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Background: Interbody cage subsidence is a common complication after 
instrumented posterior lumbar fusion surgery, several previous studies have 
shown that cage subsidence is related to multiple factors. But the current 
research has not combined these factors to predict the subsidence, there is a lack 
of an individualized and comprehensive evaluation of the risk of cage subsidence 
following the surgery. So we attempt to identify potential risk factors and develop 
a risk prediction model that can predict the possibility of subsidence by providing 
a Cage Subsidence Score (CSS) after surgery, and evaluate whether machine 
learning-related techniques can effectively predict the subsidence.

Methods: This study reviewed 59 patients who underwent posterior lumbar 
fusion in our hospital from 2014 to 2019. They were divided into a subsidence 
group and a non-subsidence group according to whether the interbody fusion 
cage subsidence occurred during follow-up. Data were collected on the patient, 
including age, sex, cage segment, number of fusion segments, preoperative 
space height, postoperative space height, preoperative L4 lordosis Angle, 
postoperative L4 lordosis Angle, preoperative L5 lordosis Angle, postoperative PT, 
postoperative SS, postoperative PI. The conventional statistical analysis method 
was used to find potential risk factors that can lead to subsidence, then the results 
were incorporated into stepwise regression and machine learning algorithms, 
respectively, to build a model that could predict the subsidence. Finally the 
diagnostic efficiency of prediction is verified.

Results: Univariate analysis showed significant differences in pre−/postoperative 
intervertebral disc height, postoperative L4 segment lordosis, postoperative PT, 
and postoperative SS between the subsidence group and the non-subsidence 
group (p  <  0.05). The CSS was trained by stepwise regression: 2 points for 
postoperative disc height  >  14.68  mm, 3 points for postoperative L4 segment 
lordosis angle >16.91°, and 4 points for postoperative PT  >  22.69°. If the total 
score is larger than 0.5, it is the high-risk subsidence group, while less than 0.5 is 
low-risk. The score obtains the area under the curve (AUC) of 0.857 and 0.806 in 
the development and validation set, respectively. The AUC of the GBM model 
based on the machine learning algorithm to predict the risk in the training set 
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is 0.971 and the validation set is 0.889. The AUC of the avNNet model reached 
0.931 in the training set and 0.868 in the validation set, respectively.

Conclusion: The machine learning algorithm has advantages in some indicators, 
and we have preliminarily established a CSS that can predict the risk of postoperative 
subsidence after lumbar fusion and confirmed the important application prospect 
of machine learning in solving practical clinical problems.

KEYWORDS

spine surgery, fusion, risk factors, prediction model, degenerative disease, cage 
subsidence

1. Introduction

Posterior lumbar interbody fusion is the treatment of lumbar disc 
herniation, lumbar spinal stenosis, and lumbar spondylolisthesis, 
which is the most commonly used surgical procedure (1). Inserting a 
cage to maintain the intervertebral space height is an important step 
in lumbar fusion. But long-term follow-up after surgery shows that the 
intervertebral height may be lost. This can lead to instrumentation 
failure, pseudoarthrosis, kyphotic deformity, adjacent-segment 
disease, and loss of foraminal height, any of which can lead to 
recurrent nerve root impingement and radicular pain (2–4). And 
studies have shown that cage subsidence is associated with 
postoperative revision surgery, and the rate of revision is significantly 
higher in patients with high-grade cage subsidence after fusion, there 
are some studies showed the rate of cage subsidence can reach 38% 
(5–7). Previous clinical studies have shown risk factors of cage 
subsidence (2–5, 8). But currently, it is rare to comprehensively use 
multiple relevant risk factors to predict and analyze the risk of 
subsidence. Also, it is difficult to predict it accurately affected by 
complex risk factors (9–13). The most known used method for 
prediction in clinical practice is the scoring system based on logistic 
regression analysis (14–16). But as a classic statistic model, logistic 
regression-based methods may be insufficient in making full use of 
risk factor information (17–20). The emergence of ML (machine 
learning) has brought a turning point for improving this problem. It 
can detect the details of data features that human cannot, also reflected 
in its ability to efficiently handle complex nonlinear data (21, 22), and 
enable more efficient diagnosis (23).

Machine learning is one kind of computer algorithm, but its high-
speed development recently makes it considered to bring about the 
fourth industrial revolution (24). Such as the widely used face 
recognition technology, which based on the convolutional neural 
network (CNN) algorithm (25, 26). The reality of self-driving cars is 
also highly dependent on deep learning algorithms (27). The most 
exciting thing is that Alpha Go based on the DL algorithm successfully 
beat master in Go chess (28, 29). And this is unimaginable without 
machine learning algorithms, because of the huge search space of Go, 
far beyond the capabilities of traditional methods such as the 
exhaustive method (30, 31). Different from the Deep Blue computer, 
which is also famous for beating humans, the underlying technology 
involved in Alpha Go, namely machine learning technology, is 
extremely versatile and can be extended to many application fields 
(32). Following the breakthrough of the DL in the field of Go, the 
alphafold also based on DL, significantly improved the accuracy of 

protein structure predictions that have been slowly thriving for 
decades (33, 34). So, machine learning has revolutionary value in the 
development of ‘Future Medicine’ (35).

Recently several papers focusing on the application prospects of 
ML technology in the future medical field had published (36, 37). 
Machine learning-related technologies have achieved remarkable 
results in several medical fields. In terms of risk prediction of 
complications, studies by Tomasev (38, 39) show that ML can 
effectively predict the risk of chronic kidney disease with diabetes, 
which facilitates early intervention for patients. It has also shown 
significantly better diagnostic performance than humans in image 
diagnosis: Hannun et al. (40) applied deep networks to ECG data and 
showed that the machine learning-based model can effectively tell 
ECG. But in general, the current attempts to combine medical practice 
with machine learning technology are still insufficient.

Therefore, the purpose of this study is to synthesize multiple risk 
factors to the traditional stepwise regression model and the machine 
learning model, respectively, to establish a scoring system, so as to 
predict the probability of cage subsidence after surgery, and further 
evaluate and compare whether they can effectively predict the risk 
after instrumented posterior lumbar fusion surgery.

2. Materials and methods

2.1. Case data

This study retrospectively collected the medical records and 
imaging data of 59 patients (73 surgical segments) who were admitted 
to the hospital from October 10, 2014, to December 29, 2019. 
Inclusion criteria: (1) Performed posterior lumbar fusion and 
implanted a cage. (2) The follow-up lasted for more than half a year. 
(3) Clinical diagnosis of lumbar disc herniation or lumbar 
spondylolisthesis. Exclusion criteria: (1) Patients with tumors, 
infections, and spinal fractures. (2) Patients with incomplete 
imaging data.

2.2. Imaging measurement methods

To measure the distance and angle of follow-up imaging data, 
respectively, by the Carestream imaging software (Figure  1). The 
height of the disc is defined as the mean of the front and middle and 
posterior intervertebral space. The height at the last follow-up less 
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than 2 mm from 7 days after surgery was defined as cage subsidence 
(41, 42). The spinal and pelvic parameters were also collected: (1) 
Lumbar Segmental Lordosis: the cobb between the lower and upper 
end plate of the surgical segment, (2) Pelvic Incidence (PI): the angle 
between the line drawn from the femoral head axis to the midpoint 
of the sacral plate and the line perpendicular to the sacral plate, (3) 
Pelvic Tilt (PT): the angle between the vertical and the line drawn 
from the femoral head axis to the midpoint of the sacral plate, and 
(4) Sacral Slope: the angle between the sacral plate and the 
horizontal (43).

2.3. Principles of GBM model construction

Gradient boosting machine (GBM), which belongs to boosting 
algorithm, is a machine learning algorithm that can be used to deal 
with regression and classification problems (44). Promote. The simple 
principle of the algorithm can be understood as the establishment of 
many classification models by combining a series of weak, low-cost, 
and complex classifiers (weak learner), which are continuously 
adjusted through each classification, and finally the model is optimized 
(45). Model Averaged Neural Network (avNNet), the neural network 
is a machine learning algorithm that contains three layers (input layer, 
hidden layer, output layer), the hidden layer contains hidden neuron 
nodes, these neurons accept the input layer and output layer 
information at the same time. Initially, the neuron functions of the 
neural network was randomly distributed, but by continuously 

learning the sample features, the neurons constantly modify their 
parameters to achieve an accurate classification performance (46).

2.4. Surgical methods

The patient is placed in a prone position under general anesthesia, 
the surgical segment is positioned by C-arm before the operation, the 
anatomical structures at all levels are exposed in turn, and the pedicle 
screws are drilled and implanted. After the C-arm confirms the 
stability of the screws, choose an appropriate length of titanium rod, 
bend it into a physiological curvature, and lock the nut. Decompress 
and release the nerve root, the intervertebral disc tissue was removed, 
scrape the cartilage terminal plate to the vertebral end plate with a 
curette, and the intervertebral space was flushed. The allogeneic bone 
is taken and wrapped in a cage of suitable size and inserted into the 
intervertebral space. Drainage tubes should be placed, the close the 
wound after confirming that the cage is in a good position 
under fluoroscopy.

2.5. Modeling methods

Firstly, SPSS 21.0 software was used to conduct univariate analysis 
on the suspected cage subsidence-related factors selected in this study. 
The variables with p < 0.05 in the univariate analysis were subjected to 
stepwise regression, and the variables were screened based on the AIC 

FIGURE 1

Diagram of the measurement of imaging data. PI, Pelvic incidence; SS, sacral slope; PT, pelvic tilt.
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principle (47). The selected variables were incorporated into the 
stepwise logistic regression and machine learning models. The code 
implementation involved in this study was done under R version 
4.1.0.1 First, use the install. Packages (“*”) command to complete the 
installation of the integrated machine learning package caret (48), the 
ROC curve drawing package pROC (49). And use the 
createDataPartition command and follow 0. 75: 0.25 scale the original 
data set into a training set and a validation set. Then use the training 
command in the caret package (48) to train the model for statistically 
different variables (as described in the Results section) in the training 
set, use the glm function to build a logistic regression model, and 
finally use the trained model to train the training set. And the 
validation set is predicted (predict command), and the confusion 
matrix command is used to obtain the confusion matrix of the 
predicted results, as well as the specificity, sensitivity, F1 value and 
other indicators. The receiver operating curve (ROC) is drawn by the 
pROC package (49), and the core modeling code is shown in 
Supplementary material.

2.6. Statistical methods

It is statistically significant to use the t-test to test the difference 
between the sedimentation group and the non-sedimentation group, 
and if the variance was uneven, the Mann–Whitney U test was used. 
The results were expressed as mean ± standard deviation, and the 
counting data were expressed as frequency. The Chi-square test or 
Fisher’s precision test was used to test whether the frequency 
difference between groups was statistically significant, and p < 0.05 was 
used as the threshold for statistical significance.

The work has been reported in line with the STARD criteria (50).

3. Results

3.1. Basic information

The research process is shown in Figure 2. The basic information 
about the patients is shown in Table 1. There are 30 surgical segments 
from men and 43 from women, of which 39 are in the subsidence 
group, and 34 are in the non-subsidence group. The incidence rate was 
53.42%, and there was no significant statistical difference between the 
subsidence group and the non-subsidence group in the basic 
characteristics (age, gender) of the patients (age: p = 0.982, gender: 
p = 0.643).

In terms of surgical segments, a total of 37 L5-S1 and 36 L4-L5 
fusion segments were collected, of which the fusion subsidence rate of 
the L5-S1 segment was 62.16%, and the subsidence rate of the L4-L5 
segment was 44.44%. There was no significant difference in the 
sedimentation rate between the two segments (p = 0.129). Among the 
collected cases, 39 cases were single-segment fusion, and 34 were 
double-segment fusion. The difference was not statistically significant 
(61.54% vs. 44.12%, p = 0.137).

As shown in Table 1, compared with the non-subsidence group, 
the subsidence group had statistically significant differences in 

1 https://cran.r-project.org/

preoperative/postoperative intervertebral space height, postoperative 
L4 segment lordosis angle, and postoperative PT and SS variables. 
Compared with the non-subsidence group, the subsidence group had 
higher preoperative/postoperative intervertebral space height 
(11.68 ± 2.71 vs. 9.28 ± 3.42 preoperatively, 15.92 ± 2.92 vs. 13.22 ± 3.07 
postoperatively, p < 0.001), indicating that patients with higher 
preoperative intervertebral space height, excessive intraoperative 
distraction, and inappropriate cage size may be  risk factors for 
postoperative cage subsidence.

In terms of postoperative lumbar spine angle, the postoperative 
L4 segment lordosis of the subsidence group was significantly higher 
than that of the non-subsidence group (12.97 ± 5.4 vs. 10.47 ± 5.03, 
p = 0.045), and this indicator did not achieve a statistically significant 
difference in preoperative measurements (10.88 ± 5.2 8 vs. 9.19 ± 5.23, 
p = 0.175), suggesting that the effect of surgery on the patient’s lumbar 
curvature (such as the angle of bar bending) may be a risk factor for 
postoperative sedimentation.

In terms of pelvic parameters, patients in the subsidence group 
have a smaller Pelvic Tilt (PT) compared to the non-subsidence group 
(21.74 ± 8.28 and 26.36 ± 8.82, p = 0.024) and larger Sacral Slope (SS) 
(38.16 ± 8.53 and 33.99 ± 8.47, p = 0.04), but there was no statistical 
difference in Pelvic Incidence angle (Pelvic Incidence, PI) 
(59.89 ± 11.69 and 60.36 ± 12.29, p = 0.87).

3.2. Sedimentation risk score based on 
stepwise logistic regression

Combining clinical experience and univariate analysis results, 
we included preoperative/postoperative intervertebral space height, 
postoperative L4 lordosis angle, postoperative PT and postoperative 
SS variables, using the step (model, direction = ‘both’) command, 

A total of 13,223 cases were screened with the keywords '

instrumented posterior spinal fusion surgery' ‘cage’

59 patients were screened according to the inclusion and 

exclusion criteria

Differences exists between subsidence group and 

non-subsidence group in univariate analysis

To build GBM and logistic regression models to predict the 

disease respectively

FIGURE 2

Research design.
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based on The Akaike information criterion (AIC) (47) and the 
forward-backward stepwise regression method (51) are used to 
initially screen the above variables. The AIC criterion was founded by 
Akaike Hiroji, a variable screening method based on the concept of 
information entropy to balance model complexity and goodness of fit 
(47). The results are shown in Table  2, since the p-value of the 
preoperative intervertebral space height and the postoperative SS 
factor is greater than 0.05 under AIC optimization, we ruled out these 
factors and carried out secondary modeling. As shown in Table 3, 
postoperative PT is an independent protective factor for cage 
subsidence, while postoperative L4 lordosis angle and postoperative 
intervertebral space height are independent risk factors for cage 
subsidence. Patients with lower postoperative PT, higher postoperative 
L4 lordosis angle, and higher postoperative intervertebral space height 

had a higher risk of cage subsidence, and the forest map of influencing 
factors of cage subsidence is shown in Figure 3.

To further construct a cage subsidence score (CSS) that is 
convenient for clinical use, as shown in Table 4, based on the OR value 
of the above regression analysis, we  assigned 2 points for the 
postoperative intervertebral space height, 3 points for postoperative 
L4 lordosis angle and −4 points for postoperative PT. The total score 
ranges from −4 to 5.

To determine the reasonable cut-off value for each risk factor, 
we performed ROC curve analysis on postoperative PT, postoperative 
L4 lordosis angle, and postoperative intervertebral space height, 
respectively. The results are shown in Figure  4. The AUC of 
postoperative PT is 0.640 (0.490–0.791) and postoperative L4 lordosis 
angle AUC is 0.617 (0.467–0.766), and postoperative intervertebral 

TABLE 1 Single factor analysis results (x s± ).

Characteristics Subsidence group 
(n  =  39)

Non-subsidence 
group (n  =  34) t/ x2

-value
Value of p

Age 52.57±16.24 53.82 ±13 39. 0.023 0.982

Gender

Male 17 13

Female 22 21 0.215 0.643

Segment of cage insertion (n)

L4-L5 16 20

L5-S1 23 14 2.302 0.129

Fusion segments (n)

One 24 15

Two

Preoperative intervertebral space 

height (mm)

15

11.68 ± 2.71 19 2.215 0.137

9.28 ± 3.42 −3.343 0.001

Postoperative intervertebral space 

height (mm)

15.92 ± 2.92 13.22 ± 3.07 −3.848 <0.001

Preoperative L4 lordosis (°) 10.88 ± 5.28 9.19 ± 5.23 −1.37 0.175

Preoperative L5 lordosis (°) 18.54 ± 6.44 17.68 ± 7.94 −0.513 0.61

Postoperative L4 lordosis (°) 12.97 ± 5.4 10.47 ± 5.03 −2.042 0.045

Postoperative L5 lordosis (°) 19.8 ± 5.12 18.64 ± 6.25 −0.865 0.39

Postoperative PT (°) 21.74 ± 8.28 26.36 ± 8.82 2.309 0.024

Postoperative SS (°) 38.16 ± 8.53 33.99 ± 8.47 −2.088 0.04

Postoperative PI (°) 59.89 ± 11.69 60.36 ± 12.29 0.165 0.87

The bold values are provided in  statistical significance.

TABLE 2 First stepwise regression results.

Factors Regression coefficients OR 95%CI z-value Value of p

Preoperative dis height −0.052 0.95 0.699–1.291 −0.33 0.741

Postoperative dis height −0.494 0.61 0.394–0.944 −2.218 0.027

Postoperative L4 lordosis −0.21 0.811 0.69–0.951 −2.568 0.01

Postoperative PT 0.131 1.139 1.032–1.258 2.58 0.01

Postoperative SS −0.074 0.929 0.848–1.017 −1.589 0.112

The bold values are provided in statistical significance.
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space height AUC is 0.751 (0.621–0.862). These results indicate that 
these factors can independently predict the risk of cage subsidence in 
patients to a certain extent, but their predictive accuracy is not ideal. 
Finally, the optimal cut-off value for risk factors is determined 
according to the ROC curve shown in Figure 4 and Table 4, namely, 2 
points for postoperative intervertebral space height > 14.68, and 3 
points for postoperative L4 lordosis angle >16.91 and postoperative 
PT > 22.69 was assigned −4 points.

Further predictive performance tests show that the scoring model 
could more accurately predict the risk of postoperative cage subsidence 
in patients. As shown in Figure 5 and Table 5, the AUC of the CSS score 
in the training set is 0.857, the sensitivity is 0.923, the specificity is 0.633, 
the positive predictive value was 0.686, the negative predictive value was 
0.905, and the F1 value is 0.787. In the validation set, its AUC is 0.806, the 
sensitivity is 0.875, the specificity is 0.556, the positive predictive value is 
0.636, the negative predictive value is 0.833, and the F1 value is 0.737. 
According to Figure 5A, when the score cutoff value is set to 0.5, it has the 
best prediction performance, so the subsidence risk is considered to 
be high (overall rate: 88.89%) when the total score is greater than 0.5, and 
is considered to be  low (32.61%) when it is less than 0.5. And the 
calibration curves of the CSS illustrated consistency between the observed 
and predicted results (Figure 5C). As shown in Figure 5D, decision curve 
analysis (DCA) curve indicated that the CSS can serve as a precise tool for 
subsidence assessment.

3.3. Comparison of machine learning 
model and CSS scoring performance

Further, we use the caret package to build the risk prediction 
model of the Gradient Boosting Machine (GBM) and the Model 

Averaged Neural Network (avNNet). Our results show that both 
GBM-based and avNNet-based risk assessment models can achieve 
accurate subsidence risk prediction. As shown in Tables 6, 7 and 
Figures 6, 7, the AUC of the GBM model in the training set and the 
validation set are 0.971 (0.937–1.000) and 0.889 (0.733–1.000) 
respectively, and 0.931 (0.861–1.000), 0.868 (0.687–1.000) in the 
avNNet model which is all larger than the performance of CSS scores 
(Table 5, training set: 0.857, validation set: 0.806), where the Delong 
test indicates that the AUC increment of the GBM model in the 
training set is statistically significant compared with the CSS score 
(p = 0.004).

As shown in the analysis of the ROC curve in Figures 6A, 7A, the 
prediction score of the GBM model >0.497 and c > 0.650 are 
considered to have a higher risk of subsidence, which belongs to the 
high-risk subsidence group. At this optimal cutoff value (Tables 5, 6), 
the sensitivity of the GBM model training set is 0.885, specificity 
0.933, positive predictive value 0.920, negative predictive value 0.903, 
and F1 value 0.902. The sensitivity of the validation set is 0.750, 
specificity 0.778, positive predictive value 0.750, negative predictive 
value 0.778, and F1 value 0.750. The training set sensitivity of the 
avNNet model is 0.885, specificity 0.900, positive predictive value 
0.885, negative predictive value 0.900, and F1 value 0.885. The 
sensitivity of the validation set is 0.875, specificity 0.778, positive 
predictive value 0.778, negative predictive value 0.875, and F1 value 
0.824. The calibration curves of the GBM and the avNNet both 
illustrated consistency between the observed and predicted results 
(Figures 6C, 7C). As shown in Figures 6D, 7D, DCAs were performed 
and the results proved that they both can serve as an effective tool for 
prediction. And the Delong test indicates that the AUC of the GBM 
model is no statistically significant compared with the avNNet model 
(P > 0.05).

TABLE 3 Regression results after excluding nonsignificant factors.

Factors Regression coefficients OR 95%CI z-Value Value of p

Postoperative dis height −0.522 0.593 0.412–0.855 −2.804 0.005

Postoperative L4 lordosis −0.223 0.8 0.682–0.94 −2.711 0.007

Postoperative PT 0.137 1.147 1.039–1.266 2.725 0.006

The bold values are provided in statistical significance.

FIGURE 3

The forest map of influencing factors.
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These results suggest that, under certain circumstances, machine 
learning-based prediction methods are expected to be more accurate 
in predicting the risk of subsidence in post-fusion patients than 
scoring tables based on logistic regression analysis.

4. Discussion

Cage subsidence is a common clinical complication after spinal 
fusion surgery, Tempel et al. believe (52) that cage subsidence can 
be used as a predictor of postoperative revision, and patients with 
high-grade cage subsidence had significantly higher rates of 
postoperative revision compared with patients with low-grade cage 
subsidence. This suggests that cage subsidence is closely related to the 
postoperative prognosis. Therefore, it is necessary to identify the risk 
factors related to the occurrence of cage subsidence in patients after 
interbody fusion, to conduct a more accurate assessment of the risk of 
postoperative complications in patients before surgery, and to take 
effective plans to prevent the occurrence of postoperative 
cage subsidence.

However, even though multiple previous studies have identified 
lots of risk factors associated with postoperative cage subsidence, such 
as postoperative intervertebral space height (53), the number of 
surgical segments (54), and sagittal spine-pelvic balance (55), 
suggesting that that the subsidence of the cage is determined by 
multiple risk factors. However, due to the lack of means for joint 
assessment of multiple comprehensive factors, previous risk factor 
studies could not accurately determine the risk of subsidence in 
patients, which hindered the identification of patients with a high risk 

of subsidence and reduced the practical clinical application value of 
relevant research. In this study, machine learning and a logistic 
regression model are used to predict the postoperative subsidence risk 
of patients by combining multiple risk factors. It helps to identify 
patients with a high risk of subsidence, to realize the early detection 
and prevention of interbody cage subsidence, and reduce the incidence 
of postoperative complications. Further research and verification will 
promote “intelligent medicine” and “precision medicine” in spinal 
surgery at home and abroad.

In this study, univariate analysis showed that preoperative/
postoperative vertebral space height, postoperative L4 lordosis angle, 
postoperative PT and postoperative SS had significant statistical 
differences. These 5 significant variables were included in stepwise 
regression analysis, and based on AIC criterion, it was concluded that 
postoperative PT, postoperative L4 lordosis angle and postoperative 
vertebral space height were independent predictors, with OR values 
of 1.147, 0.8, and 0.593, respectively. As is known to all, when the OR 
value is greater than 1, this variable can be regarded as a contributing 
factor to the outcome, and the outcome index we set is no subsidence. 
In other words, the risk of cage subsidence will decrease when PT 
increases within a certain range. However, when the OR value was in 
the range of 0 to 1, this variable could be regarded as an obstacle to the 
occurrence of outcome, that is, larger postoperative L4 lordosis angle 
and postoperative vertebral space height would increase the 
probability of subsidence.

Postoperative PT, postoperative L4 lordosis angle and 
postoperative vertebral space height were analyzed by ROC curve, and 
the AUC of postoperative vertebral space height was the largest, which 
was 0.751, indicating that it had the most predictive effect in this 
study. With regard to the height of the postoperative intervertebral 
space, Yang et al. (56) pointed out that the excessive extension of the 
intervertebral space could lead to the subsidence of the fusion cage, 
Le et al. and Malham et al. recommended the use of a cage with a 
height of 8 ~ 12 mm in lumbar intervertebral fusion (57, 58). In our 
study, the cage height used was also 8 ~ 12 mm, and the average height 
of the postoperative intervertebral space in the subsidence group was 
(15.92 ± 2.92) mm, higher than the maximum height of the fusion cage 
used 12 mm, indicating the existence of postoperative overextension 
of the intervertebral space. Due to the biomechanical imbalance 

TABLE 4 Cage subsidence risk scoring table.

Factors Cutoff value OR Scores

Postoperative dis 

height

>14.68 0.593 2

Postoperative L4 

lordosis

>16.91 0.8 3

Postoperative PT >22.69 1.147 −4

FIGURE 4

ROC curve of subsidence-related risk factors. (A: Postoperative PT; B: Postoperative L4 lordosis; C: Postoperative dis height).
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during compression during surgery, the L4 lordosis angle in the 
subsidence group was larger than that in the non-subsidence group, 
and the difference was statistically significant, which further indicated 

that there was overextension or insufficient anterior compression in 
the vertebral space. We further hypothesized that it was the injury to 
the endplate during intraoperative cage placement. On the one hand, 

FIGURE 5

CSS (A: training set, B: validation set, C: calibration curve, D: decision curve analysis).

TABLE 5 Prediction efficiency of settlement risk score CSS in the training 
set and verification set.

Evaluation 
indicators

Training set Validation set

AUC 0.857 0.806

Sensitivity 0.923 0.875

Specificity 0.633 0.556

Positive predictive value 0.686 0.636

Negative predictive value 0.905 0.833

F1 value 0.787 0.737

TABLE 6 Comparison of parameters of a prediction model in the training 
set (n  =  56).

Evaluation 
indicators

GBM model avNNet model

AUC 0.971 0.931

Sensitivity 0.885 0.885

Specificity 0.933 0.9

Positive predictive value 0.92 0.885

Negative predictive value 0.903 0.9

F1 value 0.902 0.885
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based on the anatomical basis that the lumbar anterior intervertebral 
disc height is higher than the posterior intervertebral disc height, it is 
difficult to implant a cage with a forward angle from the rear. 

Therefore, more intervertebral space is extended, and the posterior 
endplate will always bear greater stress during the implantation of the 
intervertebral fusion device, which is easy to cause posterior endplate 
injury and increase the risk of the fusion device subsidence. On the 
other hand, during intraoperative intervertebral compression, the 
posterior intervertebral space is subjected to more compression force 
than the anterior intervertebral space, which may lead to insufficient 
compression force in the overstretched anterior intervertebral space, 
resulting in reduced contact area and stress concentration between the 
cage and the endplate, increasing the risk of fusion cage subsidence. 
Therefore, we  suggest that the height of the intervertebral space 
be measured before surgery to avoid the subsidence caused by blind 
over-extension during surgery. Intraoperative fusion device 
implantation should be performed on the decompression side first, 
and then on the non-decompression side to facilitate implantation. 
Choose a cage with appropriate specifications. Do not forcibly place 

TABLE 7 Comparison of various parameters of the prediction model in 
the validation set (n  =  17).

Evaluation 
indicators

GBM model avNNet model

AUC 0.889 0.868

Sensitivity 0.75 0.875

Specificity 0.778 0.778

Positive predictive value 0.75 0.778

Negative predictive value 0.778 0.875

F1 value 0.75 0.824

FIGURE 6

GBM model (A: training set, B: validation set, C: calibration curve, D: decision curve analysis).
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the fusion device to avoid damaging the upper and lower bony end 
plates of the rear space. After implantation of the cage, the 
decompression side should be  pressurized first and the 
non-decompression side should be pressurized again to ensure that 
the fusion device is not loose or displaced. However, excessive pressure 
should not be applied to avoid the concentration of compressive stress 
in the rear due to insufficient pressure in the front clearance.

With increasing attention to patient-related outcomes, there is 
increasing evidence that appropriate sagittal alignment during lumbar 
fusion improves outcomes. In our research results, postoperative PT in 
the sedimentation group was significantly smaller than that in the 
non-sedimentation group, and postoperative L4 lordosis in the 
subsidence group was significantly larger than that in the non- 
subsidence group. In the normal lumbar spine, where the pelvic 
morphology is associated with varying degrees of lordosis. Excessive 

intraoperative pressure can result in a larger lordosis angle, and the larger 
the lordosis Angle, due to the need for sagittal balance, the body tilts the 
pelvis backward to reduce the PT to maintain balance. As mentioned 
above, excessive pressure is often associated with endplate injury, which 
increases the risk of postoperative subsidence. According to our ROC 
analysis of postoperative L4 lordosis Angle, the probability of subsidence 
in this study will increase significantly when the postoperative L4 
lordosis Angle is >16.91°. Therefore, we suggest that clinicians should 
pay more attention to the rod bending angle during surgery, and should 
not over-correct the lordosis to increase the risk of subsidence.

The main innovation of this study is reflected in the synthesis of 
previous studies on the risk factors related to cage subsidence and a 
method for comprehensively evaluating the risk of cage subsidence 
was established based on machine learning and a logistic 
regression algorithm.

FIGURE 7

avNNet model (A: training set, B: validation set, C: calibration curve, D: decision curve analysis).
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There are certain limitations in this article: this is a retrospective 
study and the evidence is not as strong as in prospective cohort 
studies. Cage subsidence after lumbar interbody fusion is related to 
many factors. BMI, body function, osteoporosis, etc., due to the long 
case history and lack of clinical data of patients, the above indexes 
could not be obtained. Moreover, the sample size of this study was 
small. We will include those additional indicators in future studies to 
obtain more reliable results. This study only proves that both machine 
learning and CSS score can effectively predict the risk of cage 
settlement after surgery, and preliminarily suggests that the prediction 
model based on machine learning may have advantages in some 
indicators. However, it is only a single center study and need an 
external validation in the future.

5. Conclusion

Overall, the results of this paper show that both machine learning 
and CSS scores can accurately predict the risk of postoperative cage 
subsidence. Under specific circumstances, the machine learning 
algorithm is able to achieve a more accurate postoperative risk 
assessment. These results preliminarily confirm the application value 
of machine learning in solving practical clinical problems and provide 
a convenient CSS risk score for the risk assessment of cage subsidence 
after interbody fusion as well. These results will provide preliminary 
application experience for the future organic combination of precision 
medicine, intelligent medicine, and surgical practice.
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