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Vitiligo is a common acquired pigmentary disorder that presents as progressive 
loss of melanocytes from the skin. Epidermal melanocytes and keratinocytes 
are in close proximity to each other, forming a functional and structural unit 
where keratinocytes play a pivotal role in supporting melanocyte homeostasis 
and melanogenesis. This intimate relationship suggests that keratinocytes might 
contribute to ongoing melanocyte loss and subsequent depigmentation. In fact, 
keratinocyte dysfunction is a documented phenomenon in vitiligo. Keratinocyte 
apoptosis can deprive melanocytes from growth factors including stem cell 
factor (SCF) and other melanogenic stimulating factors which are essential for 
melanocyte function. Additionally, keratinocytes control the mobility/stability 
phases of melanocytes via matrix metalloproteinases and basement membrane 
remodeling. Hence keratinocyte dysfunction may be  implicated in detachment 
of melanocytes from the basement membrane and subsequent loss from the 
epidermis, also potentially interfering with repigmentation in patients with stable 
disease. Furthermore, keratinocytes contribute to the autoimmune insult in vitiligo. 
Keratinocytes express MHC II in perilesional skin and may present melanosomal 
antigens in the context of MHC class II after the pigmented organelles have been 
transferred from melanocytes. Moreover, keratinocytes secrete cytokines and 
chemokines including CXCL-9, CXCL-10, and IL-15 that amplify the inflammatory 
circuit within vitiligo skin and recruit melanocyte-specific, skin-resident memory 
T cells. In summary, keratinocytes can influence vitiligo development by a 
combination of failing to produce survival factors, limiting melanocyte adhesion 
in lesional skin, presenting melanocyte antigens and enhancing the recruitment 
of pathogenic T cells.
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1. Melanocytes are not the only affected cells in 
vitiligo: keratinocyte apoptosis

1.1. Evidence of keratinocyte apoptosis

Vitiligo is a pigmentary disease characterized by white patches of skin expanding in size 
over time. The pathological hallmark of vitiligo is absence of melanocytes from lesional skin, 
which can be highlighted with special stains labelling melanocytes (1). Although keratinocytes 
appear to be normal as shown by routine hematoxylin and eosin staining, the basal and parabasal 
keratinocytes show features of apoptosis by electron microscopic examination. Apoptotic 

OPEN ACCESS

EDITED BY

Reinhart Speeckaert,  
Ghent University Hospital, Belgium

REVIEWED BY

Shahnawaz Jadeja,  
University College Dublin, Ireland

*CORRESPONDENCE

Ahmed Ahmed Touni  
 ahmedtouni1990@gmail.com  

I. Caroline Le Poole  
 caroline.lepoole@northwestern.edu

RECEIVED 28 February 2023
ACCEPTED 27 April 2023
PUBLISHED 19 May 2023

CITATION

Touni AA, Shivde RS, Echuri H, Abdel-Aziz RTA, 
Abdel-Wahab H, Kundu RV and Le 
Poole IC (2023) Melanocyte-keratinocyte 
cross-talk in vitiligo.
Front. Med. 10:1176781.
doi: 10.3389/fmed.2023.1176781

COPYRIGHT

© 2023 Touni, Shivde, Echuri, Abdel-Aziz, 
Abdel-Wahab, Kundu and Le Poole. This is an 
open-access article distributed under the terms 
of the Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted which 
does not comply with these terms.

TYPE Mini Review
PUBLISHED 19 May 2023
DOI 10.3389/fmed.2023.1176781

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2023.1176781&domain=pdf&date_stamp=2023-05-19
https://www.frontiersin.org/articles/10.3389/fmed.2023.1176781/full
https://www.frontiersin.org/articles/10.3389/fmed.2023.1176781/full
mailto:ahmedtouni1990@gmail.com
mailto:caroline.lepoole@northwestern.edu
https://doi.org/10.3389/fmed.2023.1176781
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2023.1176781


Touni et al. 10.3389/fmed.2023.1176781

Frontiers in Medicine 02 frontiersin.org

features are found not only in depigmented but also in normally 
pigmented skin (2, 3). Those keratinocytes demonstrate swelling of 
membrane-bound organelles; intracellular edema, and formation of 
vacuoles with clearing of the cytoplasmic matrix, and swollen 
mitochondria with disruption of cristae (4).

1.2. Mechanism of action

It is unclear how keratinocyte apoptosis occurs in patients with 
vitiligo (5). One proposed mechanism involves increased levels of 
lesional Tumor Necrosis Factor- α (TNF-α) (4). Indeed TNF-α is 
increased within vitiligo lesions when compared to normally 
pigmented skin (6). TNF-α is at the center of the extrinsic pathway of 
apoptosis, and increased TNF-α levels could lead to a reduced 
activation of NF-κB via impaired PI3K/AKT activation, possibly 
contributing to keratinocyte apoptosis (7). Moreover, in addition to 
melanocyte-reactive antibodies, anti-keratinocyte antibodies have 
been detected in the sera of patients. It remains to be seen whether 
these antibodies are a cause or consequence of keratinocyte damage 
(8). Taken together, keratinocyte apoptosis can indirectly influence 
melanocyte viability and support depigmentation. This prompts the 
question how keratinocytes might influence melanocyte viability in 
the skin.

2. Keratinocyte apoptosis negatively 
impacts melanocyte functions

2.1. Keratinocytes affect melanocyte 
viability

Keratinocyte apoptosis in vitiligo negatively impacts 
melanogenesis and melanocyte homeostasis (9). Keratinocyte integrity 
is essential for melanocyte function within the epidermal melanin unit 
(10). The main function of melanocytes is to synthesize melanin 
through oxidation of tyrosine, supported by enzymes uniquely found 
in melanocytic cells (8). Resulting melanin is stored in melanosomes, 
specialized lysosome-related organelles that move from the nucleus 
towards melanocyte dendrites upon melanin deposition (9, 10). 
Pigmented melanosomes are then transferred to adjacent 
keratinocytes, providing a supranuclear cap-like shield to protect the 
cell against UV radiation (11–13). Melanin synthesis and melanosome 
distribution within the epidermis determine skin pigmentation (14, 
15). Pigment synthesis is influenced by genetics, UV exposure, 
hormones, and chemical mediators (11, 12). Keratinocytes are one of 
the main sources of soluble mediators that control melanogenesis 
(Figure  1). Ultraviolet light activates a p53-dependent pathway 
resulting in the release of paracrine factors from keratinocytes (13, 
14). These factors act on neighboring melanocytes by receptor 
interaction to induce melanin synthesis.

2.2. Keratinocyte Activation of MITF

Stimulation of melanogenesis occurs through activation of 
Microphthalmia-Associated Transcription Factor (MITF) and its 
downstream targets, including the melanogenic enzymes Tyrosinase 

(TYR), Tyrosinase-Related Protein 1 (TYRP1), and Dopachrome 
tautomerase (DCT) with subsequent proliferation, differentiation of 
melanocytes and increased melanin production (15, 16). Stem Cell 
Factor (SCF) also promotes melanocyte proliferation (17) while 
treating melanocytes with anti-SCF leads to a dose–dependent decline 
in melanocyte numbers (17).

2.3. Influence of cell-to-cell contact

Keratinocytes control melanocyte proliferation and 
differentiation not only by soluble mediators but also by direct cell-
to-cell contact (18). The direct contact between melanocytes and 
basal undifferentiated keratinocytes influences melanocyte 
proliferation capacity along with the adhesion molecules pattern 
(19). Therefore, keratinocyte apoptosis deprives melanocytes of 
growth factors, melanogenic stimuli, and direct cell contact, 
resulting in reduced melanocyte health and increased sensitivity to 
apoptotic signals (17). By responding to UV-induced changes, 
MITF is activated and supports melanin formation, resulting in 
transfer of melanin-containing organelles to neighboring 
keratinocytes. Successful UV-induced pigmentation requires a 
coordinated effort between melanocytes and keratinocytes in the 
skin. This prompted further questions into the melanosome 
transfer process.

3. Keratinocyte protease-activated 
receptor-2 is dysregulated in vitiligo

3.1. Impact of PAR-2 on the epidermal 
melanin unit

PAR-2 is thought to be  involved in development of vitiligo 
through a reduced melanosome uptake by keratinocytes (20). The 
distribution of melanin within the epidermal melanin unit is regulated 
in part by expression of the keratinocyte receptor PAR-2, which is 
markedly reduced in the depigmented skin of vitiligo patients when 
compared with the skin of healthy subjects (21). PAR-2 is involved in 
melanosome phagocytosis and consequently, modulation of PAR-2 
activation affects melanosome transfer, contributing to the regulation 
of skin pigmentation (20).

3.2. PAR-2 activity in vivo

In vivo, PAR-2 activation results in increased melanin deposition 
and enhanced keratinocyte cap formation, while its inhibition results 
in aberrant melanosome packaging, abnormal melanosome dynamics, 
and atypical melanosome distribution, leading to depigmentation (20, 
22). This PAR-2 reduction seems to be a particular feature of vitiligo 
because a similar reduction was not observed in non-vitiligo 
leukoderma (21). With PAR-2 as a master regulator of melanosome 
transfer, we  may however be  overlooking additional molecules 
mediating cell to cell contact that also influence the normal 
pigmentation process.
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4. Adhesion molecules connecting 
keratinocytes and melanocytes

4.1. The epidermal melanin unit defines the 
interaction between keratinocytes and 
melanocytes

The epidermis is made up of a mesh of keratinocytes 
interconnected with melanocytes and scattered Langerhans cells. The 
epidermis and dermis are separated and held together by the basement 
membrane. Each melanocyte within the epidermis is in contact with 
30–40 neighboring keratinocytes through long dendritic extensions 
that form adhesive structures (23). Melanocytes are securely attached 
to the basement membrane, and their adhesion, and migration are 
under control of neighboring keratinocytes (18).

4.2. Intercellular contact molecules 
mediate melanocyte-keratinocyte 
adhesion

Unlike keratinocyte–keratinocyte adhesion, melanocyte–
keratinocyte interaction does not involve specific adhesive 

structures such as desmosomes but is instead mediated by simple 
adhesion molecules such as integrins and cadherins (24). 
Integrins are also crucial for melanocyte adhesion to the 
basement membrane as they attach to vitronectin, fibronectin, 
and type I  and IV collagen in the basement membrane zone 
(25, 26).

4.3. Keratinocytes regulate integrin 
expression

Keratinocytes can modulate integrin expression through 
releasing SCF to facilitate a more motile status of melanocytes as 
needed in the repigmentation process (27). Moreover, the 
pro-inflammatory cytokine IL-1β, which is released from 
UV-exposed keratinocytes, acts directly on melanocytes. In response, 
melanocytes release Cellular Communication Network Factor 3 
(CCN3) to up-regulate Discoidin Domain Receptor (DDR) tyrosine 
kinase activity within melanocytes (28, 29). This increases adherence 
to the basement membrane through contact with collagen I. Several 
studies showed that genetic variants of the DDR1 gene are associated 
with vitiligo, and the expression of DDR1 is decreased in vitiligo 
lesions (30–32).

FIGURE 1

Keratinocytes secrete growth and melanogenic factors that influence signal transduction pathways within melanocytes. Keratinocyte-derived, 
melanocyte-stimulating factors include alpha-melanocyte stimulating hormone (α-MSH), Endothelin-1 (EDN-1), Stem Cell Factor (SCF), and Hepatocyte 
Growth Factor (HGF) that bind to their corresponding receptors on the surface of melanocytes. Among these receptors, c-kit, c-Met, and EDN receptors 
activate Mitogen-Activated Protein (MAP) kinases, while the melanocortin-1 (MC-1) receptor activates protein kinase A (PKA). In turn, MAP kinase or PKA 
will activate microphthalmia-associated transcription factor (MITF), which regulates the expression of multiple pigmentation-related genes.
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4.4. Tenascin is upregulated in vitiligo 
lesional skin

Vitiligo skin displays elevated tenascin expression in the basal 
membrane and papillary dermis (33). Tenascin has anti-adhesive 
properties, as it decreases the ability of melanocytes to bind to the 
basement membrane (34, 35).

4.5. Interaction with inflammatory cells is 
affected by keratinocytes

Harnessing the role played by keratinocytes in controlling the 
homeostasis of melanocytes is an interesting therapeutic strategy 
for vitiligo and attempts have been developed for that purpose. 
For example, afamelanotide is a potent synthetic linear analog of 
alpha-Melanocyte Stimulating Hormone (α-MSH) that can 
stimulate melanogenesis and facilitate the transfer of melanosomes 
(36). It may also restore balance of the cytokine environment by 
acting on immune cells expressing melanocortin-1 receptor 
(MC1R) (including macrophages and T cells) to mediate anti-
inflammatory effects (37). In an initial randomized controlled 
trail, combination therapy in the form of Afamelanotide implants 
plus narrow-band ultraviolet B (NB-UVB) demonstrated a 
statistically superior rate of repigmentation over NB-UVB 
treatment alone (38). A plethora of cell membrane molecules can 
thus influence pigmentation and potentially contribute to loss of 
pigmentation in vitiligo. Yet another category of a intercellular 
communication molecules can influence melanocyte physiology: 
introducing the extracellular matrix.

5. Extracellular matrix deposits 
impacting melanocyte release

5.1. MMP expression is induced in response 
to UV

Matrix metalloproteinases (MMPs) are a family of zinc-dependent 
proteases that have an ability to cleave components of the extracellular 
matrix, preparing an optimal setting for cell migration (39, 40). Cell 
migration is essential in inflammatory reactions, remodeling, and 
healing. Keratinocytes express MMP-9 and MMP-2 in response to 
ultraviolet light or proinflammatory cytokines such as IFN-γ, TNF-α, 
IL-1β, and IL-6 (41, 42).

5.2. Melanocytes are lost by sloughing off

MMPs induce the decoupling of melanocytes from their 
neighboring keratinocytes and from the basement membrane through 
E-cadherin (43). Lateral melanocyte migration involves a process of 
detachment and re-attachment to neighboring keratinocytes (44). If 
the re-attachment process fails, melanocytes would be released and 
slough off alongside keratinocytes (45). This is highlighted in vitiligo 
since MMPs have a role in melanocyte death or migration in active or 
stable disease, respectively (45).

5.3. MMPs affect repigmentation

In active disease the levels of MMPs, especially MMP-9, are 
elevated in the lesional skin of vitiligo patients under the influence 
of IFN-γ and TNF-α. MMP-9 induces a decoupling of melanocytes 
from the basement membrane via disruption of E-cadherin with 
subsequent death of melanocytes (45). On the other hand, 
significantly lower expression of metalloproteinases has been 
observed in perilesional skin of patients with stable disease (39, 42). 
This deficiency could interfere with the ability of melanocytes to 
migrate and to repigment vitiligo skin (42). Pro-MMP activation 
occurs at the cell surface, thus proteolysis is greatest in the 
immediate pericellular environment, where it can influence cell–cell 
and cell–extracellular matrix (ECM) interactions (40, 46). It is 
therefore reasonable to assume that migration of melanocytes (or 
their precursor melanoblasts) from the outer root sheath of hair 
follicles or hair bulge into clinically depigmented epidermis would 
require their release from those adhesion sites and subsequent 
penetration of existing basement membrane barriers in vivo (47). 
These processes are directed, at least in part, by limited proteolysis 
of the ECM by MMPs (47). This aligns with the impaired expression 
of MMP9 in perilesional skin of patients, correlating with a poor 
response to UVB-based phototherapy.

5.4. Beta-catenin is involved in vitiligo

The E-cadherin cytoplasmic domain in keratinocytes forms a 
complex with β-catenin (48). Loss of E-cadherin leads to release of 
β-catenin which can induce MMP-1, MMP-2, and MMP-9 to 
stimulate melanocyte migration (49–52). Melanocyte migration is also 
stimulated by α-MSH-MC1R and stem cell factor (SCF)/ signaling 
pathways, endothelin-1 (ET-1), basic fibroblast growth factor (bFGF) 
and hepatocyte growth factor (HGF) (53–55).

5.5. Stress-jnduced Koebnerization

Melanocyte dendrites may facilitate attachment of melanocytes 
to the basal layer of the epidermis and are considered a major 
component of the melanocyte adhesion system independent of the 
structural junctions (56). Gauthier et al. (57) reported detachment 
and trans-epidermal elimination of melanocytes following minor 
mechanical trauma in vitiligo patients. Stress-induced detachment 
may then help explain the Koebner phenomenon observed in 
patients with vitiligo (58). Also, in vitiliginous skin, the expression 
of cadherins is decreased while tenascin, an extracellular matrix 
molecule that inhibits adhesion of melanocytes to fibronectin, is 
increased (33). These changes can be  explained by increased 
production of metalloproteinase-9 (MMP-9) by keratinocytes 
under the influence of IFN-γ and TNF-α, characteristic vitiligo-
associated cytokines (45). By mediating altered adhesion of 
melanocytes in lesional skin, the role of keratinocytes can 
be significant in vitiligo. The specific physiology of keratinocytes 
in vitiligo that would influence vitiligo development is however 
better understood when accounting for vitiligo-associated 
mutations in the pigmentary disorder.
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6. Disease-associated mutations 
suggesting a role for keratinocytes in 
vitiligo

6.1. Vitiligo-associated gene mutations 
have been identified

Vitiligo is a complex genetic disease as supported by the familial 
clustering of vitiligo cases in 6–8% of first-degree relatives. However, 
the concordance of vitiligo in monozygotic twins is only ~23%, 
suggesting that environmental factors also contribute to disease 
development (59). Multiple vitiligo susceptibility genes have been 
identified in genome-wide association studies, showing that besides 
immunomodulatory genes, some melanocyte specific genes (60–62) 
are associated with progressive depigmentation. Interestingly, 
keratinocyte-related genes have been linked to vitiligo pathogenesis as 
well, which could point to a functional link between both cell types. 
Examples are found in the endothelin-1 (EDN1), cyclooxygenase 
(COX2), NLR family pyrin domain containing 1 (NALP1), and Liver 
X receptor alpha (LXR-α) genes.

6.2. A role for EDN1

The EDN1 gene is expressed by epidermal keratinocytes (63) and 
encodes a potent vasoconstrictor peptide that acts on neighboring 
melanocytes to modulate their function and survival (64, 65). 
However, EDN1 polymorphisms were only identified as a risk factor 
for the development of segmental vitiligo (66, 67).

6.3. COX2 involvement as a ultraviolet 
light-induced gene

The COX2 gene encodes a key enzyme in the production of 
prostaglandin E2 (PGE2). Its production by epidermal keratinocytes 
is induced by ultraviolet radiation (68). PGE2 supports melanocyte 
proliferation and melanogenesis (69). A functional polymorphism of 
the COX2 gene is associated with an increased risk of vitiligo 
development (70, 71). This polymorphism reduces the mRNA levels 
encoding COX2 and affects the subsequent production of PGE2, 
which further impairs melanocyte survival and melanogenesis.

6.4. NALP1 is associated with vitiligo

Jin et al. (72) identified NALP1 as a vitiligo-associated gene. 
This group found an association between the expression of specific 
vitiligo-associated NALP1 variants and an extended autoimmune 
and autoinflammatory disease phenotype. NALP1 is a key regulator 
of the innate skin immune system, and a principal inflammasome 
sensor in human keratinocytes (73). Ultraviolet radiation and 
cellular stress can induce NALP1 activation. Subsequent caspase-1–
dependent processing of pro-interleukin-1β (IL-1β) leads to release 
of IL-1β and downstream inflammatory responses that recruit T 
cells to the skin (74, 75). Single nucleotide polymorphisms of 
NALP1 are associated with generalized vitiligo (76, 77). 
Pharmacological targeting of NALP1 activation in epidermal 

keratinocytes may thus represent a promising strategy for the 
treatment of inflammatory autoimmune skin diseases such 
as vitiligo.

6.5. LXR-α polymorphisms are potentially 
involved in disease

The LXR-α gene contributes to melanocyte proliferation and 
differentiation (78). A polymorphism of the LXR-α gene is linked 
to the development of vitiligo in some populations (79, 80). LXR-α 
upregulation is associated with keratinocyte damage in vitiliginous 
skin. Such damage leads to decreased keratinocyte-derived 
mediators and growth factors that otherwise support the growth 
and/or melanization of surrounding melanocytes, leaving them 
more prone to apoptosis (81, 82). Interestingly, LXR-α expression 
decreases or inhibits the expression MMPs, and this decrease in 
MMPs in turn inhibit the migration or replacement of melanocytes 
from hair outer root sheath melanoblasts in perilesional vitiligo 
skin (41, 83). Several genes have been postulated as major players 
in vitiligo development. As vitiligo is first and foremost a T cell 
mediated autoimmune disorder, the specific alterations 
we  encounter in active disease should impact the autoimmune 
response. Below are some findings that can provide insight in 
the process.

7. Keratinocytes generate 
chaperokines and cytokines involved 
in vitiligo

7.1. Oxidative stress leads to cytokine and 
chaperokine expression

Oxidative stress has been observed in both melanocytes and 
keratinocytes (84). Oxidative stress can trigger the release of inducible 
heat shock protein 70 (HSP70i) from dying cells and from melanocytes 
under stress (85). Additionally, this heat shock protein can associate 
with melanosomes, suggesting that HSP70i can chaperone 
melanosomal proteins (85). Once released, HSP70i can potentiate 
maturation and activation of plasmacytoid dendritic cells (pDCs) as 
well natural killer (NK) cells (86).

7.2. Keratinocytes are involved in T cell 
recruitment

Enhanced type 1 polarizing cytokines released from pDCs can 
potentiate expression of CXCL9 and CXCL10 by keratinocytes (86). 
These chemokines are primarily responsible for recruiting cytotoxic T 
cells to the skin of vitiligo patients (87). Modified HSP70 (HSP70iQ435A) 
was proposed as a treatment for vitiligo; the modified HSP70i binds 
human DCs and reduces their activation. In vivo the modified HSP70i 
induced a shift from inflammatory to tolerogenic DCs in mice (88). 
Also, ex vivo treatment of human skin averted the disease-related shift 
from quiescent to effector T cell phenotype (88), while in vivo 
application of HSP70iQ435A caused repigmentation of vitiligo lesions in 
a swine model of the disease (89).
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7.3. Proposing a role for antigen transfer 
from melanocytes

MHC Class II expression is not normally found on healthy tissue 
cells, however, it is expressed in vitiligo skin, and it includes both 
melanocytes and surrounding keratinocytes in the perilesional area. 
This expression occurs in response to IL-22 or IFN-γ. As immunogenic 
melanosomal antigens are transferred with pigmented melanosomes 

and melanosomes can form a source of antigens to be presented in the 
context of Major Histocompatibility Complex (MHC) II (90), 
keratinocytes in vitiligo skin can activate a CD4+ T-helper response 
by de novo presentation of melanosomal antigens to them, together 
with MHC II + melanocytes. In turn, these CD4+ T cells recruit MHC 
class I-restricted cytotoxic T cells to the skin which deliver a lethal 
melanocyte-specific attack, sparing keratinocytes. The resulting focal 
immune infiltrate is a hallmark of vitiligo pathogenesis (Figure 2).

FIGURE 2

Keratinocytes can help induce anti-melanocyte immune responses. Keratinocytes can activate dermal dendritic cells (DCs) and CD4 T cells by 
presenting processed melanosomal antigens in the context of MHC II, supported by surrounding HSP70. Activated CD4 T cells secrete IFN-γ. Upon 
receptor binding, this leads to signal transducer and activator of transcription (STAT1) phosphorylation by Janus Kinases (JAKs) and release of CXCL 
chemokines 9–11 and of IL-15. Said chemokines help recruit T cells to eradicate melanocytes. IL-15 specifically supports the generation of tissue-
resident memory T cells (TRM) within the lesional skin.

https://doi.org/10.3389/fmed.2023.1176781
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Touni et al. 10.3389/fmed.2023.1176781

Frontiers in Medicine 07 frontiersin.org

7.4. IL-22 can mediate inflammasome 
activation

Patients with vitiligo exhibit greater serum levels of IL-22 when 
compared to control individuals without vitiligo (91). IL-22 can also 
trigger the release IL-1β via the involvement of the NLRP3 
inflammasome in keratinocytes (92).

7.5. Keratinocytes activate IFNγ inducible 
genes

Vitiligo patients carry increased numbers of circulating, 
melanocyte-reactive cytotoxic T cells that partially migrate to the skin. 
T cells can be seen infiltrating a very restricted area surrounding the 
lesional skin (5). These T cells are held responsible for the expansion 
of vitiligo and mediate progressive melanocyte destruction. IFN-γ 
inducible genes compose the dominant cytokine pathway expressed 
in lesional skin. IFN-γ mediates the recruitment of melanocyte-
specific, autoreactive CD8 T cells to the skin (93) by stimulating 
keratinocyte-derived CXCL10 and Chemokine C-X-C Motif Ligand 
(CXCL)9 to recruit Chemokine C-X-C Motif Receptor (CXCR)3- 
expressing autoreactive CD8+ T cells to the skin (94, 95) and creating 
an environment that delays repigmentation (96). This is in part due to 
a shift in energy utilization by keratinocytes toward oxidative 
phosphorylation (96, 97).

7.6. Alarmin involvement blocks growth 
factor release

IL-33 is an alarmin which is produced by keratinocytes 
under the influence of TNFα and IFN-γ. IL-33 inhibits 
melanocyte growth in vitiligo, blocking growth factors and 
increasing the release of pro-inflammatory cytokines IL-6 and 
TNFα (98, 99).

7.7. IL-15 supports resident-memory T cell 
differentiation

IL-15 is an important cytokine in vitiligo pathogenesis due to its 
ability to generate and maintain signals of tissue-resident memory T 
cells (TRM) (100). Keratinocytes are a source of IL-15, which promotes 
differentiation of self-reactive T cells into TRM cells (101). The latter T 
cells contribute to disease maintenance and the recurrence of disease 
in the same site (101).

7.8. A potential role can be assigned to 
CXCL16

Stressed keratinocytes release CXCL16 upon activation of 
the unfolded protein response (102). CXCL16 acts on CXCR6 
expressed on CD8+ T cells. CXCL16 mediates trafficking of 
these CD8+ T cells to the skin, furthering melanocyte 
destruction (102).

7.9. Inhibiting the IFN-γ axis

Keratinocytes are considered a key source of cytokines and 
chemokines involved in vitiligo (103). Hence, interfering with the 
activity of these cytokines has emerged as a promising target for 
vitiligo treatment. For example, targeted therapeutics are now 
available to interfere with the interferon (IFN)-γ-CXCL10 axis. 
For example, Janus kinase (JAK) 1/3 inhibitors, and JAK 1/2 
inhibitors directly inhibit IFN-γ signaling, and both revealed 
favorable outcomes in clinical trials (104, 105). Additionally, in 
vitiligo mouse models, an anti-CD122 antibody that targets IL-15 
signaling was reported to effectively reverse depigmentation 
(100). Anti-CD122 therapy, either systemically or locally, 
decreased TRM-induced IFN-γ production and resulted in long-
term repigmentation (100). These findings raised enthusiasm for 
CD122-targeted drugs for vitiligo and other tissue-specific 
autoimmune disorders. Taken together, genetic alterations that 
occur in vitiligo development are expected to influence, at least in 
part, the autoimmune process that follows. The true culprit may 
vary among patients, yet there is ample reason to assign a role for 
keratinocytes in vitiligo disease development.

8. Conclusion

Recently, there have been tremendous advances in understanding 
the interactions between keratinocytes and melanocytes in the 
pathogenesis of vitiligo, to the degree that vitiligo should be not only 
be considered a disease of melanocytes alone. Keratinocytes release 
growth- and melanogenic factors essential for melanocyte survival and 
function. Hence, disrupting the synthesis of these growth factors from 
keratinocytes can jeopardize melanocyte viability and function. 
Additionally, keratinocytes have the machinery to process and present 
melanosomal antigens from transferred melanosomes to T cells within 
the epidermis, thus initiating the attack directed against melanocytes. 
Finally, keratinocytes secrete cytokines that activate and recruit various 
immune cells into the skin to deliver a lethal hit to melanocytes. 
Recognizing this type of keratinocyte-melanocyte cross-talk helps to 
design new treatment strategies that can be implemented in vitiligo.
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