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Small noncoding RNAs, known as microRNAs (miRNAs), are vital for the 
regulation of diverse biological processes. miR-223, an evolutionarily conserved 
anti-inflammatory miRNA expressed in cells of the myeloid lineage, has 
been implicated in the regulation of monocyte–macrophage differentiation, 
proinflammatory responses, and the recruitment of neutrophils. The biological 
functions of this gene are regulated by its expression levels in cells or tissues. 
In this review, we  first outline the regulatory role of miR-223  in granulocytes, 
macrophages, endothelial cells, epithelial cells and dendritic cells (DCs). Then, 
we  summarize the possible role of miR-223  in chronic obstructive pulmonary 
disease (COPD), acute lung injury (ALI), coronavirus disease 2019 (COVID-19) 
and other pulmonary inflammatory diseases to better understand the molecular 
regulatory networks in pulmonary inflammatory diseases.
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1. Introduction

The body’s non-specific immune response to injury or infection is called inflammation. It 
is a delicate matter of homeostasis and is highly controlled. Excessive inflammation can lead to 
organ dysfunction, tissue destruction or even malignancies. When injury or infection occurs, 
Toll-like receptors (TLRs), a family of pattern recognition receptors in sentinel cells can sense 
risk factors and then activate the signaling pathways associated with inflammatory responses. 
This results in the generation of chemokines and cytokines that possess inflammatory properties, 
thereby facilitating the attraction of other types of immune cells (1).

In mammals, the exchange of gases is facilitated by the lung, which serves as a crucial organ. 
The lung is in direct contact with the external environment and is the certain target of pathogens, 
allergens and poisons, which easily cause infection or inflammation, such as ALI, COPD and 
tuberculosis. In particular, the emergence of COVID-19  in December 2019, caused an 
unparalleled disturbance and drew a wide range of attention in human society (2). Thus, it is 
imperative to create secure and efficient therapies that can restrict inflammatory reactions in 
damaged lungs.

MicroRNAs (miRNAs or miRs) are a type of noncoding RNA molecules with a length of 
approximately 18–22 nt (3). They are highly conserved and single-stranded. miRNAs have the 
ability to control the expression of target genes at the posttranscriptional level (4). The targeting 
of a specific gene can be carried out by various miRNAs, and a particular miRNA can target 
several genes within a single cell type, which forms a complex regulatory network (5). Numerous 
studies have shown that miRNAs participate in several biological processes (6). In recent years, 

OPEN ACCESS

EDITED BY

Laurent Metzinger,  
University of Picardie Jules Verne, France

REVIEWED BY

Prabhash Kumar Jha,  
Brigham and Women's Hospital and Harvard 
Medical School, United States
Gan Zhao,  
University of Pennsylvania, United States

*CORRESPONDENCE

Yanmei Zhao  
 zhaoyanmei@126.com  

Haojun Fan  
 haojunfan86@163.com  

Shike Hou  
 houshike@tju.edu.cn

†These authors have contributed equally to this 
work

RECEIVED 16 March 2023
ACCEPTED 14 June 2023
PUBLISHED 03 July 2023

CITATION

Shi M, Lu Q, Zhao Y, Ding Z, Yu S, Li J, Ji M, 
Fan H and Hou S (2023) miR-223: a key 
regulator of pulmonary inflammation.
Front. Med. 10:1187557.
doi: 10.3389/fmed.2023.1187557

COPYRIGHT

© 2023 Shi, Lu, Zhao, Ding, Yu, Li, Ji, Fan and 
Hou. This is an open-access article distributed 
under the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction is 
permitted which does not comply with these 
terms.

TYPE Review
PUBLISHED 03 July 2023
DOI 10.3389/fmed.2023.1187557

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2023.1187557&domain=pdf&date_stamp=2023-07-03
https://www.frontiersin.org/articles/10.3389/fmed.2023.1187557/full
https://www.frontiersin.org/articles/10.3389/fmed.2023.1187557/full
mailto:zhaoyanmei@126.com
mailto:haojunfan86@163.com
mailto:houshike@tju.edu.cn
https://doi.org/10.3389/fmed.2023.1187557
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2023.1187557


Shi et al. 10.3389/fmed.2023.1187557

Frontiers in Medicine 02 frontiersin.org

many studies have shown that miRNAs serve as biomarkers and 
treatments for different kinds of diseases (7), such as allergic diseases 
(8–11), cardiovascular disease (12–15), cancer (16–19) and diabetes 
(20–22).

The development and function of the myeloid lineage are 
dependent on miR-223, a microRNA that is conserved in vertebrates 
(23, 24). miR-223 is highly conserved in various organisms, its 
expression in myeloid lineage cells is characterized in humans and 
mice (25). miR-223 can be  expressed in hematopoietic cells 
particularly in granulocytes and their precursors (26). During lineage 
commitment, miR-223 has been shown to inhibit the differentiation 
of progenitor cells into erythrocytes and facilitate their differentiation 
into granulocytes (27). It has been discovered by researchers that 
miR-223 is crucial in the regulation of inflammation in the lungs (28).

This review provides a comprehensive summary of the 
involvement of miR-223 in the inflammatory response across different 
cell types and its significance in pulmonary inflammatory diseases, 
aiming to enhance the understanding of clinical manifestations related 
to pulmonary inflammation.

2. The biogenesis, expression 
regulation and function of miR-223

During evolution, miR-223 has been highly conserved and is 
located at the q12 site of the X chromosome, with a length of 22 nt 
(29). Before mature miR-223 can bind to the complementary 
sequences in the 3′ or 5′ untranslated region, a complex biosynthesis 
process is necessary, as is the case with all miRNAs (30). The 
transcription of miRNA genes into primary transcripts 
(pri-miRNA) occurs through RNA polymerase II in the nucleus 
(31). The primary transcript of miR-223 is known as 
pri-miRNA-223, which contains a hairpin structure located in the 
third exon and primarily generates the miR-223-3p strand. Then, 
RNA endonucleases (RNase) catalyze pri-miRNA-223 via two 
successive cleavage steps (32). In the first step, the RNase III-type 
endonuclease DROSHA cleaves pri-miRNA-223 transcripts and 
releases a short oligo nucleotide known as pre-miRNA (33). After 
being recognized by Exportin-5, pre-miRNA-223 is exported to the 
cytoplasm for further processing by the RNase III enzyme Dicer 
(34). Finally, the RNA-induced silencing complex (RISC) is formally 
formed as mature miRNA-223 binds to the Argonaute protein 
(Figure 1) (35).

Several transcription factors control the expression of miR-223. 
Early in 2007, PU.1 and C/EBPs known as myeloid transcription 
factors, were found to drive the transcription of miR-223 (36). 
Furthermore, upstream of pre-miR-223, miR-223 expression can 
be  upregulated directly by PPAR-γ regulatory elements in 
macrophages derived from bone marrow (37). In contrast, Krüppel-
like Factor 6 (KLF6) is a negative regulator of miR-223, and the 
overexpression of KLF6 has been proven to downregulate the 
expression level of miR-223  in macrophages and promote the 
polarization of the M1 phenotype (38). The amount of miR-223 
produced is also regulated by epigenetics. For example, Fazi et al. 
reported that in patients with acute myeloid leukemias, the 
recruitment of chromatin remodeling enzymes by AML1/ETO to the 
AML1 binding site on the pre-miR-223 gene results in the induction 
of heterochromatic silencing of miR-223 (39).

Functionally, miRNAs silence genes by causing mRNA 
destabilization, degradation, and translational repression through 
binding to the complementary 3′-untranslated regions (3′ UTRs) of 
mRNA (40). Long et al. demonstrated that miR-223 targets NLRP3 by 
directly binding to its 3′UTR, resulting in the inhibition of NLRP3 
expression and subsequently suppressing inflammasome activation 
and pyroptosis in endothelial cells infected with T. pallidum (41). In 
neuroblastoma (NB), miR-223 can bind to the 3′UTR of FOXO1, 
resulting in decreased expression of FOXO1, thus increasing the 
malignant ability of NB cells (42). In breast cancer, miR-223 can 
directly bind to the 3′UTR of the tumor suppressor gene FBXW7 and 
consequently facilitate the infiltration and spread of breast cancer 
cells (43).

3. The role of miR-223 in the 
inflammatory response

During the inflammatory response, miR-223 expression 
undergoes changes in various cell types. Modulations the level of 
miR-223 expression can modulate the diverse functions of various 
cells, thereby ameliorating or aggravating the resulting tissue 
inflammation. During inflammatory responses, by binding to specific 
targets, miR-223 can regulate the differentiation and proliferation of 
granulocytes, macrophages, and DCs, as well as the polarization of 
macrophages. In addition, through binding to specific genes, miR-223 
can suppress proinflammatory cytokines or inflammatory signals 
within these cells. This section aims to give a summary of how 
miR-223 contributes to various biological processes in granulocytes, 
endothelial cells, epithelial cells, macrophages and dendritic cells 
(Table 1).

3.1. MiR-223’s involvement in the 
differentiation and activation of 
granulocytes

Granulocytes have three main granulocyte subsets: eosinophils, 
basophils and neutrophils. Within eosinophils, there exist sizable 
granules containing distinct eosinophilic proteins, such as eosinophil-
derived neurotoxin, eosinophil peroxidase, major basic protein, and 
eosinophil cationic protein (61). The characteristic morphology of 
basophils is distinguished by the presence of large granules that are 
heavily stained and contain heparin, histamine sulfate, chondroitin, 
as well as other mediators like platelet-activating factor (PAF), slow-
reacting kallikrein, neutrophil chemotactic factor (NCF). Under 
steady-state conditions, billions of neutrophils undergo apoptosis and 
are quickly replenished, as these cells have a short lifespan (62). 
During instances of inflammation or infections, emergency 
granulopoiesis is initiated, leading to a rise in the daily output of 
neutrophils (63). MiR-223 is highly expressed in the hematopoietic 
system and is a powerful regulator of granulopoiesis, with the highest 
expression in granulocytes. During the retinoic acid (RA)-induced 
granulocytic differentiation, inhibiting miR-223 expression reduces 
the efficiency of RA-induced differentiation of granulocyte-monocyte 
progenitors into monocytes (64, 65).

In 2008, Jonathan and his colleagues found that miR-223 can 
regulate granulocyte function and neutrophil progenitor cell 
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proliferation by targeting myocyte enhancer Factor 2C (Mef2c) in 
mice. Hypermature and hypersensitive granulocytes, which display 
increased fungicidal activity upon activating stimuli, have been 
observed in mice lacking miR-223 (44). In the mouse model of allergic 

rhinitis (AR) inflammation, upregulation of miR-223 increased 
eosinophils granule protein expression, aggravated mucosal 
destruction and enhanced AR inflammation (66). When lung tissue 
injury occurs, miR-223 is rapidly upregulated in lung infiltrating 
granulocytes to attenuate injury during lung inflammation (67).

Studies have demonstrated that in the process of progenitor cell 
differentiation into granulocytes and monocytopoiesis, miR-223 is 
significantly upregulated by PU.1 and C/EBPβ known as myeloid 
transcription factors (45). Yang et al. utilized microarray profiling to 
assess the expression of miRNAs in neutrophils that were collected 
from patients suffering from severe traumatic injuries, they found that 
miR-223 participates in the traumatic pathogenesis of these patients 
(68). According to Vian’s research findings, the modulation of 
miR-223 activity has a significant influence on the differentiation and 
maturation of myeloid cell lines toward erythroid, granulocytic, 
monocytic, macrophagic lineages. Furthermore, overexpression of 
miR-223 promotes granulopoiesis and disrupts the differentiation of 
erythroid and monocytic macrophages (45). Other studies have also 
indicated that cytokines such as nuclear Factor I A (NFIA) can bind 
to the miR-223 gene promoter to repress its expression during the 
differentiation of granulocytes (46).

3.2. The function of miR-223 in regulating 
macrophage polarization

Macrophages are vital coordinators of immune activity and 
homeostasis. Based on temporal and environmental factors, 
macrophages can change their polarization direction to promote host 
immune defense mechanisms (69). In 2000, the nomenclature for 
macrophage polarization into M1 and M2 phenotypes was introduced 
(70). In vitro, cytokines have the ability to polarize macrophages. The 

FIGURE 1

Overview of miRNA-223 biogenesis, function, and transfer.

TABLE 1 Targets and functions of miR-223 inside cells.

Cell Target Function References

Granulocytes Mef2c, NFIA, C/

EBPα

Regulate 

granulocytes 

proliferation and 

differentiation

(44–46)

Macrophages Pknox1, Rasa1, 

NFAT5, TRAF6, 

STATS, NLRP3

Regulate 

macrophage 

differentiation, 

polarization, and 

proinflammatory 

cytokine release

(38, 47–51)

Endothelial cells ICAM-1, 

NLRP3

Attenuate 

endothelial cell 

inflammation

(52, 53)

Epithelial cells NLRP3, 

microvesicles

Attenuate 

epithelial cell 

inflammation

(54–56)

Dendritic cells NLRP3, C/

EBPβ, Irak1, 

Rhob, Rasa1, 

Cfla, Kras

Regulate dendritic 

cell functions and 

influences 

immune-related 

protein networks

(57–60)
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classical activation of macrophages is initiated by LPS and IFN-γ, 
resulting in the development of a proinflammatory phenotype with 
pathogen-killing capabilities. These macrophages are commonly 
referred to M1 macrophages. Macrophages alternatively activated by 
IL-4 in vitro were named M2, which can promote cell proliferation 
and tissue repair (71). In the presence of pathological conditions, 
along with resident macrophages, additional macrophages are 
recruited to affected tissues and polarize into either M1 
(proinflammatory) or M2 (anti-inflammatory) phenotypes.

Studies have shown that miR-223 can promote the polarization 
of macrophages toward the M1 and M2 phenotypes under 
different conditions. On the one hand, the downregulation of 
miR-223 can promote classic inflammatory M1-type macrophage 
activation. Chen’s study found that downregulation of miR-223, 
through its binding to signal transducer and activator of 
transcription 3 (STAT3), increases the production of 
proinflammatory factors like IL-6, and IL-1β (72). Further 
research revealed that in macrophages, by targeting Ras homolog 
gene family member B (Rhob), the downregulation of miR-223 
can enhance NF-κB signaling pathways and the mitogen-activated 
protein kinase (MAPK). This, in turn, induces the polarization of 
M1 proinflammatory macrophages and increases production of 
proinflammatory cytokines (73).

On the other hand, the upregulation of miR-223 can promote M2 
(anti-inflammatory) phenotypes. Zhuang et al. discovered that in 
diet-induced adipose tissue inflammation, miR-223 can trigger 
macrophages to differentiate into an anti-inflammatory M2 
phenotype to alleviate adipose tissue inflammation caused by a 
high-fat diet (74). Also, miR-223 expression was found to 
be significantly downregulated in heart tissues and heart-infiltrating 
macrophages in a mouse model of coxsackievirus B3 (CVB-3)-
induced viral myocarditis. miR-223 directly targeting and inhibiting 
the expression of Pknox 1, thus to suppressed the expression of the 
M1 marker level and promoted the M2 marker level (47). Similarly, 
He and his colleagues found that miR-223 carried by exosomes can 
be taken in by macrophages and induce them to differentiate into M2 
phenotype to accelerate wound healing by controlling Pknox1 gene 
expression. These studies revealed the role of the miR-223-Pknox1 
axis in macrophage polarization (48). Wang et  al. showed that 
miR-223 can mitigate sepsis by binding to the mRNA of NFAT5 and 
Rasa1, leading to IL-4-mediated differentiation of M2 macrophages 
(49). Moreover, a study on viral myocarditis (VMC) in mice 
discovered that long noncoding RNA maternally expressed gene 3 
can facilitate miR-223 expression in macrophages, inhibiting M1 and 
promoting M2 macrophage polarization. Thus, upregulated miR-223 
can inhibit TNF receptor-associated Factor 6 (TRAF 6) and suppress 
myocarditis and inflammation via NF-κB pathway inactivation in 
VMC mice (50). Additionally, Wang and his colleagues found that in 
macrophages, overexpression of miR-223 can reduce NF-κB 
activation by inhibiting IL-1 receptor-associated kinase-1 (IRAK-1), 
which leads to the polarization of M2 macrophages (75). In summary, 
at the molecular level, by targeting Pknox1, Rasa1, NFAT5, and 
TRAF6, upregulated miR-223 can induce polarization of 
macrophages toward the M2 anti-inflammatory phenotype 
during inflammation.

To summarize, miR-223 plays a crucial role in regulating the 
balance between M1 or M2 macrophage polarization and the 
development of inflammatory diseases.

3.3. The function of miR-223 in regulating 
inflammation in endothelial cells

The endothelium plays a critical role in maintaining multiorgan 
health and homeostasis. The healthy endothelium has a variety of 
biological functions, such as acting as a semi-permeable barrier, 
regulating the exchange and transport of substances, maintaining 
innate immunity, and balancing the production of vasodilators to 
regulate vascular tone, accelerating re-endothelialization to repair 
vascular injury and secreting antiplatelet and anticoagulant molecules 
to regulate hemostasis and regulating angiogenesis by producing 
factors (76). Lung endothelium undergoes continuous stretching 
during respiration and remains consistently exposed to external 
environmental substances. Impairment of the lung endothelium has 
been observed in various clinical conditions, such as acute respiratory 
distress syndrome (ARDS), COPD, pulmonary fibrosis, pneumonia, 
autoimmune disorders, pulmonary hypertension, and additional 
ailments (77). miR-223 plays an important role in endothelial cell 
inflammation and vascular endothelial injury.

On the one hand, miR-223 regulates endothelial cell inflammation. 
Upregulated miR-223 can be observed in peripheral microvesicles 
(MVs) in the plasma samples of nephritis, enteritis, hepatitis and 
atherosclerosis patients. miR-223 derived from platelets is conveyed 
to human umbilical vein endothelial cells (HUVECs) through 
peripheral MVs (78). Li and colleagues demonstrated that the 
transfection of miR-223 into HUVECs under TNF-α stimulation 
resulted in the inhibition of intercellular adhesion molecule-1 
(ICAM-1) level. These findings suggest that miR-223 is a crucial factor 
in platelet-derived exosomes and is involved in inflammation response 
by impeding the phosphorylation of p38, JNK, and ERK, and 
hindering the nuclear translocation of NF-κB p65 (52). Another 
investigation demonstrated that platelets released microparticles 
(PMPs) containing functional miR-223 during sepsis can reduce the 
expression of ICAM-1  in endothelial cells, thereby potentially 
providing protection against excessive vascular inflammation induced 
by sepsis (79). In addition to the NF-κB and MAPK signaling 
pathways, the NLRP3 inflammasome pathway can also be regarded as 
a potential therapeutic target in vascular inflammation. The inhibition 
of NLRP3 inflammasome in endothelial cells through tree peony bark 
(Pae) leads to an increase in the expression of miR-223 in exosomes 
derived from the plasma of hyperlipidemic rats (53). What is more, 
Pae-exo increased the expression of miR-223 and decreased the 
expression of NLRP3, apoptosis-related spot-like protein (ASC), 
caspase-1 and ICAM-1 to relieve the endothelial dysfunction in 
atherosclerosis (AS) (80). Moreover, Zhang and his colleagues’ study 
on aortic damage caused by Se deficiency revealed that miR-223 is 
significantly downregulated, which leads to an increase in the 
expression of NLRP3 and the downstream targets, such as ASC, 
caspase-1, IL-18 and IL-1β (81).

On the other hand, miR-223 is a crucial regulator of vascular 
endothelial injury. Wang noted that miR-223 can reduce vascular 
endothelial injury by inhibiting the production of IL-6 and TNF-α 
during Kawasaki disease (KD) (82). Moreover, differential 
miR-223 expression in vascular endothelial cell (VEC) 
extracellular vesicles (EVs) can influence VEC generation and 
apoptosis. MiR-223-3p overexpression can reduce injury to mouse 
cardiac microvascular endothelial cells (MCMECs) and inhibit 
endothelial cell apoptosis in mice by regulating the expression of 
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NLRP3 (83). In addition, Alexandre demonstrated for the first 
time that activation of neutrophils with various inflammatory 
stimuli induces the release of EVs that are internalized by 
endothelial cells, thus leading to the transfer of miR-223 and 
subsequent endothelial damage (84). These studies show that 
miR-223 can attenuate endothelial cell injuries.

3.4. Role of miR-223 in epithelial 
inflammation

Epithelial tissues constitute the physical barrier between our 
internal tissues, organs, etc. and the external environment exposes 
individuals to a wide range of inflammatory stimuli. The barrier is 
established through the action of stem cells that maintain a balance 
between self-renewal and differentiation to replenish lost cells and 
facilitate tissue repair in response to injury (85). Epithelial cells possess 
pattern recognition receptors that allow them to detect and react to 
various signals. These signals can guide the response of epithelial stem 
cells through signaling pathways that strengthen barrier function, 
signal nearby epithelial cells, attract immune cells, and promote tissue 
repair (86). The lung is a highly intricate organ consisting of different 
sections, which are covered by numerous specialized epithelial cells 
that have evolved to facilitate the exchange of gases necessary for the 
survival of air-breathing organisms on land. Under normal conditions, 
the epithelial cells in the lungs of adult mammals exhibit remarkable 
quiescence. Acute respiratory distress syndrome, coronavirus-induced 
acute lung injury, childhood interstitial lung diseases, cystic fibrosis, 
chronic obstructive pulmonary disease, and pulmonary fibrosis 
syndromes all involve, to some extent, dysfunction of the lung 
epithelium as a contributing factor (87).

miR-223 plays crucial functions in epithelial cells. Besides 
controlling the process of growth and morphology (88), the analysis 
of bioinformatic has shown that NLRP3 is a vital target of miR-223 in 
regulating epithelial cells. In renal tissue injury of mouse model 
induced by LPS, upregulated miR-223 can inhibit TXNIP and the 
NLRP3 inflammasome and attenuate LPS-induced injury in proximal 
tubule epithelial cells (54). In lung epithelial cells, upregulation of 
miR-223 by STIM1 can alleviate influenza A virus induced 
inflammatory injury in lung epithelial cells by deactivating NLRP3 
and inflammasomes (55). Moreover, suppression of miR-223 in A549 
cells induced by B(a)P resulted in elevated levels of TNF-α and 
IL-6 in the supernatant, as well as increased protein level of NLRP3, 
IL-1β, IL-18, caspase-1 (56). A recent study from Ren revealed that 
in animal models of dry eye (DE), miR-223 can suppress 
inflammation induced by hyperosmolarity in corneal epithelial cells 
by reducing the activation of NLRP3. The fact that miR-223 
expression levels are inversely correlated with NLRP3 expression 
levels indicates that selectively increasing miR-223 expression could 
be a potential approach to alleviate chronic inflammation in DE (89). 
In addition to targeting NLRP3, in a model of pulmonary arterial 
hypertension (PAH), miR-223 can suppress the expression of the 
Integrin-β 3 subunit gene (ITGB3) to alleviate the progression of 
PAH and avoid the dysfunction of pulmonary arterial endothelial 
cells (90). What is more, by targeting to Rhob and deactivation of 
NF-κB gene activity in dairy cows, miR-223 attenuated LPS-induced 
inflammatory responses in mammary epithelial cells (91). Thus, 

through diverse signaling pathways, miR-223 reduces tissue damage 
by regulating the epithelial inflammation process.

3.5. The function of miR-223 in the 
differentiation of dendritic cells

DCs, which are antigen-presenting cells, have vital role in 
maintaining and inducing immunity as well as tolerance (92). DCs 
are bone marrow-derived cells arising from lympho-myeloid 
hematopoiesis that coordinate innate and adaptive immune 
responses (93). DCs exist in two functional states: immature and 
mature. Recognition of tissue homeostasis disturbances through 
damage-associated molecular patterns or pathogen-associated 
molecular patterns leads to DC maturation (94). DCs are critical 
innate immune cells at barrier sites, including the lung, playing a 
decisive role in initiation of adaptive immune responses against 
foreign material, infection, commensals or tissue damage (95). DCs 
are present in various regions of the lung tissue, positioned beneath 
the epithelial layer, ready to come into contact with foreign 
substances, infections, or tissue damage. In this capacity, they 
benefit from their capability to actively collect samples from the 
airways (96).

In process of hematopoietic stem cell (HSC) differentiation 
into DCs, the miR-223 expression level is altered in myeloid stem 
cells, HSCs and DCs, which proves that miR-223 takes part in DC 
differentiation (97). Bros et al. discovered that miR-223 has a 
negative regulatory effect on DCs activation in response to 
inflammatory. Upon DCs being stimulated with LPS, a significant 
decrease in miR-223 expression was observed. In response to 
glucocorticoids and anti-inflammatory cytokines, miR-223 
expression is increased in DCs during the differentiation of bone 
marrow cells into BMDCs. Subsequently, the high level of 
miR-223 contributes to decreased Cfla, Kras and Rasa1 mRNA 
expression and influences immune protein regulatory networks 
(57). Tang’s research revealed that miR-223 binding to Rhob can 
also regulate DC differentiation and inhibit antigen uptake and 
presentation (98). In the autoimmune myocarditis (EAM) mouse 
model, Chen observed that miR-223 expression is markedly 
reduced in comparison to normal mice, whereas overexpressing 
miR-223 in DCs suppresses NLRP3 inflammasome production 
and facilitates the polarization of DCs into a tolerogenic 
phenotype (58). In mouse model of allogeneic heterotopic heart 
transplantation, overexpression of miR-223  in immature 
dendritic cells was found to result in longer graft survival and 
reduced infiltration of immune cells. The regulation of DC 
function by miR-223 through Irak1, Treg differentiation, and 
IL-10 secretion suppressed allogeneic heart graft rejection (59). 
In addition to EAM, miR-223 has been shown to regulate 
function and differentiation of DCs by targeting C/EBP-β in a 
mouse model of colitis. When miR-223 was deficient, monocytes 
produced more proinflammatory cytokines and gave rise to more 
monocyte-derived DCs upon stimulation (60). In conclusion, the 
aforementioned research demonstrates that miR-223 operates as 
a repressor of DC activation and sustains a state of maturation 
resistance that promotes a tolerogenic response during instances 
of inflammation.
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4. The role of miR-223 in pulmonary 
inflammation

The alveoli constitute a delicate tissue structure, which makes the 
regulation of pulmonary inflammation as important as that of the 
respiratory tract. The extensive surface area of the lung is crucial for 
its vital role in gas exchange, and it also act as the primary barrier 
against the external environment. Due to its constant exposure to an 
airflow containing various types of proinflammatory stimuli, such as 
radioactive, infective, pro-allergenic or toxic agents, the lung plays a 
significant role in protecting the body from harmful environmental 
factors (99). Although the inflammatory response in the lung is 
thought to be a straightforward series of reactions, inflammation is a 
delicate matter of homeostasis and is tightly controlled. Excessive 
inflammation will lead to acute organ dysfunction and multiorgan 
failure or chronic tissue remodeling and destruction.

As we mentioned before, miRNAs are crucial regulators of various 
developmental and cellular processes. In certain pulmonary 
inflammatory conditions like pneumonia, COPD, and tuberculosis, 
miR-223 can target specific genes and suppress the synthesis of 
inflammatory mediators or hinder inflammation signaling pathways, 
thereby safeguarding the body from inflammatory damages (Figure 2; 
Table 2).

4.1. Acute lung injury

ALI along with its severe form named ARDS, are both acute 
inflammatory lung conditions that can result in significant morbidity 
and mortality rates every year (111). ALI/ARDS can result from a 
range of lung injuries, including direct injuries like embolism, 
inhalation of toxic gases, lung contusion, and pneumonia, as well as 
indirect injuries such as major trauma, hemorrhagic shock, sepsis, 
drug overdose, or reperfusion injury (112, 113). Direct and indirect 
lung injuries exhibit comparable final pathophysiological features, 
such as compromised alveolar-capillary membrane function, reduced 
alveolar fluid clearance, and increased inflammation, which can lead 
to gas exchange difficulties and hypoxemia (114, 115). Although there 
have been extensive studies on ALI/ARDS, there are still no specific 

medical treatments. Therefore, the study of specific treatment 
strategies is urgently needed.

Studies have indicated that miR-223 can regulate the inflammatory 
response during ALI/ARDS (116). Reduced miR-223 expression has 
been demonstrated in in vitro experiments to diminish the NLRP3 
inflammasome, the inhibition of RHOB and TLR4/NF-κB signaling 
pathway, leading to the exacerbation of lung injury (73). A further 
study found that miR-223 overexpression can alleviate LPS-induced 
ALI/ARDS in vivo by directly targeting NLRP3 (117, 118). Moreover, 
in macrophages, miR-223 can regulate subtype differentiation (73). 
miR-223 has been found to regulate macrophage differentiation by 
targeting the NLRP3 inflammasome, as shown in studies using a 
mouse model where lung inflammation is mediated by macrophages 
(28). In septic mice, miR-223 is an important regulator of the M2-type 
polarized target genes Nfat5 and Rasa1 mediated by IL-4 (49). What 
is more, treat with miR-223 from epithelium and endothelium derived 
exosomes can regulate the immune balance of alveolar macrophages 
(AMs) by targeting RGS1 mediated calcium signaling-dependent 
immune response (119). Furthermore, He’s study showed that 
miR-223 can also alleviates ALI by targeting STK39 in AMs (120). 
These results indicate that miR-223 can regulate the immune balance 
of AMs and can be used as potential therapeutic drugs for ALI/ARDS 
(Figure 3).

miR-223 is also an inhibitor of neutrophil development and 
function, and it can alleviate neutrophilic airway inflammation by 
inhibiting the release of IL-1β and the NLRP3 inflammasome. 
miR-223 can restrict the differentiation of Ly6G+ neutrophils derived 
from bone marrow and suppress the activity of the NLRP3 
inflammasome and the production of IL-1β in ALI caused by 
mitochondrial damage-associated molecular patterns. However, the 
lack of miR-223 leads to continuous activation of NLRP3 and IL-1β 
(100). Moreover, neutrophil-derived microRNAs can modify mucosal 
gene expression during acute lung injury by transferring to pulmonary 
epithelial cells. In mouse neutrophils, miR-223 can be transferred to 
lung epithelial cells through MVs, where it inhibits poly (ADP-ribose) 
polymerase 1 (PARP-1) to impede acute lung injury. Therefore, 
overexpression of miR-223 in mice provides protection during acute 
lung injury (121). Additionally, Tan proved that miR-223 directly 
targeted high-mobility group box 2 (HMGB2) gene and the 

FIGURE 2

Schematic illustration of miR-223’s mode of action in pulmonary inflammation.
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downregulation of miR-223 increased HMGB2 protein level, which 
activated the JNK signaling pathway and thus induced oxidative stress 
and autophagy in LPS-treated alveolar epithelial cells. Knockdown of 
HMGB2 protein deactivated the JNK signaling pathway and inhibited 
autophagy and oxidative stress in alveolar epithelial cells (122). In 
summary, miR-223 is regarded as a potential therapeutic target in ALI 
as it can regulate the process of inflammation in ALI.

4.2. Asthma and COPD

COPD and asthma represent the most frequently occurring 
chronic inflammatory respiratory conditions (123, 124). Asthma is a 
frequent inflammatory condition affecting the lower respiratory tract 
and is characterized by airway obstruction and hyperresponsiveness 

(124, 125) with symptoms such as wheezing, difficulty breathing, chest 
tightness, and coughing (126). COPD is a diverse disease marked by 
lung inflammation, rapid decline in lung function, chronic bronchitis, 
and damage to the alveolar tissue caused by pulmonary inflammation 
(124, 127). This persistent inflammation results in symptoms such as 
breathlessness, chronic cough, and wheezing (128). Asthma and 
COPD are among the diseases with the highest incidence and 
socioeconomic burden worldwide. Therefore, research on asthma and 
COPD is extremely urgent.

Studies have shown that miR-223 is involved in the processes of 
COPD and asthma. miRNA profiling shows that compared to healthy 
groups, miR-223 is more highly expressed in bronchial brushings 
(129) and induced sputum supernatant, the stimulated secretion of 
fluid from the respiratory tract containing various inflammatory cells, 
which quantitative cell count is the reference standard to reflect the 
airway inflammation of asthma patients (130, 131). Likewise, in 
neutrophilic asthma patients, the expression level of miR-223 is 
increased compared to that in healthy controls and eosinophilic 
asthmatic patients (131). Ezzie et  al. analyzed the differential 
expression of miRNAs in lung tissues of smokers with or without 
COPD and found that miR-223 expression levels were higher in 
patients with COPD. A recent study showed that miR-223 had good 
combinatory predictive ability in differentiating between health and 
mild COPD. Furthermore, miR-223 was correlated with airway 
eosinophilia and were able to distinguish pure eosinophilic COPD 
from other airway inflammatory subtypes (132). In addition, Hirai 
found that miR-223 had lower expression levels in asthma-COPD 
overlap (ACO) patients and could discriminate between ACO patients 
and patients with either asthma or COPD (133). These findings 
highlight that miR-223 expression is distinctively regulated in 
obstructive lung diseases (134).

The NF-κB signaling pathway can be triggered by environmental 
stimuli in the bronchial biopsies of patients with COPD and asthma, 
resulting in proinflammatory reactions (101). Several studies suggest 
that elevated levels of miR-223 in human bronchial epithelial cells due 
to overexpression can decrease NF-κB activity by influencing the 
activation of NF-κB targets such as PARP-1 (103) and IκB kinase α 
(IKKα) (135). On the one hand, PARP-1 activation is observed in vitro 
in response to cigarette smoke and oxidative stress (136). miR-223 can 
repress PARP-1 to reverse the excessive inflammatory response (121). 
On the other hand, during human monocytes differentiate to 
macrophages, the increase in IKKα levels is correlated with a decrease 
in miR-223 expression (135). The levels of IKKα in peripheral blood 
mononuclear cells were found to be  similar between asthma and 
COPD patients and healthy groups, according to some researchers. 
However, COPD patients and control smokers have higher p-IKKα 
levels than nonsmoking controls (104). A further study revealed that 
miR-223 can regulate the expression of mucin 5 AC (MUC5AC), 
eotaxin-2 (CCL24) and thymic stromal lymphopoietin (TSLP) by 
targeting NF-kB signaling pathway, this suggests that miR-223 is a 
regulator of allergic inflammation and could potentially consider as 
novel and targeted therapy for asthma (117) (Figure 4).

In addition to the inflammatory response, important 
characteristics of asthma and COPD also include cell dysfunction and 
death (137). Insulin-like growth factor-1 receptor (IGF-1R), known as 
the controller of cell proliferation, has been confirmed as a target of 
miR-223. Liu’s research confirmed that miR-223 targets the 3′UTR of 
IGF-1R, which subsequently led to the suppression of IGF-1R 

TABLE 2 miR-223 expression varies across different cell types and is 
influenced by various conditions.

Expression 
of miR-223

Cell lines/
patients 
samples

Condition References

Overexpression of 

miR-223

Porcine lung ↓ NLRP3 activity (100)

Overexpression of 

miR-223

Bronchial 

epithelial cells

↓ NF-κB activity (101)

Down-regulation 

of miR-223

A549 cells ↑ Rhob, NLRP3, 

TLR4/NF-κB 

activity

(73)

Overexpression of 

miR-223

Macrophages 

derived from 

BMDMs

↓ TLR4/NF-κB 

activity

(102)

Down-regulation 

of miR-223

HBECs ↑ NF-κB activity (101)

Overexpression of 

miR-223

HBECs ↓ PARP-1 activity 

in blood

(103)

Down-regulation 

of miR-223

PBMCs ↑ IKKα activity (104)

Overexpression of 

miR-223

A549 Cells ↓ NLRP3 activity 

in PBMCs

(105)

Overexpression of 

miR-223

Neutrophils/

airway smooth 

muscle cells/

Lewis lung 

carcinoma cells

↓ IGF-1R activity (106)

Down-regulation 

of miR-223

A549 cells/

Lung cancer 

cells

↓ TGF-β receptor 

3

(107)

Overexpression of 

miR-223

Lewis lung 

carcinoma cells

↓ CDK2 activity (108)

Down-regulation 

of miR-223

glioblastoma ↓ IL-1β, IL-8, 

IL18, MCP-1 

activity

(109)

Down-regulation 

of miR-223

adipose stem 

cells

↓ IL-6, IL-1β and 

TNF-α activity

(110)
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expression (106). IGF-1 can activate PI3K/Akt and mTOR to control 
apoptosis, survival, growth, and cell proliferation by binding with 
IGF-1R (138). Abnormal IGF-1 signaling has been found in asthma 
and COPD (139). Moreover, a reduction in serum IGF-1 levels has 
been observed in COPD patients experiencing acute exacerbation in 
comparison to healthy individuals and stable COPD patients. 
Conversely, IGF-1 mRNA levels in lung tissue are elevated in COPD 
patients when compared to healthy people (140). In addition to 
IGF-1R, miR-223 also targets Mef2c, which is a transcription factor 
that promotes the proliferation of myeloid progenitors to inhibit the 
proliferation of myeloid progenitor cells. Within the bronchial 
epithelial cells of individuals with severe asthma, the expression of 
Mef2c is decreased compared to that in healthy controls (141).

In addition to cell differentiation and proliferation, several vitro 
studies have explored the impact of miR-223 on cell survival, invasion, 
and apoptosis. The contribution of TGF-β and its receptors to airway 
remodeling in COPD and asthma is well-established, and miR-223 
can target TGF-β receptor 3 to promote cell invasion and viability and 
reduce apoptosis (142). In the serum of COPD patients and in 
bronchial biopsies of asthma patients, the expression of TGF-β1 is 
increased (143), while the expression levels of TGF-β1 observed in 
both bronchial epithelial cells and alveolar macrophages of COPD 
patients are decreased compared to control groups (107). This may 
potentially be attributed to elevated expression levels of miR-223 in 
individuals suffering from asthma and COPD. Other research has also 
revealed that miR-223 participates in cell death by targeting p53 and 
cyclin-dependent kinase 2 (CDK2) to inhibit migration and 
proliferation (108). While p53 expression is typically low during 

homeostasis, it can be induced by oxidative stress in airway epithelial 
cells, such as those exposed to smoke, leading to cell apoptosis (144). 
Although miR-223 levels are increased in COPD patients, its validated 
target p53 expression levels are found to be higher in the lung tissue 
of COPD patients as compared to non-COPD controls, particularly in 
smokers with COPD (145). This indicates that miR-223 may not 
effectively reduce apoptosis by regulating p53  in COPD patients 
compared to non-COPD people. Moreover, MO’s study showed that 
the expression levels of miR-223 was reduced and the expression level 
of NLRP3 was increased by lncRNA GAS5, which subsequently 
promoted pyroptosis in COPD (146). In addition, Xu and his colleges 
found that overexpression of miR-223 via treatment with miR-223 
agomirs attenuated airway inflammation, NLRP3 levels and IL-1β 
release. This revealed a crucial role for miR-223  in regulating the 
immune inflammatory responses by depressing the NLRP3/IL-1β axis 
in neutrophilic asthma (147).

In summary, miR-223 can target several genes, such as CDK2, 
TGF-β, IGF-1R, Mef2c and p53, to regulate cell viability, cell invasion 
and cell apoptosis during asthma and COPD.

4.3. COVID-19

An uncontrolled or excessive innate immune response in 
individuals with COVID-19 can result in the development of ARDS 
and a cytokine storm, which manifests as severe alveolar inflammation. 
Usually, COVID-19 causes mild respiratory symptoms, but it can also 
lead to severe complications. When COVID-19 infects macrophages, 

FIGURE 3

The roles of miR-223 in regulating acute lung injury mechanisms.
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they present viral antigens to T cells, which produce cytokines 
associated with different kind of T-cell subtypes. The subsequent 
release of large quantities of cytokines amplifies the immune response, 
resulting in a cytokine storm. Massive secretion of chemokines and 
cytokines like TNF-β, MCP-1, IL-8, IL-21, IL-6, and IL-1 is promoted 
in cells in response to COVID-19 infection. The cytokines and 
chemokines then recruit leukocytes and lymphocytes to infection site. 
CD8 T cells are able to generate potent mediators that can effectively 
eliminate COVID-19, but the ongoing release of these mediators may 
result in viral persistence and have a detrimental impact on the 
activation of CD8 T cells (148).

When COVID-19 infects a host cell, its S protein binds to the 
dipeptidyl peptidase-4 receptor (DPP4R) and causes genomic RNA to 
appear in the host cell cytoplasm. TLR3 is then sensitized by dsRNA, 
activating the signaling cascades of nuclear factor-κB (NF-κB) and 
interferon-regulatory factors (IRFs), which produce interferons (IFNs) 
and proinflammatory cytokines. IFN-III, IFN-II, and IFN-I are 
induced by engagement of IFN receptors, which also activate different 
members of the signal transducer and activator of transcription 
families and Janus kinase (JAK), forming specific transcription factor 
complexes. At the same time, JAK1 and JAK2 are activated by IFN-II, 
resulting in the formation of a phosphorylated STAT1 
homodimer (149).

Active peptide angiotensin II (Ang II), converted from the 
inactive decapeptide Ang I from the renin-angiotensin-system (RAS), 
can lead to chronic tissue injury, hypertension and vasoconstriction 
through the JAK–STAT signaling pathway. Furthermore, the RAS 
mediates the production of proinflammatory cytokines. Ang II 
increases the infiltration of immune cells, which leads to the local 
production of proinflammatory cytokines such as IL-1, IL-6, IFN-γ 
and TNF-α in target tissues (150). Moreover, some studies have shown 
that macrophage infiltration along with the apoptosis of epithelial cells 
and pneumocytes occurs in lung tissue (151). This may be mediated 
by MCP-1 through TGF-β and TNF-α, which leads to 
cytokine production.

Some miRNAs have been reported to be vital for virus entry into 
host cells and ACE2 level regulation (152). Furthermore, diverse 
studies have demonstrated that miRNAs suppress the replication and 
expression of the SARS-CoV-2 spike protein (153). Considering this, 
miRNAs can play a positive or negative role during virus-related 
processes in different ways: binding to host transcripts; binding to 
viral transcripts and direct binding to the viral genome (154). In 
humans, miRNAs have the ability to serve two functions, which 
include either enhancing the durability and propagation of viral RNA 
or strengthening the host’s anti-viral response. Due to their potential 
to regulate these responses, miRNAs are regarded as potential 

FIGURE 4

Mechanisms of miR-223 in the modulation of Chronic obstructive pulmonary disease.
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instruments for exploring the networks that regulate the immune 
response to both COVID-19 infection and vaccination (155).

Wang et al. conducted a study and showed that miR-223-3p could 
directly target the S protein and inhibit the replication of SARS-CoV-2 
(153). Which indicate that there is a correlation between low levels of 
circulating miR-223 and increased SARS-CoV-2 replication in elderly 
individuals and those with diabetes. Patients who are older and have 
comorbidities are at an increased risk of developing severe 
complications and experiencing higher mortality rates from 
COVID-19 as a result of infection with SARS-CoV-2.

In addition to targeting the S protein to inhibit SARS-CoV-2 
replication, miR-223 may play a crucial role in cytokine storm 
regulation. During the COVID-19 pandemic, several studies have 
suggested a correlation between the cytokine storm in patients’ bodies 
and severe deterioration of their health (156). Ding et al. conducted 
an in vitro study on glioblastoma and found that treated with 
miR-223-3p mimic reduced the expression of several inflammation-
associated cytokines, including IL-8, IL-18, IL-1β and MCP-1 resulting 
in inhibited cell proliferation and migration (109). Moreover, it has 

been demonstrated that miR-223-3p directly impacts the expression 
of inflammatory cytokines in adipose stem cells, which are known to 
be associated with cytokine storms (110) (Figure 5). These researches 
suggest that miR-223 can regulate cytokine levels in COVID-19 and 
thereby regulate the inflammatory process and disrupt the 
immune response.

4.4. Other lung inflammatory diseases

In addition to the diseases mentioned above, miR-223 also 
participates in the inflammatory response of other lung inflammatory 
diseases, including pulmonary tuberculosis (TB), sarcoidosis and 
pulmonary fibrosis (Table 3).

TB, as a typical infectious disease, is a chronic illness distinguished 
by continuous inflammation (164, 165). TB is caused by 
Mycobacterium tuberculosis (Mtb), which is accountable for high rates 
of mortality and morbidity across the globe (166). Dorhoi found that 
in the blood of patients with active pulmonary TB, miR-223 is 

FIGURE 5

Mechanisms of miR-223 in the modulation of COVID-19.
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abundantly expressed. TB-resistant mice that lack miR-223 expression 
exhibit high susceptibility to acute lung infection. miR-223 can reverse 
the mAb depletion of neutrophils by targeting the chemoattractants 
C-X-C motif chemokine ligand-2 (CXCL2), chemokine C-C motif 
chemokine ligand 3 (CCL3), and IL-6 to delete chemokine C-X-C 
motif receptor 2 (CXCR2) (157). Further research revealed that in 
plasma from patients with pulmonary TB, miR-223 is significantly 
downregulated. The variance in miR-223 expression levels may 
be  linked to the diversity among the TB strains causing infection 
(158). As STAT1 has a significant impact in the immune defense 
against TB infection, the STAT1-related molecule miR-223 has been 
identified as a potential biomarker in the development of active TB 
(159). The above studies indicate the important role of miR-223 in the 
treatment of TB.

Sarcoidosis is a medical condition that is distinguished by the 
development of granulomas and an exaggerated immune response to 
unknown agents (167). To identify sarcoidosis biomarkers, Zhou et al. 
studied microRNA and protein-coding gene expression data of 
peripheral blood mononuclear cells (PBMCs) in healthy people and 
patients with noncomplex or complex sarcoidosis. They found that 

miR-223 may be associated with the severity of sarcoidosis (168). Neli 
et al. isolated the peripheral blood (PB) and bronchoalveolar (BAL) 
fluid of sarcoidosis patients for miRNA analysis. Through the analysis 
of PB’s and BAL’s global transcriptome, they recognize the alteration 
of miR-223 in TLR-2 and NF-κB apoptosis and proliferation signals. 
The expression of miR-223 is increased in regulatory T cells (Tregs) 
from patients with pulmonary sarcoidosis (160). Huppertz et  al. 
recruited 19 healthy volunteers and 19 sarcoid patients, and 
demonstrated that the mRNA levels of miR-223 are decreased in 
BALF. And miR-223 KO mice can increase granuloma formation 
compared to wild-type (161). These data provide strong evidence that 
miR-223 is an essential part of the network in pulmonary sarcoidosis.

Pulmonary fibrosis is a chronic condition that is defined by the 
gradual loss of lung function (169). Most cases of fibrosis can 
be classified as idiopathic (170). Idiopathic pulmonary fibrosis is a 
lethal form of interstitial pneumonia that is characterized by the 
gradual scarring of lung tissue (171). Stachowiak et al. included 30 
pediatric patients diagnosed with cystic fibrosis and collected their 
biologic material during pulmonary exacerbation. miRNA profiling 
showed that miR-223 is significantly altered during pulmonary 
exacerbation in sputum (162). In the pulmonary fibrosis rat model, 
Qu et al. found that the model group exhibited a significantly higher 
pulmonary inflammation score compared to the control group. 
Furthermore, the expression level of miR-223 decreased with 
increasing fibrosis (163). However, further research is needed to 
explore the specific role of miR-223 in pulmonary fibrosis.

5. The potential role of miR-223 in 
clinical treatment

Ever since miRNAs were first discovered in 1993, understanding 
the function of miRNAs in development and disease has rendered 
them appealing resources and objectives for innovative diagnosis and 
prognosis biomarkers, as well as therapeutic strategies.

Due to the multiple functions of miRNAs in disease development, 
the disorder of one or a group of specific miRNAs may be closely 
related to human disease progression. Therefore, miRNAs are 
considered as potential diagnosis and prognosis biomarkers in disease. 
For example, miR-21, miR-20a, miR-103a, miR-106b, miR-143 and 
miR-215 et  al. are considered as the biomarker in cancer (17), 
miR-155, miR-27a, miR-21, miR-146a, and miR-223 et al. are proved 
to play an essential role in regulating ALI/ARDS (172), miR-143, 
miR133, miR-145, miR-15, miR-126 et al. have been demonstrated to 
play a part in cardiovascular diseases (173). In recent years, the 
potential of miR-223 as diagnosis and prognosis biomarkers has also 
explored (Table  4). Pan et  al. found that compared with healthy 
women, the levels of miR-223 are underrepresented in exosomes from 
plasma of epithelial ovarian cancer (EOC) patients, this indicates that 
miR-223 decrease its oncogenic potential in exosomes (174). Another 
clinical trial reveals that the expression level of miR-223 from the 
serum of laryngeal squamous cell carcinoma (LSCC) patients is down-
regulated (175). In addition to cancer, the application of miR-223 has 
also been studied in cardiovascular disease. Charlotte et  al. first 
investigates the postprandial responses of miR-223 levels. Their study 
shows that high-fat meal intake increases miR-223 levels (176). Lidia 
et al. show that miR-223 macrophage levels in non-smoker men with 
high cardiovascular risk are increased after beer and decreased after 

TABLE 3 The role of miR-223 in other lung inflammatory diseases.

Expression 
of miR-223

Cell lines/
patients 
samples

Condition References

Upregulation of 

miR-223

Lung tissue in 

tuberculosis mice

↓ CXCL2, CCL3 

and IL-6 to delete 

Cxcr2

(157)

Upregulation of 

miR-223

The mouse 

macrophage 

J774A.1 cell line 

infected with 

Mycobacterium 

tuberculosis 

H37Rv

miR-223 

modulates IKKα 

expression thus ↓ 

NF-κB activation

(158)

Downregulation 

of miR-223

Patients with 

pulmonary TB

↑ STAT1 and 

affect the 

interferon 

signaling 

pathway

(159)

Downregulation 

of miR-223

Peripheral blood 

and 

bronchoalveolar 

of sarcoidosis 

patients

↑ NF-κB 

apoptosis and 

proliferation 

signals

(160)

Downregulation 

of miR-223

Sarcoid patients ↑ NLRP3 activity (161)

Upregulation of 

miR-223

Sputum 

supernatants in 

children infected 

with Aspergillus

Response to 

infection and 

enhanced airway 

inflammation 

induced by 

Aspergillus

(162)

Downregulation 

of miR-223

Rats with 

pulmonary 

fibrosis

↑ Hydroxyproline 

activation

(163)
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non-alcoholic beer consumption (177). In other diseases, Claudia 
et  al. reveals that bicarbonate hemodialysis (BHD)-derived EV of 
chronic kidney disease patients had an increased expression of the 
proatherogenic miR-223 with respect to healthy subjects or mixed 
online hemodiafiltration (mOL-HDF). The switch from BHD to 
mOL-HDF significantly reduced systemic inflammation and miR-223 
expression in plasma EV, thus improving HUVEC angiogenesis (178). 
In a double-blind randomized controlled trial of the effects on 
thrombotic markers and miRNA levels, the author found that 
compared with aspirin, during prasugrel-therapy of type 2 diabetes 
mellitus (T2DM), the expression of miR-223 decreased (179). A 
further study shows that miR-223 from plasma of high dairy and 
adequate dairy are upregulated. This indicates that miR-223 is related 
to T2D (180). In addition, an research analyzed miRNAs in 
cerebrospinal fluid (CSF) from intraventricular hemorrhage (IVH) 
infants showed that the levels of miR-223 were elevated in CSF after 
the onset of IVH (181). Hung and his colleges measured the levels of 
intracellular regulatory miRNAs in PBMCs and monocytes isolated 
from patients with major depressive disorder (MDD) before and after 
treatment with antidepressants. They found that the level of miR-223 
was increased significantly in those who achieved remission. This 
suggested that miR-223 may act as biomarkers for remission during 
the treatment of MDD (182).

At present, clinical trials using miRNAs as therapeutic targets 
mainly focus on tumors and cardiovascular diseases. For cancer 
diseases, considering the complex interplay between miRNAs and 
target genes, the targets chosen for ongoing clinical trials typically 
exhibit confirmed interactions with multiple oncogenes or tumor 
suppressor genes. Moreover, these miRNAs function as Onco-miRs or 

Suppressor-miRs across various malignant tumors (6, 183), and 
several miRNA-targeted therapies are already in clinical development 
(184–187). For cardiovascular diseases, miRNAs can be used to treat 
dyslipidemia that increases the risk of cardiovascular disease, such as 
atherosclerosis (188). It is worth mentioning that, CDR132L, the first 
miR-132 inhibitor for heart failure has entered clinical trials which 
marks the entry of miRNA in the treatment of heart disease (189).

At present, strategies that target miR-223 in diseases treatment are 
mainly in animal models. For example, in the mouse model of KD, the 
excessive arterial damage could be  rescued by administration of 
miR-223 mimics (190). In addition, in vivo and in vitro, miR-223 
mimics were proved to protect against atherosclerosis by reducing the 
inflammation and the MEK1/ERK1/2 signaling pathway (191). A 
recent study also showed that miR-223 mimics could reduce the 
NLRP3 protein expression level and suppress chronic inflammation 
in DE (89). For radiation-induced heart disease (RIHD), miR-223 
mimics could improve myocardial injury by activating adenosine 
monophosphate activated protein kinase (AMPK) (192). On the other 
hand, miR-223 inhibitors could cause hyper-activation of NLRP3 in 
the J774A.1 murine macrophages infected by subsp. zooepidemicus 
(SEZ) (193). What is more, miR-223 inhibitors can upregulate the 
expression of NLRP3 and increase the pyroptosis of fibroblast-like 
synoviocytes (FLSs) in gout arthritis (GA) rats (194). These examples 
indicate that in recent years, a considerable number of animal 
experiments have employed miR-223 mimics and inhibitors. This 
suggests that the development of miR-223 drugs is not impossible, and 
the future development and utilization of miR-223 clinical drugs will 
have significant implications.

As miR-223 plays an important role in pulmonary inflammations, 
it has great prospects in the clinical treatment of lung inflammations. 
Therefore, clinical trials of miR-223 as therapeutic targets in 
pulmonary inflammations are urgently needed.

6. Conclusions and future 
perspectives

In this review, we summarized the role of miR-223 during the 
inflammatory response in various cell types, as well as the role of 
miR-223 in some representative pulmonary inflammatory diseases, 
especially ALI, asthma, COPD and COVID-19. As we mentioned 
before, during tissue or cellular inflammation, the expression of 
miR-223, a multifunctional miRNA, is particularly elevated and 
regulated by several transcription factors. This miRNA is involved in 
regulating immune cell differentiation, polarization and proliferation, 
and plays a critical role in mediating cell-tissue, cell–cell, cell-tissue-
inflammatory disease interactions. The molecular mechanisms of 
immune modulation by miRNAs can provide insights into the early 
diagnosis or treatment of inflammation.

miR-223, which has immunomodulatory effects in some tissues, 
can regulate immune cell polarization, proliferation and differentiation 
during pulmonary inflammation. It can also serve as a messenger of 
inflammation in the immune system. We can provide some insights 
into the early diagnosis or treatment of pulmonary inflammatory 
diseases by elucidating the molecular mechanisms of miR-223  in 
inflammation modulation. By establishing the regulatory network of 
miR-223, drugs targeted by miR-223 have better efficacy in treating 
pulmonary inflammatory diseases.

TABLE 4 miR-223 in clinical trials.

Target 
diseases

Intervention 
measures

Expression 
of miR-223 
as 
biomarker

References

EOC N/A ↓ In exosomes 

from plasma of 

EOC patients

(174)

LSCC N/A ↓ In serum of 

LSCC patients

(175)

Cardiovascular 

Disease

Theobromine ↑ In 

apolipoprotein 

B-depleted serum

(176)

Cardiovascular 

Disease

Beer or non-

alcoholic beer

↑ In macrophage (177)

Chronic kidney 

disease

BHD or mOL-HDF ↑ In EV (178)

T2DM Aspirin, 

Clopidogrel, 

Prasugrel

↓ In serum (179)

T2D HD and AD ↑ In serum (180)

IVH MetHb, ferrylHb, 

heme, or TNF-α

↑ In CSF (181)

MDD Antidepressants ↑ In PBMC and 

monocytes

(182)
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Since December 2019, COVID-19 has emerged as a global 
pandemic, posing serious public health threat. The symptoms of 
COVID-19 include fever, cough, myalgia, fatigue, or dyspnea, and 
elderly people and those with comorbidities are at higher risk of 
infection, which can lead to severe complications and high mortality 
rates. In this context, miR-223 has been recognized as a crucial 
controller of the lung inflammatory response, as it targets a variety of 
factors such as TLR4, CXCL2, PI3K/AKT, TRAF6, PARP-1, IFN-I, 
CCL3, STMN1, IKKα, IL-6, IL-1β, IL-18, NLRP3, Caspase-1 and 
NF-κB. These suggest that miR-223 may play a crucial role in 
COVID-19 pathogenesis. Since there is no authorized medication 
available to eliminate the virus, examining miR-223 as a possible target 
for therapy could provide novel approaches to manage COVID-19.

To sum up, the involvement of miR-223 in lung inflammation has 
been established, and the information about its targets provides 
valuable insights that may lead to the development of innovative 
therapeutic approaches for pulmonary inflammation pathogenesis.
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