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related signature predicts the 
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Introduction: Gastric cancer (GC) is the fifth most prevalent cancer globally, 
with the third highest case fatality rate. Neutrophil extracellular traps (NETs) are 
a reticulated structure of DNA, histones, and antimicrobial peptides produced by 
active neutrophils that trap pathogens. Even though NETs are associated with 
poorer recurrence-free survival (RFS) and overall survival (OS), the specifics of this 
interaction between NETs and cancer cells are yet unknown.

Methods: The keywords “neutrophil extracellular traps and gastric cancer” were 
used in the GEO database for retrieval, and the GSE188741 dataset was selected to 
obtain the NETs-related gene. 27 NETs-related genes were screened by univariate 
Cox regression analysis (p  <  0.05). 27 NETs-related genes were employed to 
identify and categorize NETs-subgroups of GC patients under the Consensus 
clustering analysis. 808 GC patients in TCGA-STAD combined with GES84437 
were randomly divided into a training group (n =  403) and a test group (n =  403) 
at a ratio of 1:1 to validate the NETs-related signature.

Results: Based on Multivariate Cox regression and LASSO regression analysis to 
develop a NETs-related prognosis model. We developed a very specific nomogram 
to improve the NETs-clinical score’s usefulness. Similarly, we also performed a 
great result in pan-cancer study with NETs-score. Low NETs scores were linked 
to higher MSI-H (microsatellite instability-high), mutation load, and immune 
activity. The cancer stem cell (CSC) index and chemotherapeutic treatment 
sensitivity were also connected to the NET score. Our comprehensive analysis 
of NETs in GC suggests that NETs have a role in the tumor microenvironment, 
clinicopathological features, and prognosis.

Discussion: The NETs-score risk model provides a basis for better prognosis and 
therapy outcomes in GC patients.
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Introduction

Gastric cancer (GC) is the fifth most prevalent cancer globally, with the third highest case 
fatality rate (1). Surgical excision, radiotherapy, and chemotherapy are still the primary 
treatments for GC, but the prognosis is still unsatisfactory (2). Immunotherapy has been a 
prevalent topic in the comprehensive treatment of tumors as immunology has advanced. Due 
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to the complex pathogenesis of GC, the tumor microenvironment 
(TME) composed of fibroblasts, endothelial cells, neutrophils, 
macrophages, and T/B lymphocytes leads to the heterogeneity of GC 
patients (3). Increasing research suggests that changes in the 
composition of resident cell types in the TME may be relevant to 
immune responses and chemotherapeutic benefits (4). Infiltration 
levels of CD8 T cells, CD4 T cells, macrophages, and cancer-related 
fibroblasts (CAF) in TME are associated with the prognosis of 
numerous cancers, such as gastric cancer, melanoma, bladder cancer, 
lung cancer, and breast cancer (5–9). Recent studies indicate that 
tumor-associated neutrophils (TANs) have been essential in 
carcinogenesis (10). According to cytokine production patterns and 
effector functions, TANs can polarity into anti-tumorigenic “N1” and 
pro-tumorigenic “N2” phenotypes. By secreting pro-inflammatory 
and pro-angiogenic chemokines and cytokines, TANs can facilitate 
distant metastasis of tumor cells (11, 12).

Neutrophil extracellular traps (NETs) are a reticulated structure 
of DNA, histones, and antimicrobial peptides produced by active 
neutrophils that trap pathogens such as bacteria, fungi, and viruses 
and play a significant role in innate immunity (13). Some literature 
showed that targeting neutrophil extracellular traps can be a novel 
strategy to prevent cancer metastasis (14–16). Even though NETs play 
an active role in fighting pathogen invasion, recent research indicates 
that cancer cells promote tumor progression by recruiting TANs and 
releasing NETs into the tumor microenvironment and circulation 
(17). NETs were discovered in metastatic Ewings sarcoma tissue (18), 
implying that NETs are associated with tumor metastasis. The 
relationship between the NETs release of neutrophils stimulated in 
vitro and poor prognosis was subsequently demonstrated in colorectal 
and cervical cancer (19, 20). In addition, elevated levels of TANs and 
NETs were found in metastases from colorectal and breast cancers 
(21). Preoperative serum MPO-DNA levels (a well-established 
biomarker for circulating NETs) in patients with liver malignancies 
were associated with poorer recurrence-free survival (RFS) and overall 
survival (OS) (22). Increased peripheral blood NETs in GC patients 
are associated with lymph node metastases, poorer short-term 
outcomes, and progression-free survival (PFS). They can be  an 
independent prognostic factor for GC patients (23). The migration 
and invasive capacity of GC cells were enhanced by epithelial-
mesenchymal transition (EMT) after using NETs to affect them in 
vitro (24). Another study revealed that NETs in the blood and ascites 
promote distant metastasis of GC cells in vivo by modeling 
postoperative abdominal infectious complications (AIC) (25). 
Although the NF-κB and TGF-β signaling pathways are involved in 
the above-affected GC cell phenotype (26), the molecular mechanisms 
by which NETs affect GC and other immune cells in TME have not 
been thoroughly understood.

To further investigate the impact of NETs-related genes on the 
prognosis and treatment of GC patients, transcriptome, 
clinicopathological, and OS data of GC were obtained from the Gene 
Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) 
databases. Furthermore, 353 NET-related genes were identified in the 
GSE188741. The GC prognostic model based on seven NETs-related 
differential expression genes (DEGs) was constructed using differential 
analysis, univariate Cox, Multivariate cox, and most minor absolute 
shrinkage and selection operator (LASSO) analysis, and the predictive 
efficacy of the model was validated using internal cohort, external 
cohort, and consensus clustering analysis. In addition, thorough 

bioinformatics analyses were conducted to evaluate differences in 
immune infiltration, chemotherapy, and immunotherapy sensitivity 
between high and low NETs-score groups. Finally, the expression 
pattern of these seven NETs-associated DEGs in TME was validated 
using single-cell sequencing data. This study provides new insights for 
improving the prognosis of GC patients and further investigating the 
specific molecular mechanisms of NETs for GC.

Method

Data collection

The transcriptome data, somatic mutation, and clinical materials 
of the normal gastric sample (n = 32) and GC sample (n = 375) were 
downloaded from TCGA.1 In addition, GSE84437 (GC sample = 433), 
GSE15459 (GC sample = 192), GSE66229 (GC sample = 300), 
GSE38749 (GC sample = 15), and GSE26253 (GC sample = 432) with 
detailed characteristic information and survival duration were 
obtained from the GEO database.2 The IMvigor210 cohort 
(immunotherapy cohort for bladder cancer) expression data and 
clinical information were obtained from http://research-pub.gene.
com/IMvigor210CoreBiologies/. In addition, GSE126044 
(immunotherapy cohort for non-small cell lung cancer), GSE135222 
(immunotherapy cohort for non-small cell lung cancer), and 
GSE179351 (immunotherapy cohort for colon cancer and pancreatic 
cancer) were obtained from the GEO database. The ccRc cohort 
(immunotherapy cohort for renal cancer) was obtained from https://
doi.org/10.1038/s41591-020-0839-y. We also analyzed the response to 
immunotherapy in GC patients from the PRJEB25780 cohort. Perl 
scripts were utilized to extract each GC sample’s transcriptome matrix 
and clinical information and merged for further analysis. Based on R 
software 4.1.1, the raw data downloaded above were normalized for 
subsequent analysis using the “limma” package. The data were batch-
corrected using the “sva” package, and the processed data from 
TCGA-STAD and GES84437 were selected and combined for 
further analysis.

Retrieval and mining of NETs-related 
regulators in GC

The keywords “neutrophil extracellular traps and gastric cancer” 
were used in the GEO database for retrieval, and the GSE188741 
dataset was selected. The GSE188741 dataset included mRNA/
miRNA/lncRNA sequencing information for AGS GC cell line 
samples and AGS treated with NETs isolated from the blood of GC 
patients (27). We downloaded the expression matrix processed by the 
author. After deleting seven non-coding RNAs, we  obtained 353 
differential mRNAs utilizing the “limma” package for differential 
analysis in R 4.1.1. These DEGs were considered to be NETs-related 
regulators in GC for subsequent analysis.

1 https://portal.gdc.cancer.gov/

2 https://www.ncbi.nlm.nih.gov/geo/
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Characteristics of the NETs-related 
regulators

First, based on the “limma” package in R 4.1.1.1, we performed 
the differential analysis of 353 NETs-related genes in TCGA-STAD 
(logFC >1, FDR < 0.05) and screened out 130 differentially expressed 
NETs-related genes. Then, using the “survival” package, 27 NETs-
related genes were screened by univariate Cox regression analysis 
(p < 0.05) and visualized by forest map. Meanwhile, somatic mutation 
prevalence, the genetic locus, and CNV of 27 NETs-related genes were 
analyzed. At the same time, we also investigate the interaction between 
different NETs-related genes.

Consensus clustering analysis

Consensus clustering in unsupervised learning algorithms is 
commonly applied in cancer research as a classification method (28). 
The “ConsensusClusterPlus” package determined the number of 
clusters and their stability. 27 NETs-related genes were employed to 
identify and categorize NETs-subgroups of GC patients. Additionally, 
1,000 replications were conducted to confirm categorization stability. 
After that, Uniform Manifold Approximation and Projection 
(UMAP), Principal Component Analysis (PCA), and t-distributed 
Stochastic Neighbor Embedding (tSNE) were used to validate the 
reliability of clustering with the R package “ggplot2.”

To further examine the clinical value of the consensus clustering, 
we perform the Kaplan–Meier survival analysis in different NETs-clusters 
using the “survival” package of the R software. Furthermore, we evaluated 
the correlations among the NET subtypes, clinicopathological 
characteristics, and prognosis. The clinical characteristics included age, 
gender, and TN stage. We also downloaded “c2.cp.kegg.v7.4.symbols.
gmt,” “c2.cp.kegg.symbols.gmt,” “immune.gmt” and “c5.go.symbols.gmt” 
from the Molecular Signatures Database (MSigDB) database to carry out 
gene set variation analysis (GSVA), gene set enrichment analysis (GSEA) 
and single sample gene set enrichment analysis (ssGSEA) analysis. The 
“GSVA” R package was used to perform GSVA enrichment analysis and 
ssGSEA analysis. The “clusterProfiler” R package was used to perform 
GSEA enrichment analysis.

Construction and validation of the 
NETs-related prognostic model

GC patients in TCGA-STAD combined with GES84437 were 
randomly divided into a training group (n = 402) and a test group 
(n = 402) at a ratio of 1:1 to validate the NET-related signature. Based 
on R 4.1.1, we  used the “survival” and “glmnet” packages for 
Multivariate Cox regression and LASSO regression analysis to develop 
a NETs-related prognosis model. Then, we calculated each patient’s 
risk score. The calculation formula is as follows:

 
NETs score CoefNETs related genes NETs related gen− = ∗

=
− −∑

i

n

1

exp ees

According to the median NET score, patients were categorized as 
having a high NET score (more than the median) or a low NET score 
(below the median). Kaplan–Meier analysis was utilized to compare 

the survival rates in different cohorts. Furthermore, we compare the 
correlation between NETs-cluster, NETs-score, and patient survival 
status using the “gglot2” package. The “pheatmap” package shows the 
distribution of seven prognostic NET-related genes in all GC patients.

Establishment and validation of the 
nomogram

First, the independence of the NETs-related signature for OS was 
validated further in TCGA-STAD using univariate and multivariate 
Cox proportional hazards regression (CPHR) analysis. Using the 
“rms” package in R 4.1.1, a nomogram was constructed according to 
age, stage, and NET score based on independent prognostic outcomes. 
In the nomogram system, each factor has a corresponding score; the 
total score is the sum of the scores for all factors in each sample (29). 
The nomogram was evaluated using ROC curves for the 1-, 3-, and 
5-year survival rates. The calibration curves were used to evaluate the 
consistency between the predicted and observed OS rates.

Estimation of the gene mutation and 
immune landscape

For the gene mutation analysis, the somatic mutation data 
downloaded from TCGA were analyzed using the “Maftools” package in 
R 4.1.1 to evaluate the differences between the top 20 high-frequency 
mutated genes in different NET score groups. In addition, we investigated 
the differences in tumor mutation burden (TMB), microsatellite stability 
(MSS), low-frequency microsatellite instability (MSI-L), and high-
frequency microsatellite instability (MSI-H) between high and low NETs-
score groups, as well as the relationship between NETs-score with TMB 
and MSI. Using one-class logistic regression (OCLR), the CSC index for 
each sample was calculated, and then the correlation between the NETs-
score and CSC index was evaluated.

For immune infiltration analysis, the algorithm CIBERSORT3 can 
estimate the composition of immune cells in samples based on the 
gene expression matrix (30). Using this algorithm, we calculated the 
proportions of 22 types of immune cells in GC patients with TCGA-
SATD and GSE84437. Then we  compared the heterogeneity in 
immune cell infiltration into the TME between different NETs-score 
groups. In addition, we  evaluated the correlation between seven 
prognostic NETs-related genes and these 22 kinds of immune cells. 
The study also evaluated differences in common immune checkpoints 
between low and high NET score groups.

Immunotherapy evaluation based on 
NETs-score

Previous research has found that malignant tumors can be categorized 
into six immune subtypes (C1-C6) (31): wound-healing (C1), IFN-γ 
dominant (C2), inflammatory (C3), lymphocyte-depleted (C4), 
immunologically quiet (C5), and TGF-β dominant (C6). Another study 
classified all 419 patients receiving immunotherapy from IMvigor 210 and 

3 https://cibersort.stanford.edu/
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TCGA into four categories based on cytotoxic lymphocyte (CTL) and 
lncRNA characteristics (32): immunological activity(TCGA Subtype-I), 
immune rejection(TCGA Subtype-II), immune dysfunction(TCGA 
Subtype-III), and immune desert (TCGA Subtype-IV). We evaluated the 
difference between high and low NET score groups in the TCGA-STAD 
and IMvigor 210 cohorts for various immune subtypes. Using 
“RColorBrewer” in R 4.1.1.1, visualize the above results. In addition, 
we employed immunophenotype scores (IPS) to predict the response to 
immune checkpoint inhibitors (ICIs) based on the expression of 
significant components of tumor immunity. Immunogenicity was 
positively connected with the IPS score (33), calculated using a scale 
ranging from 0 to 10 and based on the z score of gene expression of 
representative cell types. The Cancer Immunome Atlas (TCIA, http://tcia.
at/home) was used to calculate the IPS for each TCGA-STAD GC patient, 
and then we compared the differences in IPS across the different NET 
score groups. Moreover, patients from the IMvigor210 and 
immunotherapy cohorts were classified using the NET score. We also 
analyzed the prognostic value of NET scores in different external 
immunotherapy coorts (KM survival analysis based on the best cut-off of 
NET score).

For the predicted assessment of the patient with immunotherapy 
in the prognostic value of NETs-score, the time-dependent ROC curve 
analysis was performed to obtain the area under the curve (AUC). In 
addition, we  not only downloaded the TIDE score online4 but 
obtained the TIS score by calculating the average value of log2-scale 
normalized expression in the 18 signature genes. In addition, more 
relevant immune indicators were used as recent articles (34, 35). After 
that, we revealed the results for comparing the prognostic between the 
NETs-score, TIDE, and TIS by using the R package of “timeROC” and 
performed time-dependent ROC curve analyses to obtain the area 
under the curve (AUC). The “survival” and “ggplot2” packages were 
applied to plot OS curves, ROC curves, and various immunotherapy 
response levels.

Drug sensitivity analysis

We downloaded the dataset of anti-cancer medications from the 
Genomics of Drug Sensitivity in Cancer (GDSC) website5 and used 
the “oncoPredict” package in R4.1.1 to predict the chemotherapeutic 
drug sensitivity of GC patients in TCGA-STAD and GSE84437. Drugs 
with median IC50 < 1 were screened, which were considered to 
be powerful drugs for GC treatment. Finally, the sensitivity of these 
drugs in different NET score groups was statistically tested to evaluate 
the different response levels of patients with different NET scores.

Pan-cancer analysis of the NETs-score 
model

We ranked all TCGA patients with 33 different types of cancer 
based on the NET score and visualized the distribution of the NET 
score in different cancers. The correlation between NET score and 
TME, immune cells, stemness indices, TMB, MSI, and CD274 was 

4 HTTP://tide.dfci.harvard.edu/

5 https://www.cancerrxgene.org/

further analyzed. In addition, we analysis the correlation of NETs-
score with chemokines, chemokines receptors, immune activation 
regulators, immunosuppressive regulators, and Tumor Inflammation 
Signature score (TIS score) in pan-cancer.

Immunohistochemistry staining (IHC) for 
the signature genes

We compared the expression patterns of signature genes between 
normal and cancer tissues according to The Human Protein Atlas 
database (HPA, https://www.proteinatlas.org/, accession date: April 2022).

Statistical analysis

R (version 4.1.1) was used to perform all statistical analyses and 
visualizations. The specific R packages used are described in each 
section. The t-test was used to compare two groups, one-way ANOVA 
was used to compare multiple groups, Pearson correlation analysis was 
used to evaluate correlations, and Kaplan–Meier analysis was used to 
evaluate survival. Any p < 0.05 was considered statistically significant.

Result

Identification of NETs-related genes in GC

The process flow chart of our study is shown in 
Supplementary Figure S1. First, we acquired the data on NET-related 
gene expression from the GEO database (GSE188741). In the 
differential expression genes analysis, there were 353 differentially 
expressed genes retrieved from the GEO cohort, including 212 
up-regulated genes and 141 down-regulated genes in the NETs 
stimulated GC cells line compared with the GC cells line of AGS 
(Figure  1A). Meanwhile, we  intersected these genes with the 
differential expression genes from the transcriptome profiling data of 
the Stomach adenocarcinoma (STAD) project from the Cancer 
Genome Atlas (TCGA) database. The intersecting list yielded 130 
differentially expressed NETs-related genes, of which 110 were 
up-regulated, and 20 were down-regulated in tumor samples as 
compared to normal samples (Figure  1B). By comparison, these 
potential genes suggested a function in tumorigenesis that needs to 
be addressed in future analyses and trials. 27 NETs-related genes from 
130 genes in the intersecting list that were highly connected with GC 
patients were identified by a univariate Cox survival analysis, and 
Kaplan–Meier analysis was used for the following analysis, shown in 
Figure 1C and Supplementary Figure S2 (p < 0.05).

We examined the gene mutations to understand the types of 
mutations in GC patients in accordance with the 27 NETs-related 
genes (Figure  1D). At the genetic level, NET-related regulator 
mutations were found in 142 of the 433 samples (approximately 
32.79%). The analysis showed that most mutations were occurring in 
CUBN. In addition, missense mutations predominated among the 27 
genes connected to the Nets. For 27 NETs-related genes, we calculated 
the frequency of CNVs and found alterations in 27 NETs-related genes 
with chromosomal CNVs (Figures 1E,F). PAEP was illustrated as a 
frequent modification, with most of the changes focusing on copy 
number amplification on the nine chromosomes. A network was 
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FIGURE 1

Identification and characteristics of NETs-related regulators in GC. (A) Gene expression heat map of NETs-related genes in AGS. (B) Volcano plot 
showing the differentially expressed NETs-related genes in TCGA-STAD. Blue dots represent down-regulated NETs-related genes, and red dots 
represent up-regulated NETs-related genes. (C) The forest plot shows the top 27 NETs-related genes via the univariate Cox regression analysis in 
TCGA-STAD combined with GSE84437 (p <  0.05). (D) Mutation frequencies of 27 NETs-related genes in TCGA-STAD. (E) Frequencies of CNV gain, loss, 
and non-CNV among NETs-related genes. (F) Locations of CNV alterations in NETs-related genes on 23 chromosomes. (G) Interactions among NETs-
related genes in GC, and the thickness of lines represent the strength of the association between NETs-related genes. Blue and pink represent negative 
and positive correlations, respectively.
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created to show the landscape of the selected genes’ interconnections, 
regulator linkages, and prognostic significance in patients with GC.

Identification of NETs subtypes in GC

First, we  used univariate Cox regression and Kaplan–Meier 
analysis to investigate and identify the selected NETs genes of 
predictive value in the 808 GC patients. Based on the expression levels 
of 27 NETs-related regulators, we  identified various regulatory 
patterns using the unsupervised clustering technique. The results 
showed that k = 2 appears to be the optimum option for dividing the 
entire cohort into subtypes A (n = 581) and B (n = 227) (Figure 2A). 
The results of the survival study indicated that Cluster B had a higher 
survival probability than Cluster A (Figure 2B). Figure 2C showed that 
the advanced TNM stages, particularly the T stage, were also 
associated with the NETs-related gene subtype B patterns. Moreover, 
GSVA enrichment analysis was used to examine the differences in 
biological behavior between these two patterns (Figure  2D). It 
revealed that cluster B was enriched for the top five pathways highly 
related to focal adhesion, dilated cardiomyopathy, cell cycle, DNA 
replication, and calcium signaling (Figure 2E). We investigated the 22 
immune cell kinds infiltrating the two GC subtypes (Figure 2F). The 
findings indicated that, except for activated CD8 T cells, activated 
dendritic cells, and monocytes, the most infiltrating immune cell 
significantly differed between the two GC subtypes. Following that, 
we confirmed that the 27 NETs-related regulators could be used to 
discriminate the two regulatory patterns (Supplementary Figure S3). 
According to this research, the 27 NETs-related regulators might 
be utilized to distinguish between the two regulatory patterns.

Establishment of risk assessment model 
and survival outcomes in GC

DEGs associated with subtypes were used to create the NETs-
score. Figure 2G displays the patient distribution across the two NETs 
subtypes and two NETs-score groups. After LASSO regression 
analysis, 17 RFS-associated genes were still present according to the 
least partial likelihood of deviance (Supplementary Figure S4). Seven 
genes (SERPINE1, LAMC2, MYLK, IL21R, KRT81, MAMDC2, and 
PAEP) were ultimately retrieved after multivariate Cox regression 
analysis to create the risk score, known as the “NETs-score.” The 
multivariate Cox regression analysis’s findings led to the following 
construction of the NETs-score:

 

Risk score expression level of SERPINE1

expressio

= ( )
+

∗ 0 16177.

nn level of LAMC2

expression level of MYLK

∗

∗
( )

+

0 09126

0 09607

.

.(( )
+ −( )
+

∗expression level of IL 1R

expression level o

2 0 39476.

ff KRT

expression level of MAMDC2
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81 0 15615

0 12371

∗

∗
( )

+ ( )
+

.

.

eession level of PAEP∗ ( )0 16192. .

Further study of the risk score application revealed a substantial 
variation in the subtypes of NETs (Figure 2H). We investigated the 

variance in NETs-Score gene expression between the two NETs-score 
groups (Figure 2H). Figure 3 shows that patients in low-risk categories 
had better OS than high-risk patients (p  < 0.05) regardless of the 
TCGA combined GSE84437 internal cohort, GSE66229 external 
cohort, GSE15459, GSE13861 or GSE38749. In addition to this study, 
the Kaplan–Meier analysis of OS was performed using the TCGA 
combined GSE84437 for internal cohort and external cohort of 
GSE15459, GSE66229, GSE13861, and GSE38749 (Figure  3). 
Consistent with Figure 3’s findings, the patient within low-risk groups 
had a better OS than the high-risk patients (p  < 0.05), expected 
GSE26253 (Figure 3F).

Establishment nomogram and assess the 
clinicopathologic

The finding showed that age, NETs score, and stage were 
substantially linked with the prognosis of GC under the univariate 
Cox regression analysis (Figure  4A). After the clinicopathologic 
characteristics were taken into account in a multivariate Cox 
regression analysis, the result revealed that the NET score appeared as 
an independent predictive factor (Figure 4B).

A nomogram including NETs-score and clinicopathological 
features was created to predict 1-, 3-, and 5-year RFS rates in patients 
with GC due to the unfavorable clinical usefulness of NETs-score in 
predicting RFS in patients with GC (Figure 4C). Our AUC analyses 
on the nomogram model in the TCGA cohort, GSE15459, and 
GSE66229, showed improving accuracy for RFS at 1, 3, and 5 years 
(Figure  4D). According to the calibration plots, the suggested 
nomogram performed similarly to an ideal model in both TCGA 
cohorts, GSE15459 and GSE66229 (Figure 4E).

Relationship of TMB, MSI, and CSC index

In the low-risk subgroup (Figure 5A) and the high-risk subgroup 
(Figure 5B), we determined the top 20 genes with the greatest mutation 
rates. The findings showed that missense mutation and multiple hits 
were the most frequent mutation types. TTN and TP53 not only had 
mutation rates of more than 40% in both groups, but these genes were 
also the most prevalent in both. Additionally, we  examined the 
connection between the risk score and TMB. In comparison to the 
high-risk grouping, the low-risk subgroup had much greater TMB 
expression (Figure  5C). Figure  5D further showed a substantial 
negative correlation between the risk score and TMB in gene subtypes 
(r = −0.24, p < 0.05). Furthermore, we found that a high NET score was 
associated with microsatellite stable (MSS) status, while a low NET 
score was highly associated with MSI-H status (Figures 5E,F). The risk 
score was found to have a substantial correlation with the CSC index 
(r = −0.5, p < 0.05), as shown in Figure 5G. The results showed that 
stem cell characteristics were more evident in GC cells with a lower 
NET score and that there was less cell differentiation.

Immune infiltration in NETs-score of 
gastric cancer (GC)

A low NET score was closely connected with a high 
immunological score, whereas a high PRG score was associated 
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with a high stromal score and estimate score (Figure  6A). To 
calculate the fractions of 22 immune cells, the gene expression 
matrix from the TCGA database in GC was uploaded to 
CIBERSORT online. We then looked at the immune cell makeup in 
various risk categories in the TCGA database of GC samples 
(Figure  6B). The results showed that plasma cells, T cells CD4 
memory, and T cells follicular helper were more prevalent in the 
low-risk category, whereas the patients in the high-risk subgroup 

had substantially greater proportions of neutrophils, macrophages 
M2, and mast cells (p 0.05) (Figures 6C,D).

The relationship between immune cells in patients with GC may 
offer hints for a better comprehension of the immune 
microenvironment in particular types of tumors. Based on the TCGA, 
we discovered that the NETs-score was strongly connected to B cells 
naïve, Macrophages M2, Mast cells, and T cells CD4 
(Supplementary Figure S5). The seven genes were also demonstrated 

FIGURE 2

Identification of NETs-subtypes and construction of NETs-related prognosis signature in GC. (A) Consensus matrix heatmap defining two clusters 
(k =  2) and their correlation area. (B) Overall survival of the two NETs subtypes. (C) Differences in clinicopathologic features and expression levels of 
NETs-related genes between the two NETs subtypes. (D,E) GSVA and GSEA analysis focused on the differential enrichment of KEGG pathways between 
NETs-subtypes A and B. (F) The 22 infiltrating immune cell types in the two NETs-subtypes. (G) Alluvial diagram of the subtype distributions in groups 
with different NETs-score and survival outcomes. (H) Differences in NETs-score between two NET subtypes. *p <  0.05, **p <  0.01, ***p <  0.001.
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to be  significantly connected with the bulk of immune cells 
(Figure 6E). Finally, we  investigated the immune checkpoint gene 
expression in relation to the various risk score subgroups. The findings 
demonstrated that the low-risk score group was greater expression of 
numerous immune checkpoints, such as PD-1 and CTLA-4, as well as 
the T cell inflamed score (Figure 6F).

Immunotherapy efficiency

We discovered that there was a substantial relationship between the 
immunological subtypes and the risk for the two IRGPI subgroups 
(Figure 7A). Meanwhile, we revealed the 4 classes in the IMvigor210 trial 
that there were more type 1 and type 2 in the low-risk subgroup, while 
more type 3 and type 4 in the high-risk subgroup (Figure 7B, p < 0.05). 
We examined the relationship between risk and immunophenoscore 
(IPS) in GC patients to forecast the response to immune checkpoint 
inhibitors in order to evaluate the potential efficacy of immunotherapy 
under the clinical in various risk groupings (ICIs). Only three 
immunological checkpoints—cytotoxic T lymphocyte antigen-4 (CTLA-
4), programmed cell death protein 1 (PD-1), and programmed death 
ligand-1—represent the key immune checkpoints for the IPS (PD-L1). 
Immune checkpoints were therefore employed to assess the potential 
effectiveness of ICI therapy (Figures  7C–F). As a consequence, 
we discovered that there were much higher in the low-risk group, which 

was classified by risk, indicating that the low-risk group had greater 
immunogenicity on ICIs. These findings collectively showed that the 
low-risk group had a higher likelihood of mounting an immunological 
defense and responding to immunotherapy. In addition, patients with low 
risk were more likely to benefit from ICI therapy than patients with high 
risk because the subgroup with low risk had lower TIDE scores than those 
with high risk (Figure 7G). Patients with low risk may have a better 
prognosis than patients with high risk for patients with lower TIDE 
scores. Additionally, we discovered that the two risk subgroups differed 
significantly in terms of the T cell exclusion score (Figure  7I) and 
microsatellite instability (MSI) score (Figure  7H), except T cell 
dysfunction (Figure 7J). Compared to TIS and TIDE, the AUC result 
showed that our risk model was better (Figure 7K). Our AUC analyses of 
NETs-score showed improving accuracy for OS rates at 1, 3, and 5 years 
(Figure 7L).

The anti-PDL1 immunotherapy cohort (IMvigor210) allowed us 
to further test this idea, and we found that patients in the low-RS score 
group had a longer median survival time and a better prognosis than 
those in the high-RS score group (Figure  8A). It was shown that 
patients with Complete Response (CR) and Partial Response (PR) 
were more prevalent in the low-RS score group, whereas those with 
Stable Disease (SD) and Progressive Disease (PD) were more prevalent 
in the high-RS score group (Figure 8F). Consistency with the finding 
of IMvigor210, the other external immunotherapy cohort showed that 
patients in the low-NETs score group had a longer median survival 

FIGURE 3

Validation of the prognostic NETs-related signature based on NETs-score (KM survival analysis based on the median NETs-score). The upper left parts 
are distribution plots for the relationship between NETs-score and survival status; the lower left parts are heatmaps for the seven prognostic NETs-
related genes in the cohorts; the upper right parts are ROC curve for the NETs-score in the different internal and external cohorts; the lower right parts 
are survival curves between high- and low-NETs-score groups. Internal cohorts: (A) TCGA combined with GSE84437; External cohorts: (B) GSE66229; 
(C) GSE38749; (D) GSE15459; (E) GSE13861; (F) GSE26253.

https://doi.org/10.3389/fmed.2023.1174764
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Li et al. 10.3389/fmed.2023.1174764

Frontiers in Medicine 09 frontiersin.org

time and a better prognosis than those in the high-NETs score group 
(Figures 8B–E). Moreover, we use the NETs-score to correlate the 
relevant immune indicators in pan-cancer (Supplementary Figure S7). 
Focusing on stomach cancer, the NETs-scores is strongly related to 
relevant immune indicators.

Drug sensitivity

Ten possible anticancer medications with IC50 < 1, suggesting a 
significant inhibitory impact on GC, were found (Figure  9A). In 
different risk groups, there were statistically significant variations in 
how each drug responded (Figure 9B). We illustrated that a low risk 
was associated with a lower half inhibitory concentration (IC50) of 
chemo-therapeutics such as Dactinomycin, Afatinib, Daporinad, 
Ibrutinib, Docetaxel, Lapatinib, Sepantronium bromide and 
5-Fluorouracil (p < 0.05). Therefore, Figure 9 illustrates that the NETs-
Score acted as a potential predictor for chemosensitivity.

The pan-cancer analysis of NETs-score

To assess the similarities and differences of the risk score model 
between various malignancies, we conducted a pan-cancer analysis. 
We  thoroughly examined TMB, MSI, and CD274 expression in 
various malignancies (Supplementary Figure S6). In THYM, LGG, 
and SARC, the NETs-score was favorably connected with TMB 
(p < 0.05), but in BRCA, LIHC, BLCA, UCEC, PRAD, LUSC, and 
STAD, the correlation was inversely correlated with TMB (p < 0.05). 
A relationship between MSI and TGCT, UVM, as well as STAD, 
CHOL, and ESCA, was shown to be  both positive and negative. 
Additionally, the NETs-score was inversely connected with CD274 
content in LAML, HNSC, THCA, KIRC, SKCM, STAD, BRCA, 
TGCT, and LUSC but positively correlated with CD274 expression in 
GBM, ACC, LGG, BRCA, LIHC, PAAD, ESCA, BLCA, and 
PRAD. We also determined the connection between the NET score 
and 22 indices of immune cell infiltration and stemness. 
Supplementary Figure S6 presents the comprehensive outcome.

FIGURE 4

Construction and validation of the nomogram. (A,B) The univariate and multivariate Cox regression analyses included different clinicopathological 
features. (C) Nomogram model for predicting the 1-, 3-, and 5-year OS of GC patients. (D) The time-dependent ROC curves of the nomogram for 1-, 
3-, and 5-years OS in TCGA, GSE15495, and GSE66229 cohorts. (E) Calibration curves of the nomogram for predicting 1-, 3-, and 5-year OS in the 
TCGA, GSE15495, and GSE66229 cohorts.
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Immunohistochemistry staining (IHC) for 
the signature genes

We have analyzed the protein expression profiles derived by 
immunohistochemical staining, which are accessible in the HPA 
database, in order to further confirm the expression patterns of the 
signature genes in GC patients. The results indicated that seven risk 
genes (SERPINE1, LAMC2, MYLK, IL21R, KRT81, MAMDC2, and 

PAEP) of the signature were differentially expressed in the cancer 
tissues compared to the normal tissues (Figure 10).

Discussion

The third highest case fatality rate of all cancers, gastric cancer 
(GC), is the fifth most common malignancy worldwide (1). The main 

FIGURE 5

Characteristic in gene mutation and relationship of NETs-score with TMB, MSI, and CSC index. (A,B) Significantly mutated genes in the TCGA-STAD 
samples of the low and the high NETs-score subgroups, respectively. Mutated genes (rows, top 20) are ordered by mutation rate; samples (columns) 
are arranged to emphasize mutual exclusivity among mutations. The right shows the mutation percentage, and the top shows the overall number of 
mutations. The color-coding indicates the mutation type. (C) TMB in two NETs-score subgroups. (D) Relationships between NETs-score and TMB in 
NETs-subtypes. (E,F) Relationships between MSI and NETs-score. (G) Relationships between CSC index and NETs-score.
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therapies for GC are still surgical excision, radiation, and 
chemotherapy, although the prognosis is still poor (2). Clinical, 
epidemiological, and translational studies are mainly focused on GC, 
which is still a frequent cancer (36). To capture microorganisms, 
neutrophils produce neutrophil extracellular traps (NETs), which are 
made of chromatin DNA filaments wrapped with granule proteins 
(37–39). A transmembrane DNA receptor that mediates 
NET-dependent metastasis was identified by Yang L’s study (40). This 
demonstrated that the NETs are made up of externalized DNA of 

mitochondrial or nuclear origin that is coupled to histones and 
granular proteases such as neutrophil elastase (NE) and 
myeloperoxidase (MPO) (41). Given that NETs catch microorganisms, 
it has been hypothesized that their pro-metastatic effects result from 
the capture of cancer cells that have spread throughout the body (42), 
but the specifics of this interaction between NETs and cancer cells are 
yet unknown. Consequently, this study offers fresh perspectives for 
enhancing the prognosis of GC patients and advancing our 
understanding of the precise molecular pathways of NETs for GC.

FIGURE 6

The immune microenvironment of GC at different NETs-score. (A) Estimate score of the expression profile in different NETs-score groups. 
(B) Composition of immune cells in different NETs-score groups. (C) Correlation between immune cells. (D) The relative immune infiltration level of 22 
immune cells between different NETs-score groups. (E) Correlation between immune cells and seven prognostic NETs-related genes. (F) Expression of 
all immune checkpoint genes in different NETs-score groups. *p <  005, *p <  0.01, ***p <  0.001.
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First, we pulled 353 NET-related genes from the GEO database, 
GSE188741. 27 NETs-related genes were identified by univariate Cox 
regression analysis from TCGA plus GSE84437 (p < 0.05) based on 
these NETs-related genes. A high amount of mutations are present in 
CUBN and FLNC. Some literature found that the CUBN and FLNC 
were associated with altered gastric cancer risk and involved the 
lymph node metastasis of gastric carcinoma, respectively (43, 44). 
With the help of consensus clustering algorithms, it is possible to 
quickly examine and locate groups of patients with various features in 
a vast quantity of data (45). Therefore, based on the levels of expression 
of 27 NETs-related genes, we employed this unsupervised algorithm 
to distinguish between two different molecular subtypes. 
We discovered that patients with subtype A had a higher chance of 
surviving than those with subtype B. In order to explore the differences 
in biological behavior between these two subtypes, we also performed 
a GSVA enrichment analysis. According to some published research, 
neutrophil extracellular traps (NETs) are extracellular strands of 
decondensed DNA in association with histones and granule proteins 
that are released by dying neutrophils in order to catch and kill 
bacteria (46). NETs could be  more significant in thrombosis and 
autoimmunity (41). The clinical prognosis of gastric cancer was 
independently predicted by focal adhesion-related proteins (47). In 
consistence with the finding, subtype B has pathways that were 
particularly linked to focal adhesion, dilated cardiomyopathy, cell 
cycle, DNA replication, and calcium signaling.

In this work, we created an incredibly potent prognostic NETs 
score and showed how it might predict outcomes. The NETs score 

is calculated using the expression levels of seven genes (SERPINE1, 
LAMC2, MYLK, IL21R, KRT81, MAMDC2, and PAEP) and used 
to GC patients to demonstrate its prognostic power. In order to 
evaluate the similarities and differences of the risk score model 
among other malignancies, we also performed a pan-cancer study. 
The outcome demonstrated how powerful a predictive model the 
risk score was. In gastric cancer cell lines and tissues, LAMC2 gene 
expression and DNA methylation analysis revealed that DNA 
hypomethylation was linked to LAMC2 up-regulation (48). These 
findings imply that LAMC2 activation may be  crucial to the 
development of gastric cancer. Numerous studies have shown that 
SERPINE1 overexpression is associated with tumor development 
and bad outcomes in a variety of malignancies, including GC (49, 
50). Poor prognosis is linked to SERPINE1’s aberrant expression, 
which has been seen in many different cancer types. In particular, 
SERPINE1’s function in tumor angiogenesis has been well studied. 
Its effects are achieved through the control of endothelial cell 
plasmin-mediated proteolysis (51), migration (52, 53), and 
apoptosis (54). The immunological control of immune cells and the 
development of tumors are regulated by the interleukin-21 receptor 
(IL-21R) in a variety of malignancies. By attaching to its receptor, 
IL-21R, interleukin (IL)-21, a member of the IL-2 family, is 
implicated in biological processes in cancer and autoimmune 
disease (55). According to research, the expression of MYLK was 
greater in GC tissues than in nearby normal tissues (56). 
Furthermore, transcription factors, including AR-v12 and 
methylation, were both used to control MYLK (56). The other 

FIGURE 7

The prognostic value of NETs-score in immunotherapy. (A) The immune subtypes were significantly related to the different NETs-score groups in 
TCGA-STAD. (B) The TCGA subtypes were significantly related to the different NETs-score groups in IMvigor210. (C–F) The vioplot of the different 
expressions of CTLA4 and PD-1 between different NETs-score groups (TCGA-STAD). (G–J) TIDE, MSI, T cell exclusion, and T cell dysfunction score in 
two NETs-score subgroups (internal cohort), respectively. (K,L) ROC analysis of NETs-score, TIDE, and TIS on OS in the internal cohort. NS: no 
significant, **p <  0.01, ***p <  0.001.
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signature genes are represented by immunohistochemistry staining 
(IHC) according to The Human Protein Atlas database, which 
shows the different expressions in cancer tissue compared with the 
normal. However, these genes are still proven in further research.

We created and verified a nomogram by merging NET score, age, 
and pathological stage in order to further increase the accuracy of 
prognostic prediction. The outcome demonstrated that the prognosis 
of GC was highly correlated with age, risk score, and clinical stage. As 

FIGURE 8

Prognostic value of NETs-scores in different external immunotherapy cohorts (KM survival analysis based on the best cut-off of NETs-score). The 
upper left parts are distribution plots for the relationship between NETs-score and survival status; the lower left parts are heat-maps for the seven 
prognostic NETs-related genes in the cohorts; the upper right parts are ROC curve for the NETs-score in the different internal and external cohorts; the 
lower right parts are survival curves between high- and low-NETs-score groups. (A) IMvigor210; (B) ccRcc; (C) GSE126044; (D) GSE135222; 
(E) GSE179351; (F) The relative frequency of different clinical responses among patients with a high or low NETs-score in different immunotherapy 
cohorts.

FIGURE 9

Drug sensitivity analysis. (A) IC50 testing results for drugs with IC50  <  1 in different NETs-score groups. (B) Potential drugs with significant treatment 
differences in the different NETs-score groups.

https://doi.org/10.3389/fmed.2023.1174764
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Li et al. 10.3389/fmed.2023.1174764

Frontiers in Medicine 14 frontiersin.org

we  know, the prognosis of cancer is strongly associated with the 
pathological stage of pan-cancer. We  determined the NET score 
provided as an independent prognostic factor in the context of 
the results.

Higher TMB produces more neo-antigens, which improves the 
likelihood that T cells will recognize them and clinically 
corresponds with higher ICI results (57). Therefore, patients with 
elevated TMB often have favorable survival rates, according to 
several research on different tumors (58). In consistence, we showed 
that increased TMB was seen in the low-risk subgroup of the NETs-
score. This indicates that patients with high TMB had considerably 
better OS than those with low TMB. In this investigation, 
we  discovered that the most prevalent mutant genes for both 
groupings were TTN, TP53, and MUC16. These gene mutations 
have been used in certain literature to predict outcomes and guide 
immunotherapy (58–62). A gene combination, MUC4, MUC16, 
and TTN, was recently proposed by Yang et al. to predict TMB, and 
this gene combination may serve as a more practical and affordable 
biomarker for immunotherapy effectiveness in place of TMB (60). 
Patients with a high degree of microsatellite instability (MSI-H) 
respond to immunotherapy better and may benefit from it, as is well 
known (63). Therefore, the immunotherapy was more beneficial for 
the GC patient with a low NET score. Furthermore, GC cells with 
a lower NET score had more evident stem cell traits and a lower 
level of cell differentiation.

To assess the importance of immune cell infiltration in GC with 
various risk categories for our inquiry, the relative number of 22 
immune cells in each GC specimen was analyzed using 
CIBERSORT. The two main types of monocytes detected in the blood 
are macrophages M1 and M2, as is common knowledge. M2 
macrophages may also contribute to the growth of GC tumors, 
according to some research (64, 65). We  showed that lower M2 
infiltration was linked to a better prognosis, which is well-known that 
M2 infiltration is a risk factor in pan-cancer. According to the 
literature, infiltrating mast cells are frequently seen in GC, which is 
associated with tumor development and indicates a poorer OS (66). 

We demonstrated that a worse prognosis was associated with more 
mast cell infiltration, which is consistent with this study. In murine 
models, CD4+ neoantigen-specific T cells found inside tumors are 
necessary for the immune system to respond to immune checkpoint 
blockage (67). These cells may also facilitate tumor rejection by 
directly destroying tumor cells (68), inducing the body’s innate 
immune system (69), and stimulating CD8+ T cells (70). According 
to published research, neutrophils build up in the peripheral blood of 
cancer patients, particularly in those with advanced-stage illness, and 
a high circulating neutrophil-to-lymphocyte ratio is a reliable 
indicator of a poor clinical prognosis in a variety of malignancies (71). 
The evidence led us to believe that the NETs-Score could represent 
immune cell infiltration as well as the importance of different immune 
cell types for prognosis.

In addition, we  examined that the low-risk score group had 
greater expression of various immune checkpoints, such as PD-1 and 
CTLA-4, as well as the T cell inflamed marker. Moreover, 
we discovered that the factor of immune subtypes and TCGA subtypes 
of immune response was highly connected with the risk score. 
According to the findings, we used IPS to evaluate the NETs-based 
variations in the TME that could represent various immunological 
advantages of ICI treatment. The IPS is principally related to a few 
immunological checkpoints. For the clinical study with 
immunotherapy, the literature indicated that nivolumab (anti-PD-1) 
has anti-tumor efficacy and safety in patients with GC, which is 
delivered as maintenance treatment (after the illness is under control 
with conventional chemotherapy) (72). In consistence with our 
results, there were considerably higher in the low-risk group, which 
was characterized by the NETs-score, predicted the CTLA4-negative-
PD1-negative group of IPS. Finally, the NETs-Score was used to group 
patients from the immunotherapy databases. The median survival 
time and prognosis were both longer for patients with low RS scores 
than for those with high RS scores. In addition, the AUC result showed 
that our risk model was better compared to TIS and TIDE. Moreover, 
we indicated the NETs-score in stomach cancer is strong relation in 
relevant immune indicators.

FIGURE 10

Representative immunohistochemical staining images of SERPINEI (antibody CAB068501, 10x), LAMC2 (antibody CAB078165, 10x), MYLK (antibody 
CAB020789, 10x), MAMDC2 (antibody HPA021814, 10x), PAEP (antibody HPA020108, 10x), IL21R (antibody HPA042296, 10x), and KRT81 (antibody 
HPA049778, 10x) in normal and STAD tissues are retrieved from The Human Protein Atlas database (HPA, https://www.proteinatlas.org/, accession 
date: June 2023).
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We developed a risk score model to forecast both the outcome of 
targeted treatment and the outcome of immunotherapy. The clinical 
research found that immune treatment in GC patients had a fantastic 
outcome before the disease was controlled by conventional 
chemotherapy (72). In addition to 5-fluorouracil (5-FU) and platinum, 
taxanes have also shown action in GC patients, with Docetaxel and 
Paclitaxel both demonstrating a survival benefit in first-line and 
second-line therapy of patients with metastatic GC, respectively (73, 
74). We showed that these medications in the low-risk category had a 
good possibility for a therapeutic response based on the literature. 
We  also showed that the low-risk group benefits greatly from 
immunotherapy. It implies that future research can concentrate on the 
advantages of immunotherapy in conjunction with GC treatment.

Our study attempted to characterize GC patients, identify DEGs 
and create a predictive model, and relate NETs to patient prognosis. 
The clinical prognosis, immunological infiltration, and 
clinicopathological characteristics of GC patients may be recognized 
using the NETs-score grouping. This study provides knowledge for 
individualized strategies that will direct immunotherapy and 
chemotherapy as well as further clarify the role of the NET score in 
the prognosis prediction value. Even though we verified the study 
using many databases and angles, there were still certain restrictions 
that needed to be taken into account. The connections between these 
model genes and their biological functions deserve more study.
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