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Aim: To construct and validate a risk prediction model for the development of 
peritoneal dialysis-associated peritonitis (PDAP) in patients undergoing peritoneal 
dialysis (PD).

Methods: This retrospective analysis included patients undergoing PD at the 
Department of Nephrology, the First Affiliated Hospital of Anhui University of 
Chinese Medicine, between January 2016 and January 2021. Baseline data were 
collected. The primary study endpoint was PDAP occurrence. Patients were 
divided into a training cohort (n  =  264) and a validation cohort (n  =  112) for model 
building and validation. Least Absolute Shrinkage and Selection Operator (LASSO) 
regression was applied to optimize the screening variables. Predictive models 
were developed using multifactorial logistic regression analysis with column line 
plots. Receiver operating characteristic (ROC) curves, calibration curves, and 
Hosmer-Lemeshow goodness-of-fit tests were used to verify and evaluate the 
discrimination and calibration of the prediction models. Decision curve analysis 
(DCA) was used to assess the clinical validity of the prediction models.

Results: Five potential predictors of PDAP after PD catheterization were screened 
using LASSO regression analysis, including neutrophil-to-lymphocyte ratio (NLR), 
serum ALBumin (ALB), uric acid (UA), high sensitivity C-reactive protein (hsCRP), 
and diabetes mellitus (DM). Predictive models were developed by multi-factor 
logistic regression analysis and plotted in columns. The area under the ROC curve 
(AUC) values were 0.891 (95% confidence interval [CI]: 0.829–0.844) and 0.882 
(95% CI: 0.722–0.957) for the training and validation cohorts, respectively. The 
Hosmer-Lemeshow test showed a good fit (p  =  0.829 for the training cohort; 
p  =  0.602 for the validation cohort). The DCA curves indicated that the threshold 
probabilities for the training and validation cohorts were 4–64% and 3–90%, 
respectively, predicting a good net gain for the clinical model.

Conclusion: NLR, ALB, UA, hsCRP, and DM are independent predictors of PDAP 
after PD catheterization. The column line graph model constructed based on the 
abovementioned factors has good discriminatory and calibrating ability and helps 
to predict the risk of PDAP after PD catheterization.
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Introduction

Chronic kidney disease (CKD) has become a public health 
problem, affecting more than 10% of the global population (1). 
Peritoneal dialysis (PD) is an effective treatment for CKD (2). 
Peritoneal dialysis-associated peritonitis (PDAP) in patients with 
end-stage renal disease (ESRD) is one of the major complications of 
PD and can significantly increase the hospitalization and mortality 
rates of PD patients. Severe and prolonged PDAP may lead to 
peritoneal membrane failure and even death (3, 4). The incidence of 
PDAP in PD patients has been reported to vary widely by region, 
ranging from 11 to 73% (5).

Several risk factors of PDAP infection are present after PD 
catheterization in patients with CKD stage 5; however, the magnitude 
of the risk associated with each factor is unknown. A prediction model 
may be developed to determine the 1-year risk of PDAP before the 
insertion of the PD catheter. Such a model may be used to determine 
a measure of early treatment response that can improve the prognosis. 
Several investigators, including those from China and abroad, have 
explored the treatment outcomes for PDAP patients and have built 
visual prediction models (6–8). However, some factors in the 
aforementioned prediction models cannot be  determined 
preoperatively, limiting their clinical application. Because of the 
possible associated adverse outcomes with PDAP, early detection of 
the PDAP risk is needed in clinical practice. Therefore, preoperative 
exploration of PDAP risk factors and targeted strategies to reduce the 
PDAP risk are essential for PD patients.

The aims of this study were to construct a clinical prediction 
model, visualize the model using column line plots, and finally 
validate it externally to provide individualized treatment plans for 
patients based on their 1-year PDAP risk.

Materials and methods

Study population

In this study, 376 patients admitted to Department of Nephrology, 
the First Affiliated Hospital of Anhui University of Chinese Medicine, 
with CKD stage 5 who underwent PD catheterization between January 
2016 and January 2021 were selected. The study population was 
randomly split into a training cohort (n = 264) and a validation cohort 
(n  = 112) at a ratio of 7:3 to establish and validate the prediction 
model. PDAP was diagnosed using the 2016 International Society of 
Peritoneal Dialysis (ISPD) guidelines for the treatment of peritonitis. 
The diagnosis of PDAP requires at least two of the following three 
items, confirmed by two physicians independently: abdominal pain 
or cloudy peritoneal fluid with or without fever; peritoneal fluid 
leukocyte count >0.1 × 109/L and percentage of polymorphonuclear 
cells >50% (duration of abdominal stay ≥2 h); and positive 
microbiological culture of the permeate (9). The following patients 
were excluded from the study: (1) those with incomplete medical 
records, (2) those under the age of 18, (3) those whose dialysis effluent 
was not cultured, (4) those on immunosuppressant therapy, and (5) 
those with fungal or tuberculous peritonitis. The study was conducted 
in accordance with the principles contained in the Declaration of 
Helsinki and its subsequent amendments, and was approved by the 
ethics committee of the First Affiliated Hospital of Anhui University 

of Traditional Chinese Medicine (approval no.: 2021AH-73). All 
patients have signed the informed consent.

Data collection

We recorded the clinical information (sex, age, education, and 
comorbidities) and laboratory parameters, including serum white 
blood cell (WBC) count, red blood cell (RBC) count, hemoglobin 
(Hb), platelet (PLA), neutrophil-lymphocyte ratio (NLR), RBC 
distribution width (RDW), alanine transaminase (ALT), aspartate 
transaminase (AST), serum preALBumin (PA), serum total protein 
(TP), serum ALBumin (ALB), blood urea nitrogen (BUN), serum 
creatinine (Scr), uric acid (UA), cystatin C (CysC), glucose, 
triglycerides (TG), total cholesterol (TC), high-sensitivity C-reactive 
protein (hsCRP), serum sodium, serum potassium, ALBumin-
corrected serum calcium, serum phosphorus, blood magnesium, 
blood total carbon dioxide (TCO2), ALBumin-to-creatinine ratio 
(ACR), urinary total protein-to-creatinine ratio (TCR), and 24-h urine 
protein. All data were collected at admission. The study outcomes 
included the development of PDAP within 1 year of initiation of PD 
and was assigned a value of 0 (no PDAP) or 1 (PDAP).

Sample size

The effective sample size in a prediction study is determined on 
the basis of the number of outcome events, i.e., at least 10 outcome 
events per variable (EPV) to ensure accuracy (10). To allow for five or 
fewer predictors in the final multivariate logistic regression model, a 
predicted training cohort of ≥250 patients was required. Our sample 
size and the number of outcome events exceeded those determined by 
the EPV method, suggesting that our predictions are reliable.

Statistical analysis

In this study, missing data with a deletion rate greater than 20% 
were excluded. Imputation for missing data was considered if missing 
data were less than 20% (11, 12). Continuous variables conforming to 
normal distribution were expressed using x±SD and compared 
between two groups using independent samples t-test. Non-normally 
distributed data were expressed using median with interquartile range 
(IQR) and were compared between groups using Wilcoxon test. 
Categorical data were expressed using composition ratio and 
compared between groups using χ2 test. Least Absolute Shrinkage and 
Selection Operator (LASSO) regression was used to screen for the risk 
factors. Variables included in the model were screened using the 
Akaike information criterion minimum principle (13). The optimal 
parameter (λ) in the LASSO model was selected based on the 
minimum criteria using 10-fold cross-validation with partial 
likelihood deviation on the Y-axis, log(λ) on the X-axis, Lambda.min 
and lambda1SE plotted as dashed vertical lines at the optimal values, 
and lambda1SE as the model optimal value. Based on the 
individualized prediction model of PD outcomes, a nomogram was 
constructed. According to the importance of the influence of the 
prediction variable on the outcome variable, different values were 
assigned to each of the pre-measured variables, and then the values of 
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each prediction variable were summed, and then the probability of the 
outcome event was calculated by the function transformation between 
the summation value and the probability of the outcome event.

In this study, the prediction model was evaluated in terms of three 
main aspects: discrimination, calibration, and net clinical benefit. The 
area under curve (AUC) of the receiver operating characteristic 
(ROC) curve was used to assess discrimination. The discrimination 
of the prediction model refers to its ability to distinguish 
between patients receiving PD who did and did not experience 
PDAP. Calibration curves and Hosmer-Lemeshow goodness-of-fit 
tests were used to assess calibration. The calibration of the prediction 
model was defined as the agreement between the predicted and 
observed probabilities. Decision curve analysis (DCA) was used to 
assess the clinical utility. DCA is a method for evaluating the clinical 
usefulness of a prediction model by comparing the net benefit of 
making clinical decisions based on the model with the net benefit of 
making decisions based on other strategies. In our study, we performed 
DCA to evaluate the clinical applicability of the nomogram 
we  developed for predicting the risk of developing PDAP in PD 
patients. Bootstrap method was used to repeatedly sample 1,000 times 
for internal validation of the model. Continuous variables were 
interpolated with mean for data with normal distribution, median for 
data with skewed distribution, and plural for categorical variables.

Statistical analysis was performed using SPSS (version 26.0; IBM 
Corp., Armonk, NY, USA) and R (version 4.1.3; R Foundation for 
Statistical Computing) software. Two-tailed p < 0.05 indicated that the 
differences were statistically significant.

Results

Comparison of basic characteristics of 
patients in the training and validation 
cohorts

In total, 421 patients with CKD who underwent their first PD 
catheterization between January 2016 and January 2022 were 
identified. Of them, 376 PD patients with 1-year follow-up were 
screened and included in the final analysis: 264 (70.2%) patients were 
assigned to the training cohort and 112 (29.8%) to the validation 
cohort (Figure 1). There was no statistically significant difference in 
between the training and validation cohorts in terms of demographic 
characteristics, laboratory parameters, and comorbidities (all p > 0.05). 
Age, WBC, RBC, Hb, PLA, NLR, RDW, ALT, AST, PA, TP, BUN, Scr, 
UA, CysC, glucose, TG, TC, hsCRP, serum sodium, serum potassium, 
ALBumin-corrected serum calcium, serum phosphorus, serum 
magnesium, TCO2, ACR, TCR, and 24-h urine protein values were not 
distributed normally. Therefore, the median values of the 
aforementioned parameters were used as the cut-off to transform 
them into dichotomous variables. ALB level was grouped according 
to professional significance. The other independent variables were 
defined as categorical variables for analysis (Table 1).

LASSO regression for screening variables

Based on the clinical information, laboratory parameters, and 
prognosis of patients in the training cohort, dimensionality reduction 

was performed for the 34 variables by LASSO regression. Thus, the 
five most representative predictor variables were identified (Figure 2). 
The screened predictors included NLR, ALB, UA, hsCRP, and diabetes 
mellitus (DM).

Construction of a clinical prediction model 
and column line plot

A multifactorial logistic regression prediction model was 
constructed using the development of PDAP in PD patients in the 
hospital and within 1 year after discharge as the dependent variable 
(not having PDAP = 0; having PDAP = 1). Five predictor variables were 
screened using LASSO regression analysis as independent variables 
(assigned values shown in Figure 2). The results showed that NLR, 
ALB, UA, hsCRP, and DM were risk factors of PDAP (Table 2). A 
column line graph, nomogram, was drawn using the predictor 
variables (Figure 3). The column line plot allows visualization of the 
corresponding numerical score for each variable. By adding the 
numerical scores and calculating the total score on all scales, a vertical 
straight line can be drawn to determine the probability of PDAP in a 
particular patient. Based on the predicted probabilities, the patient is 
at low risk of having PDAP. This calculated value can be used for 
treatment planning and patient counseling.

Internal validation of the nomogram

After 1,000 internal validation calibrations by Bootstrap method, 
its predicted risk profile of PDAP occurrence and the actual clinical 
risk profile of PDAP occurrence are still in good agreement (Figure 4).

Validation and clinical utility of predictive 
models

This study evaluated the prediction model in terms of 
discrimination, calibration, and net clinical benefit, which showed 
good accuracy for the prediction of the probability of having PDAP in 
PD patients with a C-index of 0.891 (95% confidence interval [CI]: 0. 
0.829–0.844) for the training cohort and 0.882 (95% CI: 0.722–0.957) 
for the validation cohort (Figures 5A,B). Meanwhile, the Hosmer-
Lemeshow test chi-square statistic showed that the calibration ability 
of the model was 5.06 (p = 0.829) for the training cohort and 7.34 
(p = 0.602) for the validation cohort. The calibration curves showed a 
good fit for the training and validation cohorts, indicating that the 
predicted probability of PDAP within 1 year of PD initiation and the 
actual rate showed a good agreement (Figures 5C,D). The clinical 
decision curves for the training and validation cohorts showed a good 
net benefit (Figures 6A,B). The threshold probabilities, plotted on the 
x-axis, represent the range of appropriate risk probabilities (identified 
beforehand) at which a model could guide treatment when compared 
to the default strategies of “treatment for all” and “treatment for 
no-one.” When the 1-year PDAP risk was predicted using the column 
line plot, the net benefit of using the column line plot was significantly 
higher than those for “no intervention” and “full intervention” cohorts 
when the threshold probabilities for the training and validation 
cohorts were 4–64% and 3–90%, respectively, suggesting the clinical 
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applicability of the lineage map. For our study, we aimed to determine 
appropriate thresholds that could be used to determine preventive 
treatment for PDAP. Treatment can refer to a variety of measures, 

including further examination or the initiation of targeted therapy. 
These data suggest that our line graphs are useful for clinical 
decision making.

FIGURE 1

Flow chart of patient inclusion.
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Discussion

Previous studies have mainly focused on disease etiology and 
treatment rather than on the development of prognostic methods, 
such as clinical prediction models. Many studies have explored 

whether a single variable (such as a biomarker or a new clinical 
biochemical parameter) can predict or correlate with certain 
outcomes, whereas building clinical prediction models by 
incorporating multiple variables is relatively complex. Nevertheless, 
clinical predictive models have been developed in recent years for 

TABLE 1 Clinical characteristics of the study population.

Index Training dataset
(264 episodes)

Validation dataset
(112 episodes)

p value

Demographic characteristics

Age (year) 54 (45,66) 51.5 (44.25, 64) 0.784

Education degree

Primary school and below, n (%) 92 (34.8) 41 (36.6) 0.474

Above primary school, n (%) 172 (65.2) 71 (63.4) 0.354

Sex (male, n, %) 135 (51.1) 66 (58.9) 0.714

Laboratory examination

WBC (109/L) 6.11 (4.92, 7.49) 5.34 (4.22, 7.25) 0.206

RBC (1012/L) 2.72 (2.27, 3.21) 2.81 (2.53, 3.06) 0.650

Hemoglobin (g/L) 81 (67,95) 81 (72.25, 93.25) 0.742

Platelet (109/L) 149.50 (113.25, 200.75) 133.00 (90.75, 201.25) 0.242

NLR 3.74 (2.37, 5.47) 3.47 (2.06. 5.26) 0.143

RDW-SD (fL) 44.65 (39.63, 48.97) 43.90 (38.95, 49.93) 0.449

ALT (U/L) 11 (8, 18.75) 13.5 (8.0, 20.25) 0.948

AST (U/L) 15 (13, 20) 15 (12.75, 21.00) 0.598

PreALBumin (mg/L) 291 (226.25, 329.00) 284 (234, 345.75) 0.904

Total protein (g/L) 59.45 (53.18, 65.07) 57.3 (50.28, 62.78) 0.552

Serum ALBumin (g/L) 34.6 (31.0, 37.8) 32.8 (30.13, 36.78) 0.674

Blood urea nitrogen (mmol/L) 32.63 (26.59, 40.47) 29.71 (21.98, 40.75) 0.871

Serum creatinine (μM) 821.55 (674.53,1000.30) 751.95 (511, 857.85) 0.408

Uric acid (μM) 477 (389.25, 564.75) 453.5 (379.5, 549.5) 0.121

Cystatin C (mg/L) 5.36 (4.65, 6.29) 5.32 (4.67, 6.74) 0.339

Glucose (mmol/L) 4.3 (4.00, 4.84) 4.57 (4.29, 5.00) 0.895

Triglyceride (mmol/L) 1.24 (0.89, 1.81) 1.17 (0.85, 1.00) 0.937

Total cholesterol (mmol/L) 3.97 (3.25, 4.61) 3.95 (3.55, 5.10) 0.509

hsCRP (mg/L) 2.38 (0.44, 10.33) 1.10 (0.43, 10.78) 0.265

Serum potassium (mmol/L) 4.59 (4.07, 5.18) 4.49 (3.95, 4.91) 0.527

Serum sodium (mmol/L) 141.1 (138.35, 142.95) 140.55 (137.65, 142.43) 0.402

Corrected calcium (mmol/L) 3.43 (3.01, 3.73) 3.47 (3.14, 3.75) 0.747

Serum phosphorus (mmol/L) 2.01 (1.58, 2.32) 1.93 (1.56, 2.42) 0.606

Serum magnesium (mmol/L) 1.00 (0.81, 1.17) 0.98 (0.89, 1.13) 0.904

Total carbon dioxide (mmol/L) 19.4 (16.6, 22.4) 20.8 (17.6, 22.6) 0.923

ACR (mg/g.CREA) 2331.17 (1206.44, 3741.20) 3997.76 (1886.26, 5524.49) 0.657

TCR (g/g.CREA) 3.38 (2.08, 4.99) 4.16 (2.30, 6.44) 0.453

24 h urine protein (g/24 h) 2.23 (1.25, 3.37) 2.87 (1.45, 4.43) 0.941

Combined disease

Diabetes mellitus 99 (37.5) 42 (37.5) 0.342

Hypertension 233 (88.3) 105 (93.5) 0.986

Cerebral infarction 22 (8.3) 9 (8.0) 0.116

https://doi.org/10.3389/fmed.2023.1193754
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Dai et al. 10.3389/fmed.2023.1193754

Frontiers in Medicine 06 frontiersin.org

various diseases (14, 15) including kidney disease (16). Clinical 
prediction models can inform patients and their physicians or other 
healthcare providers about the likelihood of disease development or 
progression in a patient, which can facilitate treatment decisions. The 
main risk factors included in previous PDAP clinical prediction 
models are age, UA, serum C-reactive protein (CRP)-to-Albumin 
ratio (CAR), NLR, RDW, DM, and cardiovascular disease (6, 17–21). 
The results of some previous studies are consistent with those of the 
current paper. However, most previous studies evaluated individual 
factors or postoperative indicators, whereas we identified preoperative 
indicators that are useful for clinical decision-making.

PDAP is the most serious complication of PD and leads to an 
increased risk of mortality and morbidity (22). Despite a significant 
decrease in the incidence of peritonitis, it still accounts for 41.3% of 
deaths and 20% of technical failures in PD patients (23, 24). This study 
retrospectively analyzed the clinical data of patients who developed 
PDAP over a 6-year period. For the first time, a prediction model 
based on the combination of NLR, ALB, UA, DM, and hsCRP was 
established to determine the 1-year PDAP risk of PD patients. The 

differentiation, accuracy, and clinical utility were validated in the 
validation set. Using the column line graph model, the individual risk 
of PDAP can be predicted preoperatively; this information may assist 
clinicians in making rational treatment decisions for PD patients.

A significant association was found between low serum ALB level 
at the time of initiation of continuous ambulatory peritoneal dialysis 
(CAPD) and the development of peritonitis (25). ALB is a major serum 
protein with important physiological functions, including maintenance 
of colloid osmotic pressure, binding to multiple compounds, and 
plasma antioxidant activity (26). Hypoalbuminemia is very common 
in patients with ESRD (27, 28). Notably, hypoalbuminemia is associated 
with increased morbidity and mortality in patients with PD (29). PD 
results in a significant loss of ALBumin, with protein leakage of up to 
4.04 g/day during PD (30). In addition, low levels of serum ALB may 
result due to inflammatory response and malnutrition; it also increases 
the susceptibility of patients to infection (31). Ma et al. reported that 
hypoalbuminemia before the start of PD is a predictor of peritonitis 
(32). Therefore, hypoalbuminemia can be used as a warning sign for 
the development of peritonitis in patients undergoing CAPD and 

FIGURE 2

(A) Optimal parameter (λ) selection in the LASSO model, with the optimal tuning parameter logλ in the horizontal coordinate and the regression 
coefficient in the vertical coordinate. (B) Distribution of LASSO coefficients for the five factors, with the optimal tuning parameter logλ in the horizontal 
coordinate and the binomial deviance in the vertical coordinate.

TABLE 2 Multifactorial logistic regression analysis of factors influencing the occurrence of PDAP after PD catheterization.

Variables Variables assignment β SE OR 95%CI p value

NLR <3.5 = 0 vs. ≥3.5 = 1 1.705 0.369 5.501 (2.671, 11.328) <0.001

ALB >25 g/L = 0 vs. <25 g/L = 1 −1.179 0.394 0.308 (0.142, 0.666) 0.003

UA <488 mmol/L = 0 vs. ≥488 mmol/L = 1 1.743 0.368 5.716 (2.778, 11.761) <0.001

hsCRP <2.1 mg/L = 0 vs. ≥ 2.1 mg/L = 1 1.663 0.378 5.273 (2.513, 11.064) <0.001

DM Yes = 0 vs. No = 1 1.199 0.363 3.317 (1.630, 6.752) 0.001

Constants −4.380 0.497
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immediate intervention is needed to prevent peritonitis when serum 
albumin levels fall.

CRP is a marker of inflammation, and elevated serum levels are 
associated with an increased risk of cardiovascular events and 
mortality in the general population as well as in patients with kidney 
disease. Both CRP and ALB are useful prognostic markers for 
assessing mortality in patients with PD (33, 34). CRP levels reflect 
the severity of inflammation and ALB can be used as a nutritional 
marker in critically ill patients (35). CRP is an acute phase reactant 
mainly produced by the liver in acute and chronic inflammation. 
Previous studies have shown that CRP is an important risk factor for 
increased cardiovascular mortality in patients with PD (36). Chen 
et al. found that CRP was an independent predictor of increased 

all-cause mortality and risk of major adverse cardiovascular events 
in PD patients (37). Serum CAR, a composite indicator of 
inflammation and nutritional status, has recently been identified as 
an independent prognostic indicator for patients receiving treatment 
(35, 38). Some studies have found advantages of using CAR alone 
instead of CRP or ALB: the levels of inflammatory markers (e.g., 
CRP and ALB) vary depending on the inflammation severity. In 
addition, CAR can be  used to assess both inflammation and 
nutrition. The use of this method is expected to improve the 
accuracy of prognostic prediction compared to CRP or ALB 
alone (21).

NLR is obtained by dividing the peripheral blood absolute 
neutrophil count with the peripheral blood absolute lymphocyte 
count. NLR has recently been reported to be  associated with 
inflammation in ESRD, including HD and PD patients. The survival 
rate of patients with ESRD has been estimated using NLR (39–41). In 
PD, inflammation may result from several underlying causes, 
including uremic microenvironment, infection, reduced clearance of 
pro-inflammatory cytokines, volume overload, oxidative stress, and 
other dialysis-related factors (42, 43). NLR is a readily available 
parameter obtained from complete blood counts that is closely 
associated with inflammation and was originally considered as a 
prognostic indicator for tumors (44). Several recent studies of PD 
patients have shown that NLR is moderately associated with 
inflammatory marker levels (e.g., CRP, IL6, and TNF-α); higher NLR 
is associated with a higher mortality rate (40, 45, 46). In PDAP, 
increased NLR is independently associated with increased risks of 
treatment failure and catheter removal. NLR is a convenient and 
inexpensive parameter that may be  indicate a poor outcome in 
patients with peritonitis (6).

UA is the end product of purine metabolism in humans and has 
antioxidant and pro-inflammatory properties. It is associated with the 
development of oxidative stress-related diseases, such as CKD and 
cardiovascular risk (47). Hyperuricemia is a risk factor for kidney 
disease, DM, and hypertension. High levels of UA are associated with 

FIGURE 3

Nomogram of a clinical prediction model for the occurrence of PDAP after PD catheterization.

FIGURE 4

Internal calibration of the nomogram to predict the occurrence of 
PDAP after PD catheterization.
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a pro-oxidant and pro-inflammatory state. In patients receiving PD, a 
positive relationship was shown between UA levels and mortality (48, 
49). High UA levels were associated with an increased risk of all-cause 
mortality in patients with PD compared to moderate UA levels (50). 
UA may induce oxidative stress by activating NADPH oxidase, 
stimulating the renin-angiotensin system, and interfering with 
mitochondrial function (51). Second, UA may regulate the 
inflammatory response through a variety of cytokines (52). Finally, 
high UA levels may reduce residual renal function in PD patients, 
leading to increased all-cause mortality (53, 54). Higher UA levels are 
associated with an increased risk of clinical manifestations of diabetic 
nephropathy in patients with DM. In addition, UA is a strong 
predictor of diabetic nephropathy progression (55).

The prevalence of DM is increasing in the general population and 
diabetic nephropathy is now the leading cause of ESRD worldwide (56, 

57). Challenges to the overall health of ESRD patients with DM who are 
receiving renal replacement therapy (e.g., dialysis) (58). In ESRD patients 
with DM, adequate vascular access for hemodialysis is often problematic. 
As a result, many patients may select PD for renal replacement therapy. 
There are concerns that diabetic patients may develop PDAP because of 
their immunocompromised status (59). Inflammation plays a critical role 
in the development of diabetes, and higher CRP level is a risk factor for 
developing DM (60, 61). Although several studies have evaluated the risk 
factors of peritonitis in diabetic non-PD patients (62), they have also 
reported that DM is a risk factor for PDAP, and poor glycemic control is 
a risk factor for catheter tunnel and exit site infection in diabetic patients 
at the time of initiation of PD therapy (63–65). DM is associated with 
higher all-cause mortality in PDAP patients (66).

To the best of our knowledge, this is the first line graph model that 
allows risk assessment for the development of PDAP in PD patients. 

FIGURE 5

Receiver operating characteristic (ROC) curves. (A) ROC curve in the training cohort, (B) ROC curve in the validation cohort, (C) calibration plots in the 
training cohort, and (D) calibration plots in the validation.
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Our study has several advantages: first, our findings provide a valuable 
reference for physicians who manage patients with PD. Second, the 
column line graph prediction model is intuitive and practical because 
all included variables are obtained routinely.

Our study also has some limitations: first, the study had a 
retrospective design, which may have introduced selection bias. 
Non-random selection of participants and incomplete data may 
impact the representativeness of the study population, thus limiting 
the generalizability of findings to broader populations. 
Additionally, the lack of consideration for potential changes in 
predictor variables during treatment is noteworthy. Treatment 
interventions could influence variables, potentially introducing 
bias into our results. Second, we did not consider the effects of 
changes in variables during treatment on outcomes. Finally, 
we included 264 cases in the training cohort and 112 cases in the 
validation cohort; however, prospective studies with larger sample 
sizes are required.

In conclusion, we constructed an intuitive and practical column 
line diagram, which can predict the risk of PDAP in PD patients and 
provide a reference for the individualized treatment of PDAP patients.
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