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Glomerular hyperfiltration and 
hypertrophy: an evaluation of 
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indicators to discriminate 
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The success of sodium-glucose cotransporter 2 inhibitors and bariatric surgery 
in patients with chronic kidney disease has highlighted the importance of 
glomerular hyperfiltration and hypertrophy in the progression of kidney disease. 
Sustained glomerular hyperfiltration and hypertrophy can lead to glomerular 
injury and progressive kidney damage. This article explores the relationship 
between obesity and chronic kidney disease, focusing on the roles of glomerular 
hyperfiltration and hypertrophy as hallmarks of obesity-related kidney disease. 
The pathological mechanisms underlying this association include adipose tissue 
inflammation, dyslipidemia, insulin resistance, chronic systemic inflammation, 
oxidative stress, and overactivation of the sympathetic nervous system, as well as 
the renin-angiotensin aldosterone system. This article explains how glomerular 
hyperfiltration results from increased renal blood flow and intraglomerular 
hypertension, inducing mechanical stress on the filtration barrier and post-filtration 
structures. Injured glomeruli increase in size before sclerosing and collapsing. 
Therefore, using extreme values, such as the maximal glomerular diameter, could 
improve the understanding of the data distribution and allow for better kidney 
failure predictions. This review provides important insights into the mechanisms 
underlying glomerular hyperfiltration and hypertrophy and highlights the need 
for further research using glomerular size, including maximum glomerular profile, 
calculated using needle biopsy specimens.

KEYWORDS

chronic kidney disease, glomerular hyperfiltration, glomerular hypertrophy, obesity, 
sodium-glucose cotransporter 2 inhibitors, visceral fat, inflammation, extreme value

1. Introduction

Numerous studies have shown that obesity is a significant risk factor for chronic kidney 
disease (CKD) (1–4) and end-stage kidney disease (5–8). The link between obesity and CKD 
has been extensively studied, with evidence showing that excess weight and body fat can 
significantly damage the kidneys over time (9–11). The global spread of obesity has become a 
pandemic that cannot be ignored in the context of CKD (12–14), as obesity aggravates the 
prognosis of all kidney diseases, regardless of etiology (13, 15). Furthermore, all patients with 
CKD have a latent obesity risk due to lifestyle disturbances; as such, CKD and obesity are 
becoming inseparable. Importantly, the reno-protective effects of sodium-glucose cotransporter 
2 (SGLT2) inhibitors (16–20) and bariatric surgery (9, 21–23) have been recently confirmed. 
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Nephrologists are very interested in SGLT2 inhibitors, as, by 
improving glomerular hyperfiltration, these drugs significantly 
improve kidney disease prognosis (19, 20). At present, the significance 
of glomerular hyperfiltration (21, 24–26) and its pathological 
glomerular hypertrophy (21, 22, 27, 28) within kidney disease have 
returned to the spotlight. This mini-review focuses on glomerular 
hyperfiltration and hypertrophy, which are hallmarks of obesity-
related kidney diseases; it also discusses the utility of the maximal 
glomerular diameter (MaxGD) as their clinical indicator and the 
purpose of glomerulometry in kidney pathology.

2. Visceral fat accumulation and CKD

Increased visceral fat accumulation can result in adipose tissue 
inflammation and adipokine dysregulation (29–33), leading to 
dyslipidemia, chronic systemic inflammation (31, 34, 35), oxidative 
stress (29), insulin resistance (31, 36), stimulation of the brain 
melanocortin system (34, 37), overactivation of the sympathetic 
nervous system (37–39), overactivation of the renin-angiotensin 
aldosterone system (40–44), mineralocorticoid receptor activation 
(45), sodium retention (46, 47), and expansion of the extracellular 
fluid volume (47–49). These conditions have complex interactions, 
ultimately leading to kidney damage by causing glomerular 
hyperfiltration (50, 51) and inflammation (52, 53), which are 
characteristics of obesity-related kidney disease (15, 47, 54–58).

3. Glomerular hyperfiltration and 
increased tubular sodium 
reabsorption in obesity

Glomerular hyperfiltration, one of the predominant 
pathophysiological features in obesity-related glomerulopathy (ORG) 
(50, 51, 59–64), is histologically characterized by glomerular 
hypertrophy with tubular hypertrophy (51, 65). Generally, glomerular 
hyperfiltration is a result of the early changes in intrarenal 
hemodynamic function, including increased renal blood flow and 
intraglomerular hypertension (66), in response to various stimuli, 
such as a high-protein intake (67, 68), hyperglycemia or insulin 
resistance (69, 70), and obesity or metabolic syndrome (50, 71–73). In 
obesity, renal plasma flow increases less than glomerular filtration rate 
(GFR) (50, 62, 71), suggesting renal vasodilation mostly affects the 
glomerular afferent arteriole (51). Specifically, glomerular 
hyperfiltration leads to mechanical stress at the filtration barrier (50, 
51, 62, 65, 71, 74), stretching the glomerular capillary wall and 
resulting in various conditions, such as podocyte loss, mesangial 
expansion and sclerosis, and glomerular hypertrophy. In turn, these 
will increase the Bowman’s space volume, that is, a large renal 
corpuscle (65, 74, 75). Additionally, increased proximal tubular flow 
due to glomerular hyperfiltration increases delivery and reabsorption 
of water and solutes, causing proximal tubular epithelial hypertrophy 
(65), proximal tubular lumen enlargement (65), and tubulointerstitial 
inflammation and fibrosis (50, 51). The increased proximal 
reabsorption of solutes results in a decreased solute delivery to the 
macula densa, which in turn influences tubuloglomerular feedback, 
inducing preglomerular vasodilation and glomerular hyperfiltration 
similarly to a ‘vicious cycle’ (57, 61). These changes result in the 

initiation and progression of kidney disease. An elevated single-
nephron GFR is associated with obesity, as well as larger nephrons, 
glomerulosclerosis, and arteriosclerosis on kidney biopsy and risk 
factors for CKD (76).

4. Glomerular hypertrophy and 
histopathological features of ORG

In patients with obesity or metabolic syndrome, relevant renal 
histopathological characteristics include glomerular hypertrophy with 
an enlargement of Bowman’s space, mesangial cell or matrix 
proliferation, podocytopathy, glomerular basement membrane 
thickening, focal segmental glomerulosclerosis (FSGS), global 
sclerosis, tubular hypertrophy, tubular atrophy, interstitial fibrosis, 
arterial sclerosis, arterial hyalinosis, and focal dilatation of the afferent 
arteriole and glomerular perihilar capillaries (50, 57, 63, 77, 78). 
Furthermore, lipid accumulation in the glomeruli and tubule cells has 
been confirmed in patients with obesity (3, 57, 79–81). Among these 
histological parameters, the current gold standard histologic features 
of ORG in humans are glomerular hypertrophy, large renal corpuscles, 
podocyte stressor FSGS, and tubular hypertrophy, which imply 
glomerular hypertension and hyperfiltration (50, 57, 80, 82, 83). 
Glomerular hypertrophy or a large renal corpuscle has been reported 
as a potent kidney prognostic indicator in clinical practice (84–87) 
and plays an important role in patients with ORG as a simple and 
helpful indicator that incorporates early-to-late disease stages (57, 75, 
80, 87). Conversely, while FSGS may indicate the disease severity or 
long-term kidney prognosis, it is a somewhat nonspecific indicator of 
kidney disease in relation to showing the result of kidney damage (86). 
The challenge in tubular hypertrophy is determining which renal 
tubules should be measured among the myriad of renal tubules in 
renal biopsy tissue. Furthermore, tubular hypertrophy assessment is 
complicated by the fact that increased severity of coexisting interstitial 
fibrosis and tubular atrophy in biopsy specimens are associated with 
a worse kidney outcome (88–90). Primarily, glomerular hypertrophy 
or a large renal corpuscle (52, 75, 84–87, 91) represents both 
glomerular hyperfiltration and glomerular inflammation and is 
recognized as an early marker of obesity-related kidney damage (52, 
63). Considering the prophylactic significance of early indicators in 
patients with obesity, increased clinical use of indicators of glomerular 
hypertrophy or a large renal corpuscle is desired.

5. Discussion

5.1. Pathological assessment of glomerular 
hyperfiltration

Kidney biopsy can help identifying the underlying cause of kidney 
disease and assess disease progression and treatment effectiveness 
(92–94). Various histological indices can be  used to evaluate 
glomerular hyperfiltration (65, 75, 84–86, 90, 95–101). Especially, 
glomerular hypertrophy assessment is thought to be  the most 
clinically significant (84–86, 90, 99, 100). First, glomerular 
hypertrophy is a direct response to glomerular hyperfiltration and 
represents the earliest histological change (75, 102). As reported, 
glomerular hypertrophy and renal hypertrophy are observed soon 
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after the onset of type 1 diabetic nephropathy (103), and persistent 
renal hypertrophy precedes the development of microalbuminuria 
and GFR decrease (102). Second, although albuminuria and 
proteinuria are the leading prognostic factors for CKD and progression 
to end-stage kidney disease (104, 105), glomerular hypertrophy is 
associated with albuminuria/proteinuria and kidney function decline 
to a greater extent than other parameters (80, 84, 86), making it a 
clinically important parameter to evaluate in patients with glomerular 
hyperfiltration. Therefore, glomerular hypertrophy assessment can aid 
in the early detection and monitoring of kidney disease, as well as in 
the development of targeted treatment strategies (75). Furthermore, 
glomerular hypertrophy evaluated by glomerular diameter or 
glomerular area measurements is less prone to measurement 
variability, and can easily provide a more precise evaluation of 
glomerular hyperfiltration than tubular measurements, which are 
more prone to variation in tubular diameter and length (75, 89).

5.2. Factors to keep in mind when 
evaluating glomerular hypertrophy

The size of the renal corpuscle, or glomerulus, is an important 
indicator of renal function and has been associated with the outcomes 
of kidney diseases in both experimental models (102, 103, 106, 107) 
and humans (84–86, 108–110). However, the currently used clinical 
practice guidelines and pathological classifications of 
glomerulonephritis do not adequately evaluate glomerular or renal 
corpuscle sizes as markers of a renal lesion (75, 83, 111). When using 
glomerular hypertrophy as an effective clinical indicator, clinicians 
should distinguish between physiological and pathological glomerular 
hypertrophy and ensure the accuracy and consistency of 
measurements (27, 75). Evaluating the glomerular size in clinical 
studies can be challenging (84, 112) due to glomeruli heterogeneity in 
a single kidney (113), presence of sclerosed and collapsing glomeruli, 
and use of different measurement techniques. Furthermore, the use of 
differing morphometric techniques (114), sample sizes, and statistical 
processing in the evaluation of the glomerular size in previous studies 
may have influenced the inconsistent results in clinical research.

5.3. The definitions of “normal” and 
“diseased”

The definitions of “normal” and “diseased” play an important role 
in medical practice. A clinically useful diagnostic definition of 
“normal” is based on a measurement rage within which the disease is 
absent in diagnostic tests (115). In kidney disease, differentiating 
between morbid and physiological enlargement of renal corpuscles is 
important, as morbid glomerular hypertrophy may involve irreversible 
structural changes that can lead to renal function decline (27, 75). 
Physiological hypertrophy may occur as a normal response to aging 
or an increased demand, such as in during pregnancy. Conversely, 
pathological hypertrophy is a maladaptive response to various insults, 
such as hypertension, diabetes, and glomerulonephritis, and can result 
in irreversible structural changes in the kidney (27, 75). In a previous 
study of IgA nephropathy, glomerular hypertrophy above a maximal 
diameter of 242 μm was associated with follow-up proteinuria 
aggravation and an increase in serum creatinine levels. Enlargement 

of the renal corpuscle to more than 1.5 times its original diameter may 
be considered morbid, and this threshold effect in the renal corpuscle 
size may be  an important consideration when evaluating renal 
function and disease progression (84).

5.4. Points to note when measuring the 
glomerular size or renal corpuscle size

Importantly, the use of differing morphometric techniques 
(114), sample sizes, and statistical analyses in the evaluation of the 
glomerular size in previous studies may have influenced inconsistent 
results in clinical research. There are two major methods used to 
investigate the glomerular size or renal corpuscle size in human 
kidneys: estimating the mean glomerular size and measuring the 
individual glomerular size (75, 114). The traditional model-based 
method of Weibel and Gomez is widely applied to estimate the 
mean glomerular volume in biopsy specimens (116), but it cannot 
quantify the heterogeneity of the glomerular volume distribution. 
An individual glomerular volume allows the assessment of 
glomerular size variability within the kidneys, and two 
representative methods of measuring individual glomerular 
volumes are the Cavalieri (117) and maximal profile area (MPA) 
(118) methods. The MPA method is more feasible and advisable in 
clinical settings, as it allows the examination of more glomeruli in 
small tissue samples (119), while being less laborious (114) than the 
Cavalieri method.

5.5. Mean or maximum value?

When measuring glomerular size (75, 84), it is important to 
consider that the size of each glomerulus varies over time 
(Figure  1A) and that glomeruli of various sizes, including 
hypertrophied and collapsing glomeruli, can be found within the 
same kidney (Figure 1B). Indeed, injured glomeruli increase in size 
before sclerosing and collapsing (120), and sclerosing and normal 
renal corpuscles with sized in the range of 160–180 μm coexisted in 
a study of IgA nephropathy (84). Of note, the mean glomerular size 
may not accurately reflect the true distribution of glomerular sizes 
in a kidney and may conceal important prognostic information 
(84). The use of extreme values (i.e., minimum and maximum 
values) in medical research is relatively rare, despite their 
applications in other fields, such as hydrology, earth sciences, 
environmental science, finance, insurance, and genetics, for 
forecasting unusual events (121). However, we consider that the 
basal concept of the extreme value theory can be used to predict the 
occurrence of events, such as kidney failure, from limited samples, 
such as kidney biopsy specimens (84, 121). This is because the mean 
and standard deviation, which are commonly used in medical 
research, are only appropriate for normally distributed data, which 
is often not the case in biological data (122, 123). Primarily, the 
mean and standard deviation, which are two of the most common 
descriptive statistic measures for continuous data and can 
be calculated from as few as two data points, correctly signify only 
a “normal” or “Gaussian” value distribution and cannot accurately 
describe small samples (122). The use of other statistical measures, 
such as the median and range or maximum values, could provide 
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more informative insights into the distribution of data in diagnostic 
tests and allow for better prediction of unusual events (102, 115, 
124–126) (Figure 2A). The most important phenomenon in kidney 
disease progression is the fact that injured glomeruli increase in 
size, represented by a rightward shift in the size distribution, before 
sclerosing and collapsing (102, 120) (Figure 2B). We consider that 
the difference in magnitude of a rightward shift in the glomerular 
size distribution caused by nephron loss, as well as by direct 
glomerular damage, can help distinguish between compensatory 
and pathological glomerular hypertrophy (75, 84). The maximum 
glomerular profile could be a direct indicator of the disease severity 
or progression, while being less susceptible to nephron loss 
(27, 121).

5.6. Maximal glomerular profile in needle 
biopsy specimens

We have proposed a new method that focuses on extreme 
values, specifically the maximal glomerular profile, such as 
glomerular diameter (75, 84) or area (87), to predict the progression 
of CKD (Figure  2C). The clinical value of our pathological 

FIGURE 1

(A) A schematic representation of the changes in glomerular size in 
kidney damage. Injured glomeruli increase in size before sclerosing 
and collapsing. The maximal hypertrophied glomerulus is shown in 
red. The course can be divided into two periods using the maximally 
hypertrophied glomerulus as a boundary: glomerular enlargement 
and glomerular sclerosing and collapsing. (B) Glomeruli of various 
sizes (including hypertrophied and collapsing glomeruli) 
simultaneously exist in the kidney biopsy specimen.

FIGURE 2

(A) Average or median values often cannot distinguish the differences 
in distribution curves for normal and diseased in diagnostic tests. The 
gray distribution curve represents the distribution of healthy 
participants in a diagnostic test, while the black distribution curve 
represents the distribution of patients in a diagnostic test. Differences 
between the black and gray distribution curves can be identified by 
extreme values, such as maximum and minimum values, rather than by 
the mean and median values. (B) The differences in the distribution 
curves of glomerular size between healthy individuals and patients with 
kidney damage. The gray distribution curve represents the glomerular 
size distribution in healthy participants without kidney damage. The 
black distribution curve represents glomerular size distribution in 
patients with kidney damage. Pathological glomeruli can be diagnosed 
when hypertrophy progresses beyond a certain threshold. The greater 
the damage to the kidney, the more the maximum glomerular profile 
shifts to the right in the kidney biopsy specimens. (C) Glomerular 
diameter or area of the maximum glomerular profile. Measurement of 
the MaxGD is indicated by the yellow line and MaxGA is represented by 
the red line. The MaxGD is calculated as the mean of the maximal 
diameter of the glomerulus and the maximal chord perpendicular to 
the maximal diameter of the maximally hypertrophied glomerulus in 
the area with the maximal profile in each specimen. The position of the 
geometric center of the maximal profile of the glomerulus is visually 
identifiable. After drawing the maximal diameter that passes through 
the geometric center, we draw the maximal chord perpendicular to the 
maximal diameter. MaxGD, maximal glomerular diameter; MaxGA, 
maximum glomerular area.
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evaluation method, which measures only the largest glomerulus 
instead of the average value of all glomeruli, has been confirmed in 
subsequent studies. We have demonstrated poor renal prognosis in 
patients with IgA nephropathy only by using the maximal renal 
corpuscle diameter, instead of the mean renal corpuscle diameter 
(84). Glomerular hypertrophy, as indicated by a MaxGD ≥242.3 μm, 
has been shown to be a significant predictor of poor renal prognosis 
in patients with IgA nephropathy (84). We  also confirmed the 
MaxGD as an effective pathological factor for predicting renal IgA 
nephropathy prognosis in another cohort (86) and in a follow-up 
study (85). In addition, using a combination of traditional statistical 
methods and machine learning to identify pathophysiological 
factors associated with glomerular hypertrophy we demonstrated 
that the MaxGD is not an indicator of compensatory glomerular 
hypertrophy but of renal damage itself (27).

6. Perspective

While glomerular hyperfiltration has received more attention, 
there is still a lack of clinical research on its pathological index, 
glomerular hypertrophy. Historically, medical research assessing 
extreme values is not common, however, evaluating these values may 
help distinguish between “normal” and “diseased” states. 
Measurement of the MaxGD is the most clinically superior method 
for assessing glomerular hypertrophy in the context of glomerular 
hyperfiltration. This is because it provides direct information on the 
size of glomeruli, which can increase in response to hyperfiltration. 
In addition, this method is more objective, reproducible, and less 
influenced by interobserver variability than other methods. Overall, 
maximal glomerular diameter measurements offer valuable 
information for the pathological assessment of glomerular 
hyperfiltration, and can aid in the diagnosis and management of 
kidney diseases. Research using the maximum glomerular profile, 
including the MaxGD, is expected to contribute to the field of kidney 
disease in the future.
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