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Background: Cardiogenic shock (CS) is increasingly recognized as heterogeneous 
in its severity and response to therapies. This study aimed to identify CS phenotypes 
and their responses to the use of vasopressors.

Method: The current study included patients with CS complicating acute 
myocardial infarction (AMI) at the time of admission from the Medical Information 
Mart for Intensive Care IV (MIMIC-IV) database. Laboratory and clinical variables 
were collected and used to conduct latent profile (LPA) analysis. Furthermore, 
we used a multivariable logistic regression (LR) model to explore the independent 
association between the use of vasopressors and endpoints.

Result: A total of 630 eligible patients with CS after AMI were enrolled in the study. 
The LPA identified three profiles of CS: profile 1 (n = 259, 37.5%) was considered 
as the baseline group; profile 2 (n = 261, 37.8%) was characterized by advanced 
age, more comorbidities, and worse renal function; and profile 3 (n = 170, 24.6%) 
was characterized by systemic inflammatory response syndrome (SIRS)-related 
indexes and acid–base balance disturbance. Profile 3 showed the highest all-
cause in-hospital mortality rate (45.9%), followed by profile 2 (43.3%), and profile 
1 (16.6%). The LR analyses showed that the phenotype of CS was an independent 
prognostic factor for outcomes, and profiles 2 and 3 were significantly associated 
with a higher risk of in-hospital mortality (profile 2: odds ratio [OR] 3.95, 95% 
confidence interval [CI] 2.61–5.97, p < 0.001; profile 3: OR 3.90, 95%CI 2.48–6.13, 
p < 0.001) compared with profile 1. Vasopressor use was associated with an 
improved risk of in-hospital mortality for profile 2 (OR: 2.03, 95% CI: 1.15–3.60, 
p = 0.015) and profile 3 (OR: 2.91, 95% CI: 1.02–8.32, p = 0.047), respectively. The 
results of vasopressor use showed no significance for profile 1.

Conclusion: Three phenotypes of CS were identified, which showed different 
outcomes and responses to vasopressor use.
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Introduction

Cardiogenic shock (CS) is defined as a state of reduced cardiac 
output due to a primary cardiac problem that results in end-organ 
hypoperfusion (1). The most common etiology of CS is acute 
myocardial ischemia (AMI), accounting for up to 80% of the cases 
(2). Although concepts have evolved and management has 
advanced, CS-related mortality remains unexpectedly high (3–6). 
There have been numerous clinical trials aiming at testing whether 
certain drugs (for example, vasopressor and inodilator) or other 
interventions might reduce mortality but showing conflicting 
results (1, 6–9). One of the possible reasons for the failure of these 
trials to identify positive outcomes was the case-mix problem. CS 
encompasses a heterogeneous population in terms of underlying 
causes, clinical characteristics, outcomes, and possibly treatment 
response (10).

Therefore, individualized patient care is recommended to 
improve survival outcomes (11). The goal of individualized 
medicine is to tailor healthcare to each patient by identifying 
phenotypes of patients who present with distinct clinical 
characteristics and respond to individualized treatments. However, 
most attempts at staging CS have been based on expert opinions 
and consensus (10, 12–14). To avoid complexity, some of these 
classification systems only use few variables and depend on 
specific, although arbitrary, cutoffs, which may introduce bias and 
fail to capture the full variability of patient profiles (15). 
Additionally, many previous studies include unselected CS 
patients, and the etiology of CS has not been identified accurately, 
which might lead to result bias (12, 16). Furthermore, several 
previous studies did not explore the relationship between treatment 
effects and outcomes in different phenotypes (2, 12, 17).

To address the above issues and overcome the shortcomings 
of previous studies, the purpose of the study was to determine 
whether phenotypes could be  identified using latent profile 
analysis (LPA) by analyzing routinely collected clinical data. The 
identified profiles’ responses to widely used vasopressors were 
also compared.

Methods

Study design, database, and ethics approval

Based on the methods used in our previously published studies 
(18–22), we conducted a retrospective analysis using all the relevant 
data extracted from the Medical Information Mart for Intensive Care 
IV (MIMIC-IV version 2.0) database (23). The MIMIC-IV database 
is an updated version of MIMIC-III and currently contains 
comprehensive and high-quality data of patients admitted to intensive 
care units (ICUs) at the Beth Israel Deaconess Medical Center between 
2008 and 2022. An individual who has finished the Collaborative 
Institutional Training Initiative examination (Certification number: 
33281932) can access the database. The establishment of the 
MIMIC-IV database was approved by the Massachusetts Institute of 
Technology and the Institutional Review Board of Beth Israel 
Deaconess Medical Center (BIDMC) (24). Prior to study analyses, all 
data were made anonymous, so informed consent was not necessary.

Study population

We included all critically ill patients with a primary diagnosis of 
CS after AMI using diagnostic codes of the International Classification 
of Diseases, 9th revised (ICD-9) and 10th revised (ICD-10) editions 
(ICD codes of CS: 78551 and R570; ICD codes of AMI: 410, 411, 412, 
I21, I22, and I252). Patients were excluded if they had: (1) the age of 
less than 18; (2) multiple ICU admissions; (3) a length of stay in the 
ICU less than 24 h; and (4) incomplete information about study 
outcome and treatment-related data.

Variables and endpoints

Since our goal was to phenotype CS patients based on available 
data at the time of ICU admission, we only used data that was available 
within 24 h of ICU admission for further analyses. On the first day of 
admission, only the initial test results were taken into account for 
subsequent analyses if patients had received multiple measurements 
of their vital signs or laboratory tests.

The extracted variable included: (1) demographics: age, gender, 
and race; (2) admission type (urgent, emergency, and other); (3) vital 
signs: systolic blood pressure (SBP), diastolic blood pressure (DBP), 
mean blood pressure (MBP), heart rate, respiratory rate, temperature, 
and urine output; (4) laboratory findings: white blood cell (WBC) 
count, red blood cell (RBC) count, platelet count, red blood cell 
distribution width (RDW), blood urea nitrogen (BUN), creatinine, 
estimated glomerular filtration rate (eGFR), glucose, bilirubin, alanine 
aminotransferase, total calcium, potassium, sodium, chloride, and 
bicarbonate, pH, arterial oxygen partial pressure (PaO2), partial 
pressure of carbon dioxide (PCO2), anion gap, base excess, lactate, 
activated partial thromboplastin time (aPTT), and international 
normalized ratio (INR); The eGFR was calculated using the 
modification of diet in renal disease (MDRD) formula (25); (5) 
prognostic scoring system: systemic inflammatory response syndrome 
(SIRS) score and Charlson comorbidity score; (6) Treatment 
information: intra-aortic balloon pump (IABP), mechanical 
ventilation, renal replacement treatment (RRT), and vasopressors 
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(dopamine, epinephrine, or norepinephrine). All vasopressors were 
administered via continuous infusion.

The endpoints of our study included all-cause in-hospital and ICU 
mortality, length of stay (LOS) in ICU and hospital, duration of 
ventilation, and use of IABP and RRT.

Missing values

Due to the scarcity of the data samples, the missing variables were 
not simply eliminated. Instead, multiple imputation with chained 
equations, based on five replications, was used to account for missing 
data. Variables (body mass index, total protein, albumin, fraction of 
inspired oxygen, neutrophils, and oxygen saturation in the arterial 
blood) have values greater than 20% and were excluded from the 
study. The remaining variables were subjected to multiple 
imputation (26).

Latent profile analysis

The goal of LPA, a type of unsupervised machine learning 
method, is to uncover hidden groups or patterns in observed data 
(27). The observed data in the current study were CS patients’ vital 
signs and laboratory tests taken within the first 24 h of being 
admitted to the ICU, while the hidden groups were latent 
subphenotypes of CS. The distributions of the included variables 
were examined prior to analysis, and severely skewed data would 
be transformed. Bootstrap likelihood ratio test (BLRT), Bayesian 
information criteria (BIC), the number of people in each class, and 
the clinical interpretation were used in the current study to 
determine the optimal number of profiles (28, 29). BIC was utilized 
to compare models with different cluster numbers or specifying 
different parameterizations or both. Better model fit is indicated by 
lower BIC values (30). The number of mixture components in a 
particular finite mixture model parameterization was evaluated 
using BLRT. The observed significance is estimated using the 
bootstrap for the likelihood ratio test statistic. p values were 
calculated by BLRT for the k-class model versus (k-1)-class model 
comparison (29). The BLRT’s statistical importance was determined 
using a p value threshold of 0.05. Additionally, we pre-specified that 
the patient proportion in any of the latent profiles should be greater 
than 5%, as each latent profile should have a sizable number of 
patients (31). The underlying subphenotypes were also confirmed 
utilizing latent class analysis (LCA) (32). To visualize the optimal 
phenotype results and patterns in clinical variables, the data were 
analyzed with ranked plots of the variables by the mean and 
standardized difference among the phenotypes.

Statistical analysis

For continuous variables, values are shown as the mean (standard 
deviation [SD]) or median (interquartile range [IQR]) as appropriate. 
For categorical variables, the total number (percentage) is presented. 
Comparisons between groups were made using the Chi-Squared test 
or Fisher’s exact-test for categorical variables and the analysis of 
variance for continuous variables as appropriate.

After adjusting for some covariates (gender, race, and admission 
type), multivariable logistic regression (LR) was used to determine 
whether endpoints varied between profiles. Additionally, to investigate 
the independent influence of CS profile on outcomes, the LR model 
was also employed to investigate the relationship between vasopressor 
and outcomes in each profile.

All statistical analyses were performed using R software (version 
4.1.2). Two-tailed p values less than 0.05 were considered 
statistically significant.

Results

Patient and variable selection

We initially identified 76,540 records of ICU admission from the 
MIMIC-IV 2.0 database. After the application of inclusion and 
exclusion criteria, a total of 690 CS patients after AMI were included 
for analysis (Figure  1). A total of 33 continuous variables were 
incorporated into the mode.

Choose the best number of latent profiles

Models with different number of profiles were compared. 
Supplementary Table S1 illustrates the statistics for choosing the 
most appropriate number of profiles. The 3-profile model showed 
the lowest values in BIC (67,296.57). The three-profile model had 
a sizable number of patients in each profile (259, 261, and 170 for 
profiles 1, 2, and 3, respectively). When there were four or more 
profiles, some profiles’ patient counts differed by less than 5% from 
those of other profiles. The three-profile model was deemed the 
best model when all profile selection criteria were taken 
into account.

Different clinical features between profiles

Clinical features of all three profiles are shown in Tables 1, 2 and 
Figure 2. Profile 1 (n = 259, 37.5%) was considered as the baseline 
profile to compare with other profiles. Profile 2 had the largest 
proportion of all CS patients (n = 261, 37.8%) and was characterized 
by more advanced age, more comorbidities (Charlson comorbidity 
score), and worse renal function(creatinine, BUN, and eGFR). Profile 
3 (n = 170, 24.6%) was characterized by SIRS-related indexes (SIRS 
score, glucose, WBC, and respiratory rate) and acid–base balance 
disturbance (bicarbonate, pH, base excess, lactate, and PCO2).

Association between profiles with 
endpoints

Compared with patients in the other two profiles (profiles 1 and 
2), patients in profile 3 had the longest length of stay in ICU (median: 
131; IQR: 74 to 234 h) and duration of ventilation (median: 97.7; IQR: 
56.0–172 h; Table 2). Additionally, patients in profile 3 had the highest 
use of IABP rate (16.5%), use of RRT rate (25.9%), in-hospital and 
ICU mortality rate (45.9 and 40.0%), followed by patients in profile 2 
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and profile 1. Multivariable LR analyses demonstrated that in-hospital 
mortality differed significantly among the three latent profiles 
(Table 3). Compared to the profile 1, profiles 2 was 3 were significantly 
associated with a higher risk of in-hospital mortality (profile 2: odds 
ratio [OR] 3.95, 95% confidence interval [CI] 2.61–5.97, p < 0.001; 
profile 3: OR 3.90, 95%CI 2.48–6.13, p < 0.001) and ICU mortality 
(profile 2: OR 4.43, 95%CI 4.43, p < 0.001; profile 3: OR 5.14, 95%CI 
3.09–8.52, p < 0.001) (Table 3).

Sensitivity analysis

The underlying phenotypes were also verified by using LCA. As 
shown in Figure 3 and Supplementary Table S2, the best number of 
profiles was three as judged by entropy. Consistent with the result 
obtained by LPA, the LCA identified three profiles of CS: profile 1 was 
considered as the baseline group; profile 2 was characterized by 

advanced age, more comorbidities, and worse renal function; and 
profile 3 was characterized by SIRS-related indexes and acid–base 
balance disturbance.

Vasopressor use and outcome

Patients in profile 3 showed a high incidence of the use of 
vasopressors (dopamine use: 36.5%; epinephrine use: 24.1%; 
norepinephrine use: 73.5%) were, as expected, more prevalent 
compared to the other two profiles (Table 2). In the whole cohort, 
patients receiving vasopressors were at higher risk of both ICU (OR: 
3.36, 95% CI: 2.12–5.35, p < 0.001) and hospital mortality (OR: 1.99, 
95% CI: 1.36–2.90, p < 0.001) (Table  3). Vasopressor agents were 
associated with improved risk of hospital death for profile 2 (OR: 2.03, 
95% CI: 1.15–3.60, p = 0.015) and profile 3 (OR: 2.91, 95% CI: 1.02–
8.32, p = 0.047).

FIGURE 1

Missing rate for clinical and laboratory variables was extracted from the database. Missing rate < 5% is defined as “Good” and 5% ≤ missing rate ≤ 20% is 
defined as “OK”. Variables with a missing rate greater than 20% (body mass index, total protein, albumin, fraction of inspired oxygen, neutrophils, and 
oxygen saturation in the arterial blood) were excluded from the analysis. SBP, systolic blood pressure; DBP, diastolic blood pressure; MBP, mean blood 
pressure; WBC, white blood cell; RBC, red blood cell; RDW, red blood cell distribution width; BUN, blood urea nitrogen; eGFR, estimated glomerular 
filtration rate; PaO2, arterial oxygen partial pressure; PCO2, partial pressure of carbon dioxide; aPTT, activated partial thromboplastin time; INR, 
international normalized ratio; SIRS, systemic inflammatory response syndrome; IABP, intra-aortic balloon pump; RRT, renal replacement treatment; 
LOS, length of stay; ALT, alanine aminotransferase.
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Discussion

Major findings

CS is a clinical condition that results from ventricular failure due 
to acute coronary ischemia eventually leading to inadequate peripheral 

tissue perfusion, tissue and cellular ischemia, end-organ damage and 
multiorgan system failure (3). Using routinely collected clinical data 
in a large electronic database, this study identified 3 profiles of CS: 
profile 1 was the baseline group characterized by the lowest mortality 
rate; profile 2 was characterized by advanced age, comorbidities, worse 
renal function, and the second highest mortality; and profile 3 was 

TABLE 1 Continuous variables included in the latent profile analysis.

Characteristics Profile 1 (n = 259) Profile 2 (n = 261) Profile 3 (n = 170) p

Demographics

Age, year 69.6 [60.2; 77.9] 78.6 [69.7; 85.8] 69.7 [61.0; 78.1] <0.001

Vital signs

SBP, mmHg 113 [101; 126] 111 [95.0; 126] 114 [100; 132] 0.285

DBP, mmHg 67.0 [55.0; 79.0] 62.0 [52.2; 73.8] 72.0 [62.0; 86.0] <0.001

MBP, mmHg 83.0 [70.0; 92.0] 76.0 [67.0; 87.0] 82.0 [71.2; 96.8] <0.001

Heat rate, beats/min 87.0 [76.0; 101] 87.0 [73.0; 101] 89.5 [81.0; 110] <0.001

Respiratory rate, beats/min 19.0 [16.0; 22.0] 20.0 [17.0; 25.0] 22.0 [18.0; 25.0] <0.001

Temperature, ◦C 36.7 [36.4; 36.9] 36.6 [36.3; 36.9] 36.4 [35.7; 36.7] <0.001

Urine output, L/24 h 1930 [1155; 3064] 1135 [479; 2340] 1296 [620; 2191] <0.001

Laboratory findings

WBC, 109/L 12.2 [8.50; 15.9] 11.9 [9.17; 14.7] 16.9 [13.1; 21.9] <0.001

RBC, 109/L 4.09 (0.81) 3.56 (0.77) 4.09 (0.80) <0.001

Platelet, 109/L 225 [180; 293] 192 [147; 252] 236 [175; 316] <0.001

RDW, % 13.8 [13.1; 15.0] 15.4 [14.4; 17.1] 13.9 [13.2; 15.2] <0.001

BUN, mg/dL 20.0 [15.0; 27.0] 50.5 [39.0; 68.0] 25.0 [19.0; 31.8] <0.001

Creatinine, mg/dL 1.00 [0.90; 1.20] 2.10 [1.67; 3.23] 1.40 [1.10; 1.98] <0.001

eGFR, mL/min/1.73m2 66.4 [52.0; 83.2] 25.4 [17.2; 34.6] 42.7 [30.9; 53.9] <0.001

Glucose, mg/dL 150 [120; 188] 153 [118; 206] 258 [180; 365] <0.001

Bilirubin, mg/dL 0.60 [0.40; 1.00] 0.80 [0.50; 1.40] 0.70 [0.40; 1.20] 0.004

ALT 43.0 [25.0; 95.0] 47.0 [22.0; 125] 95.0 [47.0; 243] <0.001

Total Calcium, mmol/L 8.40 [8.00; 8.90] 8.50 [8.20; 9.00] 8.10 [7.50; 8.50] <0.001

Potassium, mmol/L 4.10 [3.80; 4.50] 4.60 [4.20; 5.20] 4.50 [4.00; 5.20] <0.001

Sodium, mmol/L 139 [136; 141] 136 [133; 140] 137 [134; 140] <0.001

Chloride, mmol/L 103 [100; 106] 99.0 [94.0; 104] 103 [99.0; 106] <0.001

Bicarbonate, mmol/L 23.0 [20.0; 25.0] 20.0 [18.0;24.0] 17.0 [14.0; 19.0] <0.001

pH 7.39 [7.34; 7.43] 7.35 [7.30;7.41] 7.22 [7.15; 7.27] <0.001

PaO2 95.0 [63.0; 195] 76.0 [41.0;148] 83.5 [52.0; 137] 0.001

PCO2 40.0 [34.0; 45.0] 40.0 [33.0;45.0] 46.0 [38.0; 54.0] <0.001

Anion gap 15.0 [13.0; 17.0] 19.0 [16.0;22.0] 20.0 [17.0; 24.0] <0.001

Base excess −1.00 [−3.00;0.00] −3.00 [−6.00;0.00] −9.00 [−12.00; −7.00] <0.001

Lactate 1.80 [1.30; 2.40] 2.20 [1.58; 3.80] 4.30 [2.40; 7.00] <0.001

aPTT 38.8 [28.5; 60.3] 38.1 [30.0; 64.4] 45.8 [30.7; 89.6] 0.004

INR 1.20 [1.10; 1.40] 1.40 [1.20; 2.00] 1.30 [1.20; 1.78] <0.001

Prognostic scoring system

SIRS 3.00 [2.00;3.00] 3.00 [2.00;3.00] 3.00 [3.00;4.00] <0.001

Charlson comorbidity score 6.00 [5.00;8.00] 9.00 [8.00;10.0] 7.00 [6.00;8.00] <0.001

SBP, systolic blood pressure; DBP, diastolic blood pressure; MBP, mean blood pressure; WBC, white blood cell; RBC, red blood cell; RDW, red blood cell distribution width; BUN: blood urea 
nitrogen; eGFR: estimated glomerular filtration rate; PaO2: arterial oxygen partial pressure; PCO2: partial pressure of carbon dioxide; aPTT: activated partial thromboplastin time; INR: 
international normalized ratio; SIRS: systemic inflammatory response syndrome; ALT: alanine aminotransferase.
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characterized by SIRS-related indexes and acid–base balance 
disturbance, and the highest mortality rate. Vasopressor use was 
associated with an improved risk of in-hospital and ICU mortality for 
profile 2 and profile 3, respectively, after adjustment for multiple 
underlying confounders. The results of vasopressor use showed no 
significance for profile 1.

Relation to other works and interpretation 
of the findings

Several prognostic classifications or risk stratifications of CS have 
been reported. For example, based on cardiac output (i.e., inadequate 
[cold] versus adequate [warm]) and volume status (i.e., overloaded 
[wet] versus euvolemic [dry]), CS patients are typically divided into 
four phenotypes (33, 34). Additionally, the IABP-SHOCK II score has 
three risk categories comprised of six variables and a maximum of 
nine points (17). Patients in the low, intermediate, and high-risk 
categories have an in-hospital mortality risk of 20–30%, 40–60%, and 
70–90%, respectively. The Society of Cardiovascular Angiography and 
Interventions (SCAI) staging, which describes the stages of CS from 
A to E, offers the possibility of discriminating between morbidity and 

mortality (12). It can be used to track the severity of shock over the 
course of a hospital stay. This classification system can be used to 
monitor the severity of shock over the duration of a hospital stay. 
However, it was noted that some of these classification tools are based 
on expert consensus and theoretical considerations rather than on 
clinical evidence. To avoid complexity, some of these classifications 
contain only a few characteristics and depend on specific, although 
arbitrary, cutoff values that could result in bias and fail to capture the 
full variability of patient profiles. Additionally, some continuous 
variables in the classification were changed into a categorized variable, 
which might cause a loss of information on between-subject variability.

In the current study, three distinct profiles of critically ill patients 
with CS after AMI were determined by using 33 clinical variables 
obtained from electronic health record (EHR) and the LPA, a kind of 
unsupervised machine learning technique. The main difference 
between LPA and other clustering algorithms (such as latent variable 
mixture modeling, K-means clustering, and LCA) is that LPA uses a 
“model-based clustering” method to derive clusters from a 
probabilistic model of the data’s distribution (28, 35–37). Therefore, 
LPA fits a model that describes the distribution of the data, and 
you evaluate probabilities of particular patients being members of 
particular latent profiles based on this model rather than searching for 
clusters with some arbitrarily chosen distance measure. Furthermore, 
we had presumed that the structure of our data was the result of some 
processes or “latent structure.” Since LPA enabled us to model the 
latent structure underlying the data, it seemed like a good option.

Profile 3, characterized by SIRS-related indexes and acid–base 
balance disturbance, showed the highest all-cause in-hospital and ICU 
mortality rate. SIRS is frequently observed among patients with AMI 
or CS and is considered a major pathophysiologic mechanism 
contributing to worsening shock and organ injury leading to adverse 
outcomes (38). Jentzer et al. (38) found that one-third of cardiac ICU 
patients meet clinical criteria for SIRS at the time of admission, and 
these patients have higher illness severity and worse outcomes across 
the spectrum of SCAI shock stages. In conclusion, SIRS can increase 
the mortality in patients with CS by exacerbating oxidative stress, 
pro-inflammatory cytokines, coagulopathy, impaired tissue perfusion, 
and the risk of infections. Early recognition and prompt treatment of 
SIRS are crucial to prevent or mitigate its detrimental effects and 
patient outcomes. Electrolyte and acid–base balance disorders are also 
important factors affecting patient prognosis. Several studies have 
demonstrated that a composite laboratory assessment of acidosis 
(including lactate, pH, anion gap, and base excess) was highly 
associated with short-term mortality in patients with CS (17, 39, 40). 
Profile 2 was characterized by advanced age, comorbidities, worse 
renal function, and the second highest mortality. It is noteworthy that 
there is some overlap in clinical characteristics between profile 2 and 
profile 3 patients. For example, worse kidney function of profile 2 
often leads to acid–base disorders and the associated disruption of 
electrolyte balance, which overlaps with the characteristics of profile 
3. However, the impairment of renal function can also lead to an 
increase in fluid overload, which can further aggravate the patient’s 
hemodynamic instability (41). In addition, renal dysfunction itself can 
cause an accumulation of uremic toxins and inflammation, which can 
further exacerbate the CS patient’s condition (42).

Vasopressors are commonly used in the management of patients 
with CS. This study found that the use of vasopressors was associated 
with a higher risk of hospital mortality in the whole cohort, profile 2, 
and profile 3, respectively. However, it was noted that for the patients 

TABLE 2 Categorical variables and outcome/treatment variables not 
included in the latent profile analysis.

Characteristics Profile 
1 (n = 
259)

Profile 
2 (n = 
261)

Profile 
3 (n = 
170)

p

Male gender 164 (63.3%) 162 (62.1%) 106 (62.4%) 0.954

Race 0.003

Black 14 (5.41%) 12 (4.60%) 6 (3.53%)

White 178 (68.7%) 190 (72.8%) 97 (57.1%)

Other 67 (25.9%) 59 (22.6%) 67 (39.4%)

Admission type 0.002

Urgent 125 (48.3%) 109 (41.8%) 63 (37.1%)

Emergency. 92 (35.5%) 99 (37.9%) 89 (52.4%)

Other 42 (16.2%) 53 (20.3%) 18 (10.6%)

Vasopressor use

Dopamine use 54 (20.8%) 65 (24.9%) 62 (36.5%) 0.001

Epinephrine use 40 (15.4%) 27 (10.3%) 41 (24.1%) 0.001

Norepinephrine use 14 (44.0%) 146 (55.9%) 125 (73.5%) <0.001

Endpoints

LOS in ICU, h 97.5 

[64.6;178]

98.2 

[54.3;166]

131 

[74.1;234]

0.001

LOS in Hospital, h 237 

[142;402]

235 

[123;411]

234 

[115;351]

0.278

Duration of ventilation, 

h

3.8 

[33.5;133]

64.2 

[33.0;114]

97.7 

[56.0;172]

<0.001

IABP 44 (17.0%) 30 (11.5%) 28 (16.5%) 0.163

RRT 10 (3.86%) 64 (24.5%) 44 (25.9%) <0.001

In-hospital Mortality 43 (16.6%) 113 (43.3%) 78 (45.9%) <0.001

ICU mortality 28 (10.8%) 88 (33.7%) 68 (40.0%) <0.001

IABP, intraaortic balloon pump; RRT, renal replacement treatment; LOS, length of stay; ICU, 
intensive care unit.
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who did not use vasopressors, the physical signs and laboratory test 
data are better than those who did. Additionally, vasopressors could 
increase myocardial oxygen consumption, reduce blood flow to 
peripheral organs, which might impair microcirculation, and increase 
cardiac afterload and the risk of arrhythmias. It is important to note 
that the use of vasopressors can be life-saving in some cases of CS, and 
their benefits should be weighed against the potential risks on a case-
by-case basis. Additionally, other factors such as the timing and dosing 
of vasopressors may also play a role in their association with increased 
mortality (43).

Clinical implications

The goal of precision medicine is to personalize healthcare with 
medical decisions, procedures, treatments, or products that are 
tailored to each patient. A small step toward precision medicine may 
be the identification of the subphenotypes of ICU patients within a 

specific diagnostic group. The current research, to the best of our 
knowledge, is the first to investigate CS subphenotypes using LPA and 
clinical variables acquired from an electronic health record, which 
would make it easier to apply the findings to routine clinical practice, 
and be  generalizable to other institutions. In addition, we  strictly 
limited the etiology of CS to avoid the influence of different causes on 
the research results. Subphenotypes of a disease are usually explored 
by using genomic information or biomarkers that were not routinely 
obtained in clinical practice. The identified profiles of CS in the 
current study may be used and estimated by clinicians in the ICU to 
quickly assess patients with CS and enhance clinical decision-making, 
as the key features identified in this study are rapid, easy, and 
inexpensive laboratory tests. Instead of aiming for a one-size-fits-all 
solution, these clusters may help clinical trials by developing treatment 
strategies that are tailored to a CS phenotype. This could pave the way 
for more individualized health care. Summarily, CS patients exhibit 
significant heterogeneity, and identification of subphenotypes might 
help to stratify patients who are most likely to benefit from potential 

FIGURE 2

Characteristics of latent profile groups. The y-axis shows the standardized mean for each variable (that is, each variable is centered at the sample mean 
and scaled by its standard deviation). SBP, systolic blood pressure; DBP, diastolic blood pressure; MBP, mean blood pressure; WBC, white blood cell; 
RBC, red blood cell; RDW, red blood cell distribution width; BUN, blood urea nitrogen; eGFR, estimated glomerular filtration rate; PaO2, arterial oxygen 
partial pressure; PCO2, partial pressure of carbon dioxide; aPTT, activated partial thromboplastin time; INR, international normalized ratio; SIRS, 
systemic inflammatory response syndrome; ALT, alanine aminotransferase.

TABLE 3 The associations of profiles and endpoints.

Hospital 
mortality

ICU mortality

OR 95%CI p OR 95%CI p

Profile 1 Ref Ref

Profile 2 3.95 2.61-5.97 <0.001 4.43 2.75–7.11 <0.001

Profile 3 3.90 2.48-6.13 <0.001 5.14 3.09–8.52 <0.001

Interaction between 

profile and vasopressor

The whole cohort 1.99 1.36-2.90 <0.001 3.36 2.12–5.35 <0.001

Profile 1 1.18 0.59-2.36 0.642 1.45 0.62–3.38 0.385

Profile 2 2.03 1.15-3.6 0.015 3.61 1.82–7.14 <0.001

Profile 3 2.91 1.02-8.32 0.047 5.57 1.51–20.52 0.010

OR, odds ratio; CI, confidence interval; ICU, intensive care unit.
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therapies in a clinical trial and facilitate the subsequent randomized 
controlled trial designs.

Limitation

This study has a few limitations that need to be acknowledged. First, all 
of the patients who participated in this research came from the MIMIC-III 
database, so all the data collected in this single-centre retrospective study 
are not as precise as the dataset analysis collected in prospective cohort 
study. Second, although it is reasonable to limit the variables used in 
modeling to those found in clinical practice, this may make it harder to 
separate profiles. Utilizing genomics and biomarkers together would 
be preferable. However, the database did not contain any biomarkers that 
are not typically obtained. Third, this study only discussed three common 
vasoconstrictor drugs. Other types of vasopressors and their dosages were 
not discussed because there was limited relevant data in the database. 
Fourth, instead of providing a definitive profile membership, LPA assigns 
the profile with the highest posterior probability and provides posterior 
probabilities for each profile. As a result, the membership status of the 
profile is unsure. Fifth, our classification tool cannot dynamically evaluate 
the severity and progression of CS because it only enrolled the CS variable 
at an early stage. As a result, we will examine the relationship between 
phenotypes and endpoints within each SCAI stage to characterize the 
progression of disease severity throughout a hospital stay. Sixth, since the 
data come mainly from patients in the United States, more clinical analysis 
is needed to testify whether our results are applicable to the patients with 
CS in China. Lastly, only the initial test results were taken into account for 
subsequent analyses if patients had received multiple measurements of their 
vital signs or laboratory tests, which might not reflect the most serious 
condition of CS patients.

Conclusion

There were three distinct CS phenotypes identified in this study, 
which showed different mortality outcomes and responses to 
vasopressor use.
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