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Introduction: Rheumatoid arthritis (RA) is a chronic immune disease characterized 
by synovial inflammation and bone destruction, with a largely unclear etiology. 
Evidence has indicated that ferroptosis may play an increasingly important role 
in the onset and development of RA. However, ferroptosis-related genes are still 
largely unexplored in RA. Therefore, this work focused on identifying and validating 
the potential ferroptosis-related genes involved in RA through bioinformatics 
analysis.

Methods: We screened differentially expressed ferroptosis-related genes (DEFGs) 
between RA patients and healthy individuals based on GSE55235 dataset. 
Subsequently, correlation analysis, protein-protein interaction (PPI) network 
analysis, GO, and KEGG enrichment analyses were performed using these DEFGs. 
Finally, our results were validated by GSE12021 dataset.

Results: We discovered 34 potential DEFGs in RA based on bioinformatics analysis. 
According to functional enrichment analysis, these genes were mainly enriched in 
HIF-1 signaling pathway, FoxO signaling pathway, and Ferroptosis pathway. Four 
genes (GABARPL1, DUSP1, JUN, and MAPK8) were validated to be downregulated 
by GSE12021 dataset and were diagnostic biomarkers and therapeutic targets for 
RA via the regulation of ferroptosis.

Discussion: Our results help shed more light on the pathogenesis of RA. 
Ferroptosis-related genes in RA are valuable diagnostic biomarkers and they will 
be exploited clinically as therapeutic targets in the future.
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Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease characterized by 
inflammation and affects about 1% of the world population (1). As a result, RA can lead to joint 
deformity and disability, severely reducing the quality of life for RA patients. Although the 
pathogenesis of RA has not been entirely clarified, genetic and environmental factors have been 
shown to be involved (2). Several studies also demonstrated that the pathogenesis of RA was 
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associated with certain biological functions such as osteoclast 
differentiation, inflammatory cell infiltration, angiogenesis, and 
ferroptosis (3, 4). Among these biological functions, ferroptosis is an 
interesting topic because of its potential links to cell death, suggesting 
a possible crucial role in the occurrence of RA.

Ferroptosis is a newly identified cell death form, which is 
characterized by iron-dependent accumulation and lipid peroxidation (5, 
6). Evidence have reported that ferroptosis can trigger undesirable 
inflammatory responses (7, 8), and its inhibitor has an anti-inflammatory 
effect on different inflammatory diseases (9, 10). Various evidence has 
indicated that several pathways or compounds are related to ferroptosis 
in the pathogenesis of RA (4, 11, 12). Ferroptosis has been shown to 
be  associated with RA, osteoarthritis, gout arthritis, and ankylosing 
spondylitis (13). However, the exact mechanism between ferroptosis and 
RA remains largely unclear, and it is necessary and urgent to elucidate the 
role in RA pathogenesis. The identification of potential ferroptosis-related 
genes in RA may help to derive potential biomarkers for treatment. 
Woetzel et  al. (14) leveraged the GSE55235 dataset to obtain DEGs 
between RA patients and healthy individuals, their study sought to 
distinguish RA patients and healthy individuals by applying rule-based 
classifiers. However, they neglect the effect of ferroptosis on RA. Therefore, 
it is essential to analyze the relationship between ferroptosis and synovial 
inflammation, which may provide potential therapeutic targets for RA.

In this paper, we attempted to investigate the pathogenesis of RA 
from the ferroptosis perspective. To functionally identify and 
characterize the DEFGs in RA, we screened DEFGs based on the 
GSE55235 dataset and further validated our results in the GSE12021 
dataset. Finally, this work may provide potential biomarkers for RA 
therapy and benefit the understanding of RA pathogenesis.

Materials and methods

Ferroptosis-associated genes and 
RA-related microarray dataset

The publicly available database FerrDb (15) (http://www.zhounan.
org/ferrdb/) contains 259 ferroptosis-related genes. These downloaded 
data were used for subsequent analyses. Furthermore, we  also 
collected gene expression profiles for 10 RA patients and 10 healthy 
individuals from the GSE55235 dataset to screen differentially 
expressed ferroptosis-related genes (DEFGs). The microarray data 
were quantified using the GPL96 platform from Affymetrix Human 
Genome U133A Array (14).

Screening of DEFGs

First, we  used the “limma” package to normalize the gene 
expression profile. Second, the probes were annotated using 
“annotation” package. We  applied principal component analysis 
(PCA) to evaluate the repeatability of the GSE55235 dataset. The 
bioconductor “limma” package was subsequently utilized to screen 
DEFGs between RA patients and healthy individuals. |logFC| > 1 and 
adjusted p-value < 0.01 were set as the cutoff criteria of DEFGs. Lastly, 
we leveraged the “heatmap” and “ggplot2” packages to present the 
result of DEFGs.

Functional enrichment analysis of DEFGs

Gene ontology (GO) is the widely used tool for gene function 
annotations. The GO terms are classified into three types: molecular 
function (MF), biological process (BP), and cellular component (CC). 
Pathway enrichment analysis was conducted using KEGG pathway 
database. The “clusterprofile” package (16) was utilized to perform the 
functional enrichment analyses of the DEFGs, with the cutoff criteria set 
at p < 0.01.

PPI network construction and correlation 
analysis of DEFGs

The STRING database was used to schematically represent 
functional relationship network of DEFGs, named PPI network. 
We considered STRING interactions that were of medium confidence 
(combined STRING score > 0.4), which were experimentally derived 
and curated interactions. The PPI networks of DEFGs were visualized 
using the STRING database. Correlation analysis was performed using 
Pearson correlation coefficient with the “corrplot” package.

Validation of gene expression associated 
with ferroptosis

The GSE12021 dataset was downloaded from the Gene Expression 
Omnibus (GEO) database, which includes 12 RA patients and 9 healthy 
individuals. The differentially expressed genes were also identified using 
the “limma” package according to the adjusted p-value < 0.01 and 
|logFC| > 1. Finally, we obtained the overlapping genes of 259 ferroptosis-
associated genes, GSE55235 DEGs, and GSE12021 DEGs.

Statistical analysis

R software (version 3.6.2) was used for statistical analysis. 
We applied the “limma” package to screen differentially expressed 
genes between RA patients and normal samples. The threshold was set 
at p < 0.01.

Results

Identification of 34 DEFGs in RA

The result of PCA showed good biological replicate 
concordance of each biological sample in the GSE55235 dataset 
(Figure  1A). We  integrated 259 ferroptosis-related genes and 
DEGs between RA patients and healthy individuals from the 
GSE55235 database to screen DEFGs. We obtained a total of 34 
DEFGs, of which 8 were upregulated and 26 were downregulated 
genes (Figures 1B,C).

Furthermore, we  generated a violin diagram to illustrate the 
expression patterns of the 34 DEFGs (Figure  2). There are 8 
upregulated genes (Figure 2A) including SLC2A6, ALOX5, AURKA, 
CYBB, NCF2, CAPG, RRM2, BLOC1S5-TCNDC5, and 26 
downregulated genes (Figure 2B) included ANGPTL7, ATF3, BNIP3, 
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CBS, DDIT4, DUSP1, GDF15, NNMT, PTGS2, SLC3A2, TF, VEGFA, 
CDO1, DUOX2, EGFR, GABARPL1, MAPK8, ZEB1, AKR1C2, 
CDKN1A, JUN, MT1G, PLIN2, SCD, ZFP36.

Construction of PPI network and 
correlation analysis of the 34 DEFGs

To elucidate the relationship of these 34 DEFGs, 
we performed PPI network analysis. The results demonstrated 
that 34 DEFGs were closely interconnected (Figure 3). We find 
several hub genes (VEGFA, JUN, CDKN1A, DUSP1, MAPK8, 
and EGFR) that have high degree. In addition, to examine if 

there was a correlation between the expression levels of these 
DEFGs, we conducted correlation analysis. The results showed 
that the correlation relationship of most genes is positive, only a 
few have negative correlation relationship (Figure 4).

Functional enrichment analyses of the 34 
DEFGs

To elucidate the biological functions of the 34 DEFGs, GO 
and KEGG enrichment analyses were performed using the 
“clusterprofiler” package to identify significantly enriched terms. 
The most significantly enriched GO terms of BP were cellular 

FIGURE 1

Differential expression analysis between RA patients and health samples. (A) PCA analysis of the GSE55235 dataset. (B) Volcano plot of the 259 
ferroptosis-related genes. The significantly upregulated and downregulated genes are represented by red and blue dots, respectively. (C) Heatmap of 
the 34 DEFGs between the patients with rheumatoid arthritis and healthy individuals.
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response to oxidative stress, response to extracellular stimulus, 
and reactive oxygen species metabolic process (Figure 5A). In 
the CC category, they were involved in nicotinamide adenine 
dinucleotide phosphate (NADPH) oxidase complex, 
oxidoreductase complex, and nuclear envelope (Figure 5B). In 
the MF category, they were involved in oxidoreductase activity, 
superoxide generating NADPH oxidase activity, and 
oxidoreductase activity acting on nicotinamide adenine 
dinucleotide phosphate (NADPH; Figure 5C). KEGG enrichment 
was mainly distributed in HIF-1 signaling pathway, FoxO 
signaling pathway, and Ferroptosis pathway (Figure 5D).

Validation of gene expression associated 
with ferroptosis

To validate the reliability of 34 DEFGs expression levels, we used 
another dataset (GSE12021) (17) to verify expression levels. Compared 
with the results of the GSE55235 dataset, the expression levels of 
GABARPL1, DUSP1, JUN, and MAPK8 were decreased in the RA 
samples (−1.75-, −4.47-, −3.44-, and −1.28-fold, respectively) 
compared to normal samples (Figure  6). It indicated that the 
expression levels of four genes were consistent with the results 
of GSE55235.

Prediction of potential therapeutic drugs

DGIbd (18) and CMAP database (19) were utilized to find 
potential candidate agents for GABARPL1, DUSP1, JUN and MAPK8. 
In the DGIbd or CMap database, Albuterol, Hydroxyurea, or 
Vasopressin was found to be  the targeted medicine of DUSP1, 
Irisolidone, Holacanthone, Sergeolide or Irbesartan was found to 
be  the targeted medicine of JUN, and Cardamomin, CC-401, 
Tanzisertib or BI-78D3 was found to be  the targeted medicine of 
MAPK8 (Table 1). Ehrlich et al. (17) found that low-dose hydroxyurea 
held potential efficacy in the treatment of rheumatoid arthritis (RA). 
Petersson et  al. (30) reported potential involvement of arginine-
vasopressin and parathyroid hormone-related protein in the 
pathophysiological mechanisms of RA. Chang et al. (31) discovered 
that the angiotensin receptor blockers (ARBs) losartan and irbesartan 
effectively reduced superoxide levels, downregulated the expression 
and activity of NAD(P)H oxidases, and ameliorated endothelial 
dysfunction in antigen-induced arthritis (AIA). Zhou et  al. (32) 
conducted a study in which they found that the addition of irbesartan 
to chemotherapy demonstrated potential for enhancing therapeutic 
effectiveness in patients with pancreatic ductal adenocarcinoma 
(PDAC) who exhibited elevated c-Jun expression levels. Irbesartan 
demonstrated significant efficacy in overcoming chemotherapy 
resistance by effectively suppressing the Hippo/YAP1/c-Jun/stemness/
iron metabolism axis.

FIGURE 2

The violin diagram of 34 DEFGs between the patients with rheumatoid arthritis and healthy individuals. (A) 8 upregulated genes (B) 26 downregulated 
genes. **: p-value < 0.01, ***: p-value < 0.001, ****: p-value < 0.0001.
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Discussion

Although great progress has been made in exploring new 
treatments for RA. To date, elucidating the pathogenesis of RA 
remains a major challenge, thus it is urgent to explore the molecular 
mechanisms of these diseases. Moreover, several studies have 

illustrated that ferroptosis may be involved in various tumor types (33, 
34). However, there have been few studies focused specifically on 
ferroptosis-associated genes in RA.

In our study, there were 34 potential ferroptosis-related genes that 
were identified between RA patients and healthy individuals by using 
bioinformatic analyses. Furthermore, GO and KEGG enrichment 

FIGURE 3

PPI network of 34 DEFGs.

FIGURE 4

Pearson correlation analysis of the 34 DEFGs.

https://doi.org/10.3389/fmed.2023.1192153
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Li et al. 10.3389/fmed.2023.1192153

Frontiers in Medicine 06 frontiersin.org

analyses were conducted to investigate the biological functions of the 
34 DEFGs. The oxidative stress, oxidoreductase complex, and NADPH 
oxidase were significantly enriched by these DEFGs, indicating that 
these DEFGs were associated with oxidation, which was consistent 
with previous reports (35).

Based on KEGG pathway enrichment, we found that these genes 
were significantly enriched in FoxO signaling pathway, HIF-1 
signaling pathway, and Ferroptosis pathway. Lee et al. (36) identified 
FoxO3 as a biomarker of RA severity, and its haplotype was associated 
with erosion scores of RA. Kok et  al. (37) reported that SIRT-1/

FIGURE 5

Functional enrichment analysis of 34 DEFGs. (A) BP, (B) CC, (C) MF, (D) KEGG. BP: biological process; CC: cellular component; MF: molecular function.

FIGURE 6

Validation of gene expression in the GSE12021 dataset. The violin diagram showed 4 DEFGs between RA patients and healthy individuals. The Wilcox 
test was used to compare RA patients with normal samples. ***: p-value < 0.001, ****: p-value < 0.0001.
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FoxO3a signaling played a crucial role in the occurrence and 
development of RA. Besides, FoxO signaling was also vital in 
OA. Abnormal expression of FoxO had been reported to be closely 
associated with osteoarthritis (38). HIF-1α is a very important 
transcription factor that regulates developmental and cellular 
responses to hypoxia. A deficiency of HIF-1α has been reported to 
exacerbate MMP13 expression levels to lead to degrading cartilage 
tissue (39). Our results represented these RA-related pathways, which 
might enhance our understanding of RA pathogenesis.

Furthermore, we identified 4 DEFGs (GABARPL1, DUSP1, JUN, 
and MAPK8) and observed that the expression levels of these genes in 
the GSE55235 were consistent with the GSE12021 dataset. Several 
genes had been shown to be closely related to RA. For example, DUSP1 
is a phosphatase with dual specificity for tyrosine and threonine, which 
involves cellular processes by regulating MAPK1/ERK2. Vattakuzhi 
et al. (40) found that DUSP1 can regulate MAPK signaling and its low 
expression may be related to osteolytic lesions in arthritis. JUN is the 
putative transforming gene of avian sarcoma virus 17. It regulated gene 
expression by interacting with specific target DNA sequences (41). 
Huber et al. (42) revealed that Jun/Fos proto-oncogene was significantly 
decreased at the mRNA level in RA. MAPK8, also known as Jun 
nuclear kinase (JNK), was a member of the MAP kinase family, which 
was involved in various cellular processes (proliferation, differentiation, 
transcription regulation, and development) (43). Ding et  al. (44) 
reported that abnormal activation of MAPKs in synovial tissues of RA 
patients promoted pannus formation. Thus, MAPK is considered a 
promising potential target in the treatment of RA. GABARAPL1, a 
constituent of the GABARAP family, demonstrates a remarkable 
degree of evolutionary conservation. Its coding gene was orignally 
identified as an early estrogen-induced gene (45). Gao et  al. (46) 
uncovered that GABARAPL1 was a potential positive regulator of 
ferroptosis by RNAi screening. Furthermore, the expression of 
GABARAPL1 was notably diminished in various types of cancers 
(47–49). A comprehensive analysis of breast cancer biopsies in a cohort 
study revealed a significant association between lower GABARAPL1 
expression and an increased risk of recurrence (48). Overexpression of 
GABARAPL1 exerted inhibitory effects on cell proliferation, colony 
formation, and invasion in breast cancer cells in-vitro. Xie et al. (50) 
demonstrated that DUSP1 inhibited ferroptosis by limiting lipid 

peroxidation while not affecting iron accumulation. Among the various 
mechanisms investigated in ferroptosis research, lipid peroxidation, 
which leads to the generation of lipid oxidation products, has garnered 
substantial attention. Cao et al. (51) discovered that the overexpression 
of JUN significantly suppressed the impact of T4O on both glioma cell 
proliferation and ferroptosis. Luo et al. (52) demonstrated that MAPK8 
could reverse the impact of LINC01564 ablation on both cell apoptosis 
and ferroptosis.

However, this study still has some limitations. First, this work 
utilized a small sample size, which might lead to bias. Second, more 
in-vivo and in-vitro studies will be required to verify the reliability and 
significance of the results. Finally, it is necessary to understand the 
hub genes of RA for diagnosis and treatment.

In conclusion, we derived 34 potential ferroptosis-related genes 
between RA patients and healthy individuals using bioinformatics 
method. There were four genes (GABARPL1, DUSP1, JUN, and 
MAPK8) were verified to be differentially expressed and may serve as 
important diagnostic markers and new potential therapeutic targets 
for RA through the regulation of ferroptosis. Our study may 
be beneficial to enhance the understanding of RA pathogenesis and 
potential for clinical use in the future.
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TABLE 1 Prediction of potential therapeutic drugs.

Drug Gene Source PubChem Ref

Albuterol DUSP1 DGIdb 182176 (20)

Hydroxyurea DUSP1 DGIdb 3657 (21)

Vasopressin DUSP1 DGIdb 123131941 (22)

Irisolidone JUN DGIdb 5281781 (23)

Holacanthone JUN DGIdb 158475 (24)

Sergeolide JUN DGIdb 134025 (24)

Irbesartan JUN CMAP 3749 (25)

Cardamomin MAPK8 DGIdb 641785 (26)

CC-401 MAPK8 DGIdb/

CMAP

10430360 (27)

Tanzisertib MAPK8 DGIdb 11597537 (28)

BI-78D3 MAPK8 CMAP 2747117 (29)
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