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Introduction: Age-related macular degeneration (AMD) is one of the leading

causes of vision impairment globally and early detection is crucial to prevent

vision loss. However, the screening of AMD is resource dependent and demands

experienced healthcare providers. Recently, deep learning (DL) systems have

shown the potential for effective detection of various eye diseases from retinal

fundus images, but the development of such robust systems requires a large

amount of datasets, which could be limited by prevalence of the disease and

privacy of patient. As in the case of AMD, the advanced phenotype is often scarce

for conducting DL analysis, which may be tackled via generating synthetic images

using Generative Adversarial Networks (GANs). This study aims to develop GAN-

synthesized fundus photos with AMD lesions, and to assess the realness of these

images with an objective scale.

Methods: To build our GAN models, a total of 125,012 fundus photos were used

from a real-world non-AMD phenotypical dataset. StyleGAN2 and human-in-

the-loop (HITL) method were then applied to synthesize fundus images with

AMD features. To objectively assess the quality of the synthesized images, we

proposed a novel realness scale based on the frequency of the broken vessels

observed in the fundus photos. Four residents conducted two rounds of gradings

on 300 images to distinguish real from synthetic images, based on their subjective

impression and the objective scale respectively.

Results and discussion: The introduction of HITL training increased the

percentage of synthetic images with AMD lesions, despite the limited number of

AMD images in the initial training dataset. Qualitatively, the synthesized images

have been proven to be robust in that our residents had limited ability to

distinguish real from synthetic ones, as evidenced by an overall accuracy of 0.66

(95% CI: 0.61–0.66) and Cohen’s kappa of 0.320. For the non-referable AMD

classes (no or early AMD), the accuracy was only 0.51. With the objective scale,

the overall accuracy improved to 0.72. In conclusion, GAN models built with HITL
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training are capable of producing realistic-looking fundus images that could fool

human experts, while our objective realness scale based on broken vessels can

help identifying the synthetic fundus photos.

KEYWORDS

synthetic artificial intelligence, generative adversarial network (GANs), age-related
macular degeneration, fundus image, deep learning, human-in-the-loop (HITL), realism
assessment

Introduction

Age-related macular degeneration (AMD) is one of the leading
causes of vision impairment in the elderly population globally.
The Age-Related Eye Disease Study (AREDS) classified AMD into
non, early, intermediate and advanced AMD (1). A meta-analysis
of 129,664 individuals from 39 studies showed that the pooled
prevalence of early, late and any AMD to be 8.01, 0.37, and 8.69%,
respectively. By 2040, the number of people with AMD worldwide
is projected to be 288 million (2). Early screening and detection
of those at risk is crucial to prevent vision loss. However, the
screening of AMD is limited by the availability of human assessors,
coverage of screening programs and financial sustainability (3).
With the aging population, there is an urgent clinical need to have
an effective system to screen these patients for further evaluation.

In Ophthalmology over the last few years, deep learning
(DL) systems with promising diagnostic performance have been
developed to detect different eye diseases, such as diabetic
retinopathy (DR) (4–8), glaucoma (9), AMD (10, 11) and
retinopathy of prematurity (ROP) (12), showing substantial
potential for improving healthcare ecosystems and implementation
in screening programs (13, 14). The development of such robust
DL systems requires a large amount of data for understanding
specific scenarios and for developing effective applications, which is
especially the case for the biomedical domains. However, collecting
significant amounts of data might be challenging due to the
substantial cost of performing screenings, as well as the low
prevalence of certain diseases. The lack of large enough datasets
can therefore hinder AI model development. More importantly,
personal information of patients must be used under rigorously
controlled conditions and in accordance with the best research
practices (15). However, major problems remain in that medical
records cannot be easily anonymized, and consent cannot be easily
obtained for large populations (16–18). In addition, the availability
of the more severe phenotypes of disease, such as intermediate
and advanced AMD, may be too limited for training a DL system.
In fact, while the current AI system (5) used for DR, glaucoma
and AMD screening can detect eyes with DR very accurately,
further enhancement of the AMD-suspect detection algorithm
is required because the actual performance may not yet meet
clinically acceptable metrics when tested on external validation
datasets. For this reason, it is desirable for the models to be
trained or fine-tuned with larger or additional datasets containing
advanced AMD images.

Recent development in AI has offered an innovative alternative
to the use of large datasets of patients’ images, by using real image

datasets to artificially create synthetic images via DL frameworks,
such as generative adversarial networks (GANs) (19). GANs are
based on a game theoretic approach with the objective being to
find Nash equilibrium between two networks, a generator (G) and a
discriminator (D). The idea is to sample from a simple distribution,
and then learn to transform this noise to the distribution of the
data, using universal function approximators such as convolutional
neural networks (CNNs), by adversarial training of G and D. The
task of G is to generate natural looking images and the task of D is
to decide whether the image is fake or real.

This study used a real-world non-AMD phenotypic dataset,
which is from a population-based diabetic retinopathy screening
cohort that has a limited number of advanced AMD images and
applied GANs to artificially create more AMD positive images.
Although GANs can be used to address the issue of limited access
to large datasets, the development of GANs is itself data intensive.
For example, if the training datasets contain only a small number
of advanced AMD images, it is unlikely that the GAN model
can produce an acceptable diversity of advanced AMD images.
We therefore adopted a novel method called human-in-the-loop
(HITL) to tackle this issue, which is defined as “algorithms that
can interact with agents and can optimize their learning behavior
through these interactions, where the agents can also be human”
(20). We introduced human guidance during the training process
and manually selected acceptable synthetic data generated by
the GAN model, to feed back to the training loop. In addition,
there is a lack of consensus on how to assess the outputs of
GANs, particularly through qualitative assessment (21). To allow
objective evaluation of the synthetic images, we proposed an
objective realness scale based on how frequent the broken vessels
are observed in the fundus images. The aim of this study is to use
GAN to synthesize retinal fundus images with AMD features. We
hypothesize that the synthetic fundus photos would not be easily
discriminated from the real ones by human graders, and the use of
an objective realness scale can improve the accuracy of discerning
real versus synthetic images.

Materials and methods

Datasets

The GAN model was developed using 125,012 macula-centered
fundus images from 67,867 patients from the Singapore Integrated
Diabetic Retinopathy Program (SiDRP) 2016–2017 (Table 1).
SiDRP (22) is a national DR screening program established in
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TABLE 1 Summary of training and validation dataset with Age-Related Eye Disease Study (AREDS) distribution.

SiDRP year AREDS 0
(class 0)
no AMD

AREDS 1
(class 1)

early AMD

AREDS 2
(class 2)

intermediate AMD

AREDS 3
(class 3)

advanced AMD

Total number of
fundus images

Number of
patients

Before macular segmentation

2016 and 2017 90,126 31,634 3,101 151 125,012 67,867

2018 41,757 14,023 1,319 95 57,194 33,455

After macular segmentation

2016 and 2017 86,018 30,661 2,846 83 119,608 65,680

2018 39,612 13,452 1,191 48 54,303 29,857

AREDS 0 = no AMD, AREDS 1 = early AMD, AREDS 2 = intermediate AMD, AREDS 3 = advanced AMD. Images that do not have a round border after cropping were excluded.

2010, progressively covering all 21 primary care Polyclinics across
Singapore, screening around a quarter of the population with
diabetes annually. For each patient, two retinal photographs (optic
disk- and macula-centered) are taken of each eye using Topcon
TRC-NW8 Non-Mydriatic Retinal Cameras. SiDRP utilizes a
tele-ophthalmology platform that transmits the digital retinal
photography to a centralized team of trained professional graders
for assessment of the fundus images. All the retinal images were
graded using the AREDS classification of no, early, intermediate,
and advanced AMD by experienced graders in the Ocular Reading
Center of the Singapore National Eye Center. All advanced AMD
images based on graders’ results were extracted and reviewed by
two ophthalmologists. Any discordant gradings between the two
were arbitrated by a senior ophthalmologist. We used 80% of
the available data from SiDRP 2016–2017 for training and the
remaining 20% for validation of the GAN model. Data from
SiDRP 2018 was used for testing. This project did not involve
patient interaction, therefore ethical approval was exempted by the
SingHealth Institutional Review Board.

Pre-processing of fundus images

The retinal photographs had an original resolution of
3216 × 2136 pixels, and after the central retinal circle was extracted
to a square template image, the template images were then rescaled
to 1024 × 1024 pixels. The images were then normalized such that
the disk is on the right side of the image, by horizontally flipping all
images with the disk detected to be on the left side, as detected by
an existing right/left eye DL model (23).

AMD could be diagnosed by examining the region within two
optic disk diameters of the macula (2DD Macula). Furthermore,
the convincing synthesis of retinal vascular structure has proven
to be challenging even with state-of-the-art GAN architectures
from our preliminary work. Therefore, the extraction of this
2DD Macula region for GAN synthesis is desirable since this
region tends to contain the requisite AMD features but leaves out
much of the vascular structure complexity. Therefore, a U-Net
model was applied to extract the macula region of the fundus
images. Pixel-level annotated images were used to train U-Net
DL models, that directly learn the optic disk localization and
shape, and macula localization, end-to-end from retina images and
their corresponding pixel-level annotations. A total of about 1,150
images from the SiDRP dataset of all AMD classes were annotated

manually by an optometrist. An ellipse approximately covering
the disk and a dot at the center of macula was annotated as the
ground truth for each image. Two separate U-Net models were
trained, one focusing on optic disk segmentation, and the other on
macula segmentation. The outputs of these U-Nets could then be
segmented and combined, to produce the optic disk and macula
segmentations for new images. The final step was to extract the
circular 2DD macula region, as defined by the macula center, and
the radius of 2DD. An example of the segmentation process was
illustrated in Figure 1. The macular region was then extracted from
this template image to a 512 × 512 macular image, which was
used in the GAN development and validation. Images that do not
have a round border after macular segmentation, either resulted
from inaccurate identification of the macular center or the original
images being off centered, were excluded from the training dataset
(Table 1).

GAN iterative modeling and
human-in-the-loop training

StyleGAN2 was used for the development of our AMDGAN
model. StyleGAN2 is designed to be able to synthesize unique
realistic images in some domain, given training examples of images
in that domain. It further incorporates features such as the use
of a mapping network to transform the latent vector before its
usage as input to various levels of the generator, skip and residual
connections (24, 25). Default hyperparameters (baseline learning
rate = 0.002, minibatch size = 32, optimizer beta1 = 0.0, beta = 0.99,
epsilon = 1e−8 etc.) were used.

The development of AMDGAN models is summarized in
Figure 2. The initial GAN model was built using 95,690 fundus
images of different AMD classes with macular segmentation from
SiDRP 2016–2017, and minimum Frechet Inception Distance (FID)
score was obtained after 11,731 iterations. Due to the relatively
small percentage of advanced AMD images in a diabetic screening
dataset, the 67 advanced AMD images were used to fine-tune
the initial GAN model to generate AMDGAN v1.0. During the
finetuning process, three iterations and three proportions of real
to synthetic images were attempted, which gave nine combinations
of different parameters with 100,000 images produced under each
combination (details described in the Supplementary material).

For the assessment of realness, we observed that broken retinal
vessels are the main feature that differentiates a synthetic image
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FIGURE 1

Macular segmentation example. Two U-net models were trained and combined to segment the optic disc (OD) and macula as ellipses shown in the
second picture. The final step was to extract the circular two optic disc diameters (DD) macula region, as defined by the macula center, and the
radius of 2DD.

FIGURE 2

Development of AMDGAN models with human-in-the loop training. Acceptable synthetic images were defined as having realness score ≤1 (likely
real and possibly real) and AREDS score = 3 (advanced AMD), which were manually selected from 5,000 synthetic images randomly drawn from
AMDGAN v1.0 and v2.0.

from a real one. We therefore proposed an objective scale based
on the how frequently the broken vessels are observed in the
four quadrants of a fundus photo (Figure 3). Likely real (realness
score = 0) means broken vessels could be seen in ≤1 quadrant
(25% of the image), possibly real (realness score = 1) means broken
vessels seen in >1 but ≤2 quadrants (50% of the image), and likely
synthetic (realness score = 2) means broken vessels seen in >2
quadrants (75% of the image).

Through manual grading of 5,000 randomly selected synthetic
images from AMDGAN v1.0, 117 images that are AREDS grade 3
(advanced AMD) and have realness ≤ 1 (likely real and possibly
real) were selected as acceptable images by an optometrist. The 117
images and the original training datasets were fed back into the
training loop to build AMDGAN v2.0. The process was repeated

to build AMDGAN v3.0 with the original training datasets and 183
acceptable images from AMDGANv2.0 (Figure 2). The FID score
for AMDGAN v3.0 is 6.8084.

Experiment 1: structural similarity index
measure

To establish that the synthetic images are not just copies of
training images, comparison of a subset of synthetic images to
training images by the structural similarity index measure (SSIM)
in a pairwise manner was conducted (26, 27). SSIM is a perceptual
metric that measures the perceptual difference between two images
based on luminance, contrast, and structure. The higher the SSIM,
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the more similar the pair of images are, with identical images having
an SSIM of 1.00. For each of the four AMD classes (no, early,
intermediate, and advanced AMD), five synthetic images were
selected at random (with their AMD class determined by human
grading). Then, for each of these synthetic images, its SSIM score
was computed against each of the 95,690 training (real) images and
compared with all three-color channels (red, green, and blue).

Experiment 2: assess the diversity of AMD
positive images in each GAN model

To assess if our AMDGAN models are capable of producing
fundus images of different AREDS grades (i.e., the diversity), we
trained an AMD classifier to automatically grade the images based
on the AREDS classification, using real images from SiDRP 2016–
2017, after the images were transformed and pre-processed in the
same way as for training the AMDGAN models. Eighty percent
of the data was randomly selected and used to train a VGG-19
classifier from ImageNet weight initialization, with 20% held out for
internal validation. The classifier was trained to convergence over
200,000 iterations, with a batch size of 32, and a base learning rate
of 0.001. The AMD classifier was then used to label 1,000 randomly
selected synthetic images from AMDGAN v1.0, v2.0, and v3.0. The
number of images under each AREDS grade was compared for
three versions of AMDGAN model.

Experiment 3: validation of the final GAN
model via real versus synthetic grading

To test if the synthetic images could be discriminated from the
real ones, four ophthalmology residents were invited to manually
annotate 300 images, which included equal numbers of real
and synthetic images, with some examples shown in Figure 4.
The 150 real images were randomly selected from SiDRP 2018
dataset, with 50 no AMD (class 0), 25 early AMD (class 1), 25
intermediate AMD (class 2) and 50 advanced AMD (class 3)
images. The 150 synthetic images are composed of 50 no AMD
images randomly selected from the initial AMDGAN model, 25
early AMD images from the AMDGAN model fine-tuned with
training images of early AMD, 25 intermediate AMD images from
the model fine-tuned with training images of intermediate AMD,
and 50 advanced AMD images from the AMDGAN v3.0. For
Classes 1 to 3 synthetic images, an initial manual filtering of the
generated synthetic images was performed to ensure the images
are of correct AREDS grade, and then the required number of
images (25/25/50 for Classes 1/2/3) was randomly selected from
the filtered set. Two rounds of grading were conducted. On the
first round, ophthalmology residents were asked to label the images
as likely real, possibly real, and likely synthetic based on their
impression. After all residents completed the first round, they were
given the objective realism scale based on broken vessels (Figure 3)
to grade the same set of images but randomized to different orders.
The residents were not aware of the number of real and fake
images. All the gradings were done in dim environment based
on original image size without zooming in. The software used to
open images was Photos in MacBook and Windows Photo Viewer

FIGURE 3

The objective realness scale. The macular segmented fundus image
was divided into four quadrants, and the realness score was graded
according to the following scale, Likely real (realness score = 0):
broken vessels seen in ≤1 quadrant (25% of the image). Possibly real
(realness score = 1): broken vessels seen in >1 but ≤2 quadrants
(50% of the image). Likely synthetic (realness score = 2): broken
vessels seen in >2 quadrants (75% of the image). Following this
scale, the example image here has a realness score of 0 due to the
broken vessels seen in the left upper quadrant.

in Windows. Screen brightness was adjusted according to their
preference.

Statistical analysis

The statistical software used was R language (R V.3.5.3, R
Foundation for statistical computing 2019, Vienna, Austria). The
statistical analysis for the real versus synthetic grading experiment
was done using metrics including accuracy, sensitivity, specificity,
Area under the Curve of Receiver Operator Characteristic (AUC)
and Cohen’s kappa score (κ score). When comparing to the
binary ground truth (real or synthetic), likely real equals to real,
possibly real and likely synthetic equal to synthetic. For the
calculation of sensitivity, specificity and accuracy, true positive was
defined as synthetic images being correctly graded as synthetic.
The overall performance was analyzed via majority vote with
the tied results arbitrated by an ophthalmologist. Cohen’s κ

score was calculated by comparing each grader’s results to
the ground truth.

Results

Experiment 1: structural similarity index
measure

From the 20 randomly selected synthetic images, their highest
SSIM scores when compared individually against all images from
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FIGURE 4

Examples of images used for the real versus synthetic grading. Images under the first column are real fundus images from SiDRP dataset and images
under the second and third columns are synthetic images from our AMDGAN models. AMD areas on the fundus images are marked by the white
circles.

the training set are 0.949351, 0.950826, 0.949072, and 0.943834
for class 0 to 3 respectively. As shown in Figure 5, in no case do
virtually identical real images exist in the training dataset. This
suggests that the AMDGAN model indeed generates novel images,
instead of simply memorizing and regurgitating existing images.

Experiment 2: assess the diversity of AMD
positive images in each GAN model

For the 1,000 synthetic images randomly drawn from the
three versions of AMDGAN models, the number of images under
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FIGURE 5

Comparison of a subset of synthetic GAN images to all real training images from SiDRP 2016–2017 dataset by the structural similarity index measure
(SSIM) in a pairwise manner. The higher the SSIM, the more similar the pair of images are, with identical images having an SSIM of 1.00. Synthetic
images with highest SSIM score under each AMD class are shown in this figure. AMD areas on the fundus images are marked by the white circles.

each AREDS class labeled by the AMD classifier (AMDCLS)
is summarized in Table 2. A balanced sensitivity/specificity of
0.76/0.76 was achieved for the classification of advanced AMD
on a validation dataset from SiDRP 2018. The number of images
with advanced AMD features increased from zero to 543 after two
rounds of HITL training.

Experiment 3: validation of the final GAN
model via real versus synthetic grading

The results of discriminating real from synthetic images are
shown in Table 3. For the first round of grading, the sensitivity
ranges from 0.33 to 0.76 and the specificity ranges from 0.41
to 0.94 among the four residents. When graded based on the
objective scale, a substantial increase in specificity was observed

TABLE 2 Diversity of GAN-synthesized images by three versions
of AMDGAN models.

No AMD Early
AMD

Intermediate
AMD

Advanced
AMD

AMDGAN v1.0 19 293 688 0

AMDGAN v2.0 2 37 470 491

AMDGAN v3.0 9 65 383 543

The AREDS classes of the 1000 synthetic images from each version were labeled by an AMD
classifier.

with three residents, while the sensitivity remains about the same
as round one. When comparing with the ground truth, slight to
fair agreement was observed between the residents’ gradings and
the ground truth, as evidenced by the κ score of 0.073–0.287. With
the help of the objective scale, an increase in κ score was noted in
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TABLE 3 Results of the real versus synthetic grading by four ophthalmology residents.

Round one (subjective grading) Round two (Objective grading)

Sensitivity
(95% CI)

Specificity
(95% CI)

Accuracy
(95% CI)

AUC
(95% CI)

κ Sensitivity
(95% CI)

Specificity
(95% CI)

Accuracy
(95% CI)

AUC
(95% CI)

κ

Resident 1 0.48
(0.40, 0.56)

0.81
(0.73, 0.87)

0.64
(0.59, 0.70)

0.64
(0.59, 0.64)

0.287 0.49
(0.40, 0.57)

0.99
(0.96, 1.00)

0.74
(0.69, 0.79)

0.74
(0.70, 0.74)

0.480

Resident 2 0.67
(0.59, 0.74)

0.41
(0.33, 0.49)

0.54
(0.48, 0.59)

0.54
(0.49, 0.54)

0.073 0.57
(0.49, 0.65)

0.71
(0.63, 0.78)

0.64
(0.59, 0.70)

0.64
(0.59, 0.64)

0.287

Resident 3 0.33
(0.25, 0.41)

0.94
(0.89, 0.97)

0.63
(0.58, 0.69)

0.63
(0.59, 0.63)

0.267 0.43
(0.35, 0.52)

0.77
(0.69, 0.83)

0.60
(0.54, 0.66)

0.60
(0.55, 0.60)

0.200

Resident 4 0.76
(0.68, 0.83)

0.43
(0.35, 0.51)

0.59
(0.54, 0.65)

0.59
(0.54, 0.59)

0.187 0.79
(0.71, 0.85)

0.91
(0.86, 0.95)

0.85
(0.80, 0.89)

0.85
(0.81, 0.85)

0.700

Non-referrable
AMD

0.21
(0.13, 0.32)

0.81
(0.71, 0.89)

0.51
(0.43, 0.60)

0.51
(0.45, 0.51)

0.030 0.13
(0.07, 0.23)

0.97
(0.91, 1.00)

0.55
(0.47, 0.63)

0.55
(0.51, 0.55)

0.110

Referrable AMD 0.80
(0.69, 0.88)

0.84
(0.74, 0.91)

0.82
(0.75, 0.88)

0.82
(0.75, 0.82)

0.640 0.79
(0.68, 0.87)

0.99
(0.93, 1.00)

0.89
(0.82, 0.93)

0.89
(0.84, 0.89)

0.770

Overall
performance

0.52
(0.44, 0.60)

0.80
(0.73, 0.86)

0.66
(0.60, 0.71)

0.66
(0.61, 0.66)

0.320 0.45
(0.37, 0.53)

0.99
(0.95, 1.00)

0.72
(0.66, 0.77)

0.72
(0.68, 0.72)

0.430

Round one was done based on graders’ subjective impression and round two was done based on the objective scale.

three of the four residents, ranging from 0.200 to 0.700. The overall
accuracy and the accuracy on discriminating different classes of real
and synthetic AMD images were demonstrated by the pie charts in
Figure 6. On the first round, the overall accuracy was 0.66, which
increased to 0.72 with the objective realness scale. When breaking
down to the non-referable AMD (no AMD and early AMD) classes,
the accuracy in the first round was close to chance (0.51), which
increased to 0.55 with the objective scale on the second round.
For the referable AMD classes (intermediate AMD and advanced
AMD), residents could discriminate synthetic images from the real
ones with an accuracy of 0.82 and 0.89 for the first and second
round of grading, respectively.

Discussion

This study used a large real-world dataset of 125,012 fundus
photos to test if GAN could produce synthetic fundus images with
AMD lesions that look realistic, when real AMD images are limited
in the training dataset. Due to the naturally low percentage of
advanced AMD images in a real-world dataset, our initial GAN
model (AMDGAN v1.0) did not produce satisfactory examples
with AMD features, particularly the advanced AMD ones. To
overcome this limitation, we introduced human guidance to the
training process (HITL method) via manually selecting images
with balanced realness and AMD features to train a secondary
model, which has not been reported in the field of fundus image
synthesis using GANs. Through HITL training, the percentage of
AMD positive images increased after one and two rounds of HITL
training. In addition, the SSIM scores gave quantitative assessment
to support the observation that our GAN models could produce
novel images that are not just replicas of the real images. Despite
high SSIM score of up to 0.9508, the synthetic image does not
resemble the most similar real image in the dataset. Besides, the
FID score of AMDGAN v3.0 model is 6.8084. FID is a metric used
to assess the quality of images created by a generative model, by
comparing the distribution of a sample of generated images, with

the distribution of a set of real images. The smaller the FID score
value, the closer the two distributions, and thus the more realistic
the generated synthetic images are to actual real images in general
(28). The value of FID and SSIM experiment demonstrated that our
AMDGAN models are capable of generating synthetic images that
are similar to real ones, yet not reproducing them.

Generative Adversarial Networks have been applied in both
medical and non-medical fields, such as image synthesis, image
to image translation, text to image translation, super resolution,
segmentation, classification, and music composition (29–31).
One of the main applications of GANs in the medical field
is image synthesis, including various image modalities such as
breast ultrasound (32), mammograms (33), computed tomography
(CT) (34–37), magnetic resonance images (MRI) (38), cancer
and pathology images (39). In ophthalmology, several adversarial
learning models for generating fundus images and Optical
Coherence Tomography (OCT) images with and without pathology
have been reported, including (1) generating synthetic retinal
blood vessel trees and translating back to a raw image (40–42);
(2) combination of vessel tree, optic disk images to generate
normal color fundus photos (43); (3) synthesizing fundus images
of AMD (44), glaucoma (45), DR (46) and ROP (47); (4) using
GAN-synthesized OCT images to train a DL framework for
detecting cases that require urgent referral (48); (5) predicting
the post-treatment OCT images of patients receiving anti-vascular
endothelial growth factor (anti-VEGF) (49, 50); (6) cross-modality
image synthesis using fundus photographs to produce fluorescein
angiography (51). However, the clinical use cases of GANs, such
as training and validation of DL systems, are yet to be firmly
established (21, 52).

Before introducing synthetic data to the development of DL
systems, evaluating the outputs of GANs using qualitative and
quantitative measures are critical. Quantitative methods generally
do not involve human assessment. Examples include the inception
score (IS) to classify the synthetic samples with a discriminative
model trained on real ImageNet dataset, and SSIM to compare
if the synthetic images are merely replicates of the real images

Frontiers in Medicine 08 frontiersin.org

https://doi.org/10.3389/fmed.2023.1184892
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-10-1184892 June 17, 2023 Time: 18:9 # 9

Wang et al. 10.3389/fmed.2023.1184892

FIGURE 6

Overall accuracy of discriminating real and synthetic images.

(53, 54). On the other hand, qualitative assessment generally relies
on subjective human judgment for the realness and gradability
of the synthetic outputs, especially for biomedical images. To
allow more consistent qualitative measure and perhaps comparison
between different GAN models, we proposed a novel objective
realness scale based on the frequency of broken vessels in the retinal
fundus images. In our experiment, the introduction of the objective
realness scale helped to improve the residents’ performance to
discriminate real from synthetic images, as evidenced by the
increase in the overall accuracy, specificity, and kappa score.
However, when grading is based on broken retinal vessel alone,
some synthetic images might be graded as real even though they
have other synthetic features, such as pixelated retina pigmented
epithelium at the fovea and abnormally straight temporal vascular
arcade. This observation indicates that broken vessels are a specific

feature of synthetic images but using this feature alone may lead to
misclassification of some synthetic images as real ones, resulting in
higher false negative errors and thus the decrease in sensitivity.

In terms of realism assessment, the image grading performed
by ophthalmology residents demonstrated that the GAN-generated
synthetic fundus photos could imitate the real ones with AMD
lesions. When the ophthalmology residents were asked to discern
whether an image is real or synthetic based on their impression,
the accuracy ranges from 0.54 to 0.64. Similar results were reported
by Burlina et al. (44) using 133,821 AMD fundus images from
AREDS to build two ProGAN models to synthesize non-referable
and referable AMD images, respectively. Two retinal specialists had
accuracies of 59.5 and 53.7% at discriminating real from synthetic
images (44). In addition, using 4,282 pairs of fundus images and
retinal vessel maps from a ROP screening program, Chen et al. (52)
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built a GAN model by tunning pix2pixHD with segmented vessel
map and fundus images. The synthetic images generated by their
model could fool four ophthalmologists at accuracies of 49–61%
(52). In our study, when the real vs. synthetic results were stratified
to referable and non-referable AMD images, we observed that
real and synthetic non-referable AMD images appear equally
real to the residents (accuracy of 0.51), while synthetic referable
AMD images were much more easily identified (accuracy of 0.82).
This observation likely arises from the imbalanced distribution of
images under each AMD class in the training datasets, which had
93,345 non-referable AMD images but only 2,345 referable AMD
images. The results again addressed the data-intensive nature of
GANs, which requires sufficient training data exhibiting the desired
underlying class and representative variability.

Despite the increase in the proportion of synthetic images with
AMD lesions, we observed that some synthetic images of advanced
AMD share similar pathological patterns. The limited number of
advanced AMD images in the training datasets and the acceptable
images added to the training loop is likely the reason for repetitive
features observed in the outputs of our GAN model. Although
GAN models have been successfully built to synthesize realistic
faces, even with a small training dataset of around 100 faces,
retinal fundus images seem to be more challenging to synthesize,
in particular abnormal examples with disease conditions (55, 56).
The difficulty may arise from the fact that the retinal vasculatures
and pathological lesions do not have roughly fixed landmarks
like the faces, in which the location of eyes, nose, and mouth
could augment the development of respective GAN models (57,
58). Despite the fact that GAN was proposed to augment small
training datasets by artificially producing more synthetic images
(19, 59, 60), the development of GANs for synthesizing retinal
images with pathological features is still data-intensive, and the
least amount of training data required to build an effective GAN
model remains unknown.

Although GAN may not be able to rectify a small training
dataset of retinal images with pathological features due to
low disease prevalence, it could still be a powerful tool for
privacy preservation before data sharing. As demonstrated in
our experiment, high quality fundus images of the non-referable
AMD classes were synthesized by the GAN models, when the
training datasets contain sufficient real images. A recent study
from DuMont Schütte et al. (61) proposed an open benchmark
to assess the quality of synthetic chest radiographs and brain CT
scans from two GAN models, which indicated that the barriers to
data sharing may be overcome by synthetic data. Future research
could be attempted to build GAN models using datasets comprising
mainly of AMD images and the GAN-synthesized images could
be shared among different research groups as a training or
independent external validation dataset, while preserving the
privacy of the real dataset.

Limitations

There are several possible limitations to the presented study.
Firstly, the optimal distribution of real and synthetic images to
be used to train the various AMDGAN iterations as to produce
outputs with the most desirable diversity-realism tradeoff is

unknown a priori. As such, several plausible proportions were
attempted in the HITL models and the best amongst them
selected, but it is not guaranteed that this is the ideal way to
optimize the input training distribution. Second, the impact of
adding the manually selected acceptable images to the training
loop, such as the weightage, remains unknown. Third, the real
versus synthetic grading experiment was conducted by four
ophthalmologist residents. Inviting more senior ophthalmologists
of various levels of experience may be more accurate on judging
the realness of the fundus images. Another limitation is that
more advanced versions of StyleGAN, such as StyleGAN3, have
been released since this study was first commenced. However,
since our human-in-the-loop methodology involves fine-tuning
a StyleGAN model in response to human grader assessment, it
is infeasible to incorporate new versions of StyleGAN without
redoing the bulk of the study. Nonetheless the quality of images
from StyleGAN2 was sufficient to demonstrate the potential of
our method. Lastly, to use GAN produced synthetic images
for the development and validation of DL systems, the ground
truth of the synthetic images’ classes needs to be determined.
For most of GAN related studies reported in the literature, the
classes of the synthetic images are either labeled automatically
by the GAN model or by a separate classifier. Whether the
machine generated ground truth is reliable remains unknown
and difficult to validate, because it is challenging and time-
consuming to produce human-validated ground truth due to the
large number of images.

Potential clinical impact

Despite the challenges of building a powerful GAN model as
discussed above, we still see several potential areas of application
within the clinical space. First of all, GANs are capable of
producing realistic medical images without replicating the real
training images. As a result, GAN-synthesized images with
enhanced diversity could be used for medical education purposes.
In addition, future work could be attempted to identify the
minimal number of images with pathological features required
to train an effective model, which is likely to be useful for
developing DL frameworks for detecting rare diseases. Last
but not least, GANs synthesized data could be used within a
“sandbox,” which enables a computer security mechanism and
allows opening files, testing models or programs in an isolated
environment without affecting the system on which it runs.
The sandbox environment was described by the UK’s Financial
Conduct Authority in 2015 for regulatory purposes as “a “safe
space” in which businesses can test innovative products, services,
business models and delivery mechanisms without immediately
incurring all the normal regulatory consequences of engaging
in the activity in question,” which was used to constructively
engage innovators, and to remove unnecessary barriers to
innovation (62). In healthcare, sandbox has been adapted for
outcome-focused purposes, such as testing how diagnostic DL
systems affect patient outcomes, and for data-focused purposes,
such as facilitating access to health data for development and
testing of new technologies (63). Therefore, synthetic data from
GAN models is likely to be beneficial for the application of
sandbox in healthcare.
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Conclusion

Our GAN models trained using a non-AMD phenotypical
dataset can generate synthetic images that are not easily discerned
from the real ones to human eyes, in particular for non-
referable synthetic AMD images. However, the development of
GAN models remains data intensive and GANs may not be the
best solution to rectify small training datasets for synthesizing
realistic looking fundus images with intermediate and severe AMD
lesions. Nevertheless, GAN could potentially be a powerful tool
for data privacy preservation, which would allow data sharing
across different research groups in the sandbox environment for the
development or testing of the commercially available DL systems.
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