In some cases, patients suffered great harm due to 
rare pharmacogenomics or drug–drug interactions that might not 
be previously known (80). For example, the cardiovascular toxicities 
of rofecoxib are suspected as being attributable to one or a combination 
of polymorphisms in a number of genes: 372 UGT2B7; (81) UGT2B15; 
(81) PTGS1; (12) CRP; (12) and PTGIR (82).

Combinations of rare but clinically consequential genotypes could 
easily be omitted from representation in the treatment (and control) arm 
of an RCT, but an ECA with genotype data might lend comparative 
insight before adverse events arise in the general population post FDA 
approval. The Observational Health Data Sciences and Informatics 
dataset contains 250 million cases. Within the dataset, 10% of diabetes, 
24% of hypertension, and 11% of depression patients had unique 
treatment pathways (81). This then yields a daunting number of 
permutations in drug combinations that might materially impact safety 
or efficacy outcomes in RCTs. Compared to traditional RCT control 
arms, ECAs can validate the degree of similarity to the general population 
and identify factors for prospective pharmacovigilance later in drug 
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development or during post market monitoring. RCTs are often 
considered to be an impractical means to validate clinical decision- 
making given an increasing number of pharmacogenomics variants (83), 
and that RWD is an important source of evidence in support of 
advancing the field of pharmacogenomics (50). Treating many rare 
diseases, oncology practice has been significantly influenced by RWD 
from registries and clinicogenomics databases for clinical decision 
support (84).

While variability exists within RCTs, variability also exists with 
ECAs. There are 3 types of ECAs which are accepted by regulatory 
agencies and based on time of cohort acquisition. Burcu and colleagues 
(64) characterized the 3 types of ECAs as historical, hybrid, and 
contemporaneous. Using their definition, historical ECAs almost 
exclusively use retrospective data, while the ECAs designated as hybrid 
and contemporaneous collect data both retrospectively and 
prospectively. A hybrid ECA, collecting both retrospective and 
prospective data, is often used to augment a control arm in an 
RCT. Hybrid ECAs are established either at the end of the single-arm 
trial using retrospective data from the time frame that the clinical trial 
was conducted, and the start of a single- arm trial with real-time 
follow-up. Contemporaneous ECAs generally provide a matched cohort 
from RWD for the control arm during the conduct of the clinical 
trial (85).

The control arms of RCTs seek to match the experimental arm 
patient demographics and comorbidities, and both arms are enrolled 
in the study at the same time. Most RCTs, however, do not match 
socioeconomic factors, such as the type of healthcare insurance payer, 
the type of health system, or the region of the country where care is 
delivered. Socioeconomic factors influence health behaviors, 
healthcare practice patterns, availability of medications and 
procedures, healthcare resource utilization (HCRU), and costs. RCTs 
conducted in a single-institution are poised to provide the least patient 
variability within the study, including HCRU, costs, and other 
socioeconomic factors, with all patients likely receiving treatment 
from the same facilities and health system procedures. In contrast, 
multi-institutional RCTs do not usually account for socioeconomic, 
health system, and regional variables within the randomization 
schema. Cooperative group trials rarely identify or statistically account 
for outlier institutions. Socioeconomic, health system and regional 
variables become more apparent when more diverse populations are 
included within a clinical trial or with RWD. Social determinants of 

health were highly evident during the COVID pandemic in which 
members of racial and ethnic minority groups, had higher rates of 
COVID-19 positivity, disease severity, and outcomes (86).

Defined by the 3 types of ECAs, historical, traditional, and 
contemporaneous, outcomes are dependent on expanded criteria that 
encompass the socioeconomic variables of a diverse RWE population 
(Table 2) (54). All three types of ECAs match the individual patient 
demographics and comorbidities for both the experimental and 
control arms within a RCT. However, regional variability can reflect 
access to care, rural vs. urban, academic medical center vs. community 
hospital or clinic. Most important to outcomes, however, are social 
determinants of health, including the type of health insurance, race, 
ethnicity and socioeconomic status.

Patients enrolled on an RCT generally have more access to care 
and are treated within a healthcare institution or system. Historical 
ECAs are either used for context as the standard of care for a selected 
time-period, or are retrospectively matched to the enrolled patients 
upon completion of a RCT. Especially when derived from datasets 
that are socioeconomically diverse and that include underserved 
populations, historical ECAs may not be an accurate cohort for the 
treatment arm of a clinical trial. In a large study, such as a multi-
institutional RCT, the variances among institutions may not 
be significant enough to impact outcomes or compromise statistical 
significance. Most multi-institutional studies are conducted within 
academic medical centers or private institutes that foster medical 
research. In most cases, there is little difference among the variables 
associated with socioeconomic determinants of health in multi-
institutional RCTs.

Much like the hybrid ECA, the demographics of patients within a 
traditional ECAs are matched during an interim analysis or at the end 
of the RCT. The traditional ECA is actively included within the study 
methods. Depending on the RCT population, the dataset from which 
the traditional ECA is derived can be specifically selected to include 
socioeconomic factors in the dataset. The contemporaneous ECA is 
more granular than the traditional ECA, and is the only control group 
that can match all the confounding variables of demographics, 
comorbidities, enrolled at the same time as the experimental arm 
patient, type of healthcare insurance, type of healthcare system 
delivery and access to care, and regional parameters. Using a 
contemporaneous ECA, theoretically, could yield the most exact 
comparison to the experimental arm of a RCT.

TABLE 2 Comparison of control groups in randomized controlled trials (RCT) by single institution, multi-institution, traditional external control groups, 
and contemporaneous external control groups.

RCT Control groups External control groups

Single institution Multi-institution Historical Traditional Contempor aneous

Individual patient demographics Y Y Y Y Y

Individual patient comorbidities Y Y Y Y Y

Enrolled at the same time as the 

experimental arm

Y Y N N Y

Type of health insurance/Payer P N N P Y

Health systems matched Y N N P Y

Region matched1 Y N N P Y

Y represents-yes; N represents-no; P represents-perhaps. 1Regions within the United States: NorthEast/New England [ME, NH, VT, MA, CT, RI], NorthEast/Middle Atlantic [NY, PA, NJ], 
South/South Atlantic [WV, MD, DE, DC, VA, NC, SC, GA, FL], South/East South Central [KY, TN, AL, MS], South/West South Central [AR, LA, TX, OK], MidWest/East North Central [Mi, 
Wi, IL, IN, OH], MidWest/West North Central [MN, IA, MO, ND, SD, NE, KS], West/Mountain [MT, ID, WY, NV, UT, CO, AZ, NM], West/Pacific [WA, OR, CA, AK, HI].
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4. Discussion of limitations

The randomized, controlled prospective trial is the gold standard 
in rigorous science for several reasons. Prospective randomization of 
patients to a standard of care control and highly structured 
experimental protocol mitigates (but does not always eliminate) bias 
and enables for control of certain variables (but not all variables) that 
might confound a treatment effect (87). One study of RCT trials 
underlying 143 cancer drug approvals, 17% had suboptimal control 
arms (87). It can be argued that the use of genomic biomarkers can 
bias a trial by design in that patient selection strategies are geared 
toward a more specific hypothesis, so alignment of the hypothesis and 
study design with methodology is important to mitigate the inherent 
biases these tools can introduce (88).

Depending on how heterogenous a population is and whether a 
powered trial can be fully accessioned, a prospective, randomized 
controlled trial may not be feasible, cost-effective, or practical. For 
example, the use of pharmacogenomics to guide clopidogrel use is 
complex. Several biotransformation mechanisms are involved in the 
pharmacology of clopidogrel: CPY2C19 (1st step), CYP3A4 (2nd 
step), and CYP2C9 (89), implicating several hundred currently known 
variants of these three pharmacogenes. Clopidogrel is used for a 
number for different cardiovascular indications. Commercial 
genotyping of these pharmacogenes is currently limited to a small 
number of the most prevalent variants in commercially available tests. 
Thus, the RCTs that have been conducted for pharmacogenomic-
guided clopidogrel use are very narrow use cases involving a single 
indication and a limited number of variants. The costs of validating 
each drug-pharmacogene-disease triad permutation of 
pharmacogenomic-guided use of clopidogrel in an RCT across so 
many domains would be prohibitive. The use of real-world clinical 
outcome data from an ECA (e.g., an un genotyped approach) can 
serve as a useful, albeit imperfect, comparator to assess utility of 
pharmacogenomic- guided use of drugs like clopidogrel across many 
domains, however, limited outcome data can itself result in biases (90). 
This is a more pragmatic approach to pilot and assess RCT feasibility 
or as an alternative form of evidence, by enabling the use of existing 
data instead of the costs of enrolling a participating control cohort. 
Pooling data is an approach that has been used confront sample size 
challenges in single health systems but data governance barriers across 
organizational barriers make this approach laborious (49, 51, 52).

There are limitations to the utility of ECAs, that vary depending 
on disease, clinical specialty, and importantly, the outcomes of 
interest. Sometimes, the clinical outcomes measures may not be in 
the EMR or measured with research-robust methodologies, or data 
does not meet GXP (e.g., GCP, GLP, GMP) and CDISC standards for 
use in regulatory filings, in cases where FDA review of the clinical 
study is required. Even in instances where the ECA data comes from 
a clinical trial such as the CRBM model that created digital twins to 
augment the control group (66), data limitations can limit ECA 
cohort size. This challenge is especially acute in rare diseases and 
involving registry data. When using data from an EMR this 
limitation can arise if data access to multiple health systems is 
impractical to obtain. ECAs can be a useful clinical study strategy 
for comparative effectiveness, genomic medicine, and pilot studies 
where regulatory hurdles are less burdensome. Use of an ECA 
requires some capacity to account for and mitigate bias, which 
inherently requires a data set with detailed clinical annotation, in 

addition to the capacity to do subanalysis for age, sex, stage of 
disease and other major determinants of outcomes. Comparisons of 
the ECA to the treatment arm may not be feasible for all clinical 
important clinical outcomes as a result of informatics silos or 
medical practices (5). The entire case-level natural history of disease 
would be an idealized data source (49), but in reality all data sets 
have significant blindspots across time and geography (91). The ECA 
need not be  an alternative to a prospective internal control of 
standard of care (i.e., limited to single arm trials), should a strong 
validation of external validity be justified, which could make sense 
for phase 2 trials used to assess the merit of a phase 3 or label 
expansion program. The FDA provides guidance on the use of 
external control arms in drug and biologic product development (92).

5. Conclusion

Research paradigms are changing, and the pace of change was 
accelerated by the realities of conducting clinical trials during the 
COVID-19 pandemic (93). While control arms within RCTs seek to 
match the demographic and comorbidities of the experimental arm 
cohort, randomization procedures rarely account for socioeconomic 
factors or broader differences in the clinical setting. Important factors 
include the type of healthcare insurance, healthcare delivery system, 
access to care, and regional variations. There is a growing body of 
literature showing that ECAs are a valuable approach to increasing 
efficiency, reducing patient risk, and accounting for social 
determinants of health. Various ECA approaches are necessary to 
help capture RWD in ways that maximize the knowledge gained 
when a study is conducted. Multiple contemporaneous control arms, 
that include the disparate social determinants of health, could 
theoretically be incorporated within a clinical trial to anticipate the 
real- world results of the new therapeutic in Phase IV analysis. More 
than any other type of control arm, contemporaneous ECAs allow a 
granular match with the experimental arm cohort and are likely to 
become a preferred approach in clinical research as data quality and 
annotation improve real-world practice. The production of high 
quality RWD in medical specialties such as pharmacogenomics and 
oncology have great promise to achieve validation and accelerate 
implementation of new innovations that can reduce the costs and 
duration of clinical trials and improve care, while illuminating causes 
of health disparities.
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