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Introduction: Brain glioma segmentation is a critical task for medical diagnosis,

monitoring, and treatment planning.

Discussion: Although deep learning-based fully convolutional neural networks

have shown promising results in this field, their unstable segmentation quality

remains a major concern. Moreover, they do not consider the unique genomic

and basic data of brain glioma patients, which may lead to inaccurate diagnosis

and treatment planning.

Methods: This study proposes a new model that overcomes this problem by

improving the overall architecture and incorporating an innovative loss function.

First, we employed DeepLabv3+ as the overall architecture of the model and

RegNet as the image encoder. We designed an attribute encoder module

to incorporate the patient’s genomic and basic data and the image depth

information into a 2D convolutional neural network, which was combined with

the image encoder and atrous spatial pyramid pooling module to form the

encoder module for addressing the multimodal fusion problem. In addition,

the cross-entropy loss and Dice loss are implemented with linear weighting

to solve the problem of sample imbalance. An innovative loss function is

proposed to suppress specific size regions, thereby preventing the occurrence of

segmentation errors of noise-like regions; hence, higher-stability segmentation

results are obtained. Experiments were conducted on the Lower-Grade Glioma

Segmentation Dataset, a widely used benchmark dataset for brain tumor

segmentation.

Results: The proposed method achieved a Dice score of 94.36 and an intersection

over union score of 91.83, thus outperforming other popular models.

KEYWORDS

deep learning, brain tumor segmentation, magnetic resonance imaging, loss function,
medical image

1 Introduction

Gliomas are the most common primary cranial tumors, and they arise from cancerous
glial cells in the brain and spinal cord. In accordance with their malignancy level, gliomas
are classified as low or high grade. For most glioma patients, early detection, complete
surgical excision, and postoperative treatment with radiotherapy and chemotherapy yield

Frontiers in Medicine 01 frontiersin.org

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2023.1172767
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2023.1172767&domain=pdf&date_stamp=2023-11-20
https://doi.org/10.3389/fmed.2023.1172767
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmed.2023.1172767/full
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-10-1172767 November 15, 2023 Time: 16:11 # 2

Wan et al. 10.3389/fmed.2023.1172767

good results (1). Moreover, recent studies in this field have
identified an association between the tumor shape features
extracted from magnetic resonance imaging (MRI) images and
their genomic subtypes (2, 3). However, the first step in tumor
feature extraction is manual segmentation of MRI images, which
is a costly and time-consuming process. Moreover, the resulting
annotations may have high inter-rater variance (4). With the
rapid development of neural network technology, applications
of convolutional neural networks (CNNs) with robust feature
extraction ability in the field of medical imaging have revealed
distinct advantages. As a result, computer vision technology is now
widely used in medical image analysis.

Image segmentation is a highly important step in medical image
analysis. Early image segmentation methods mainly employed
threshold- (5), region- (6), edge detection- (7), and cluster-
based image segmentation algorithms. The advantages of these
algorithms were their simple calculations and high efficiencies.
However, single image features were obtained, and spatial features
were neglected; thus, these algorithms were sensitive to noise and
had low robustness. In recent years, deep learning-based medical
image methods have become mainstream because of their superior
results. In 2015, (8) pioneered the fully convolutional network,
which replaced the fully connected layer in the traditional CNN
with a convolutional layer. Using this method, image segmentation
maps of any size could be generated. Thus, similar structures
were adopted for almost all subsequent semantic segmentation
fields. In another notable development, (9) proposed the U-Net
network, which is characterized by a cross-layer connection
structure; this structure enables simultaneous integration of low-
and high-level semantic information in the feature map, yielding
improved segmentation results. Moreover, the DeepLab (10) series
of semantic segmentation networks was developed by Google. The
DeepLab model uses a variety of expansion convolutions with
different coefficients to extract image information from different
receptive fields; its performance has greatly improved over time.

Current medical image segmentation methods mainly rely on
fully convolutional neural networks (11) with U-shaped structures
(9, 12, 13). Although these techniques have performed general
medical image segmentation tasks with great success, specific
challenges remain. Most segmentation models have similar feature
extraction processes: the input image is continuously reduced in
width and height while its depth is increased to obtain its higher-
level features. Then, in the feature recovery phase, the features
are recovered through continuous deconvolution or interpolation;
hence, a prediction with the same width and height as the input
image is obtained. During the feature recovery phase, a large
number of hyperparameters, such as the convolution kernel size,
number, step, and activation function, are manually set. Therefore,
there is considerable reliance on researcher experience and prior
knowledge, and avoiding redundant structures is difficult. As a
result of the inherent limitations of human knowledge, escaping the
original paradigm to design an optimal model is a challenge (14).

In most cases, a neural architecture search (NAS) can yield
an effective model (15). This type of model structure has the
advantages of a strong automatic acquisition generalization ability
and low hardware requirements; thus, the optimal network-
structure parameter configuration can be found quickly and
accurately with the appropriate search strategy. The RegNet design-
space search technique (16) is similar to the NAS method but
can search for simpler, easier-to-understand, and easier-to-quantify

design spaces. Since its introduction, refinements of the RegNet
design space (17, 18) have focused on the optimization of the
sample size and the model scaling strategy. The RegNet generic
model employs a similar feature extraction process to other
segmentation models, with the same constant reduction in width
and height accompanied by an increase in depth. In contrast,
RegNet combines the advantages of NAS and manual design so
that a model architecture with better network-structure parameters,
interpretability, performance, and effectiveness is devised.

To devise a medical image segmentation model, a model
decoder is required. DeepLabv3+ (19) requires only fusion of the
bottom- and top-level features and is significantly less redundant
than conventional cross-layer connected segmentation algorithms.
Therefore, a combination of RegNet and DeepLabv3+ can be
expected to yield a less redundant structure and superior network-
structure parameters than manually designed networks.

The loss function must also be considered when designing
an effective medical image segmentation method. Many semantic-
based segmentation loss functions focus on pixel-level classification
errors but ignore pixel-level structural information such as the
cross-entropy loss. In addition, the segmentation results obtained
with conventional loss functions often contain noisy segmentation
regions, implying segmentation errors. Although these regions
are small, they affect the final segmentation quality; therefore,
their presence is an additional concern. Thus, appropriate loss
functions are required to overcome these challenges. Notably, the
loss function adapted from the Dice coefficient, which is called the
Dice loss (20), can solve the problem of sample imbalance.

In the context of glioma, the Lower-Grade Glioma (LGG)
Segmentation Dataset (2) contains MRI images and text data. The
MRI image shape features are closely related to the LGG genomic
subtype and, thus, the patient prognosis. These shape features
also contain hidden information on the slice order. All these data
can provide feature information for segmentation of the model
(3). Therefore, an attribute information encoder that can fuse
image, text, and slice-order features by fully exploiting the existing
multimodal data information should be designed.

In this study, an MRI image segmentation model that combines
image, text, and slice sequence data is designed, in which an
advanced NAS model is employed as an encoder for improved
image feature extraction. The Dice loss is used to solve the sample
imbalance problem, and the use of the outlier loss to remove noise
from the segmentation results is proposed.

The remainder of this paper is organized as follows. Section 2
summarizes related work, and Section 3 presents the main methods
and details of the proposed segmentation model. Section 4 reports
the implementation details and experimental results. Finally,
Section 5 presents the limitations and conclusions of the study.

2 Related work

2.1 MRI segmentation of brain tumors

In recent years, many deep learning-based methods, such as
the widely used CNNs, have been proposed for brain tumor MRI
segmentation. Based on the processing dimension, deep learning-
based brain tumor MRI segmentation methods can be divided into
two categories: methods based on 2D and 3D CNNs. Methods
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based on 2D CNNs primarily use the traditional sliding window
method to independently predict brain tumors for each image slice
(21); this limits the segmentation accuracy as the depth information
of the image is not used. By contrast, methods based on 3D
CNNs can effectively use the depth information of the image and
improve the segmentation accuracy. However, they suffer from
huge computational cost, making their application to practice
difficult. This study encodes the depth information as a sequence
and integrates it into a 2D CNN, which combines the advantages of
speed and accuracy.

2.2 Encoder–decoder architecture

The encoder–decoder structure (9, 22–25) is a very popular
engineering architecture for the performance of many computer
vision tasks, such as object detection (26, 27) and semantic
segmentation (28–30), and helps to functionally decouple the
backbone model from the generative model. Recently, RefineNet
(26) and related approaches (25, 31, 32) demonstrated the
effectiveness of models based on encoder–decoder architecture
by reaching several semantic segmentation benchmarks (19). In
this structure, the encoder module usually serves as a logical
representation of the backbone network, acquiring features from
the input and outputting them as fixed shapes. In this process, the
spatial dimensionality of the feature mapping gradually decreases,
enabling the capturing of a wider information range within a deeper
encoder output. The decoder serves as a logical representation
of the upsampling network, gradually obtaining clear object
boundaries. Based on this architecture, in the model proposed in
the present study, RegNet is used as an image encoder for image
feature extraction, a multilayer perceptron (MLP) is used as an
attribute encoder for attribute feature extraction, an atrous spatial
pyramid pooling (ASPP) module (19) is used as a further feature
extractor and integrator, and DeepLabv3+ is employed as a decoder
to generate segmentation results.

2.3 RegNet

The NAS process automatically designs neural network
structures using neural networks. This contrasts with the structural
design of deep CNNs, which requires considerable expertise and
time. However, NAS has significant limitations in this search space,
along with insufficient interpretability (17). Radosavovic et al. of
Facebook AI Research combined the advantages of manual design
and a NAS to derive a RegNet with a low-dimensional design
space consisting of simple, regular networks. The RegNet model
obtained in this manner had superior interpretability, performance,
and results to manually designed networks. Therefore, the RegNet
model is employed as an image encoder for image feature
extraction in this work.

2.4 DeepLabv3+

As mentioned above, DeepLab refers to a series of semantic
segmentation networks proposed by Google. Among them,
DeepLabv3+ extends DeepLabv3 (33), with the main improvement

being abstraction of the original DeepLabv3 single-model structure
to an encoder–decoder structure. In addition, the ASPP module
is retained; this module extracts image information from different
sensory fields through several parallel atrous convolutions with
different rates, before fusing them into deep image features through
channels. In the decoder component, the low and high-level
features are fused to generate the final segmentation result. In the
present study, the decoder component of DeepLabv3+ is used for
image feature recovery and to generate final segmentation results.

2.5 Loss function in image segmentation

The loss function most commonly applied to image
segmentation is the distribution based cross-entropy loss. This
loss function treats the segmentation problem as a pixel-by-pixel
classification problem, calculates the cross-entropy loss for each
pixel individually, and averages or sums over all pixels. The
binary cross-entropy (BCE) loss function is often used in cases
involving positive and negative samples only. However, this loss
function neglects the differences in proportions between samples of
different categories. Thus, in training, the model is biased toward
the category with more samples and sample imbalance occurs. This
imbalance causes training inefficiency and difficulty in learning
useful learning signals, thereby reducing the network effectiveness
(34). Notably, The LGG Segmentation Dataset also suffers from a
sample imbalance problem.

The Dice coefficient is used to calculate the similarity between
two images, and the loss function adapted from this coefficient
is called the Dice loss. Application of the Dice loss can solve
the sample imbalance problem; however, this loss is often
combined with other loss functions, with the disadvantage of
training instability.

In this study, the above loss functions are weighted to
combine the advantages of each, and the outlier loss, a new loss
function for suppressing specific size regions, is proposed. Hence,
the final Dice similarity coefficient (DSC) and the segmentation
quality are improved.

3 Novel deep learning model based
on DeepLabv3+

Section “2 Related work” explained the reasoning behind
the selection of the overall architecture of the proposed deep
neural network model and briefly introduced the functions of the
main modules. These modules constituted the basic units of the
designed model, with custom modifications being implemented
to accommodate the input shape requirements. This section
presents the overall model architecture and the main encoder and
decoder functions and analyzes the principles and usage of the
main loss functions.

3.1 Architecture overview

The architecture of the image segmentation model developed
in this study is shown in Figure 1 and consists of an attribute
encoder, an image encoder, an ASPP module, and a decoder. The
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FIGURE 1

Overview of the image segmentation model based on encoder–decoder architecture.

attribute encoder comprises a simple MLP, and the image encoder
comprises a RegNet model. The ASPP module extracts semantic
information from different sensory fields and plays a fusion role,
and the decoder is taken from DeepLabv3+.

3.2 Encoder

The encoder mainly consists of the image encoder RegNet
module, the attribute encoder, and the ASPP module. An image
with a known size of H×W× 3 is input to the image encoder and
the following output is generated:

{
48× H

4 ×
W
4 , 528× H

16 ×
W
16
}

.

3.2.1 Image encoder
Radosavovic et al. (17) of Facebook AI Research proposed

model distribution in the design space to estimate the design-
space quality. They used the empirical distribution function as an
evaluation metric:

F (e) =
1
n

∑
n
i=1 1[ei < e], (1)

where 1 is the indicator function, n is the number of given models,
ei is the set of model errors, and F(e) gives the fraction of models
with error less than e.

Nearly every neural network design can be abstracted into three
modules: the input layer stem, the backbone layer body, and the
output layer head. In this study, an initial design space, AnyNetX,
was defined according to this architecture and optimized in the
body module only, which gradually develops the initial design space
to the final RegNet design space. As a result, the number of samples
in the design space was reduced from 1.8× 1018 to 3× 108. Hence,
a higher-quality design space was obtained.

In the proposed method, the model obtained from the RegNet
design space is used as the image encoder. Again, the network
is mainly composed of a stem, body, and head. The stem is a
general convolution layer (including BN and SiLU by default),
the convolution kernel size is 3 × 3, the stride is 2, and the
number of convolution kernels is 32. The body is composed
of four stacked stages, as shown in Figure 2. After each stage,
the input matrix height and width are halved. Each stage is
composed of a series of block stacks. In the first block, group
and general convolutions with a stride of 2 are performed;
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FIGURE 2

RegNet (regnetz_040) model architecture. (A) The image encoder consists of a stem and a body. (B) The network body is composed of a series of
blocks, which contain convolution modules and Squeeze-and-Excitation (SE) channel attention modules, aimed at evaluating the importance of
channel dimensions and more efficiently extracting features (9).

FIGURE 3

Segmentation results for regions with noise in parts. The red and green borders indicate the true and predicted labels, respectively.

for the remaining blocks, the convolution stride is 1. The
head is a common classifier in a classification network, which
consists of a global average pooling layer and a fully connected
layer.

To design the proposed model, the encoder input structure
was fine-tuned; for example, the head structure was removed
and the results of the first and last stages were saved and
outputted. In addition, the image encoder was designed to receive
image input with dimensions of 3 × H × W and to output{

48× H
4 ×

W
4 , 528× H

16 ×
W
16
}

, where 48 × H
4 ×

W
4 is output

directly as the bottom feature and 528 × H
16 ×

W
16 is sent to the

ASPP module as a high-level feature (after fusion with the attribute
encoder output).

3.2.2 Attribute encoder
In addition to MRI image data and genome cluster table data

for patient brains, the LGG dataset includes location data for the
image slices, which may constitute valid information for the final

segmentation results. For example, there is a higher probability
of obtaining segmentation results for large areas when the slice
images are obtained at intermediate locations compared to the
probability when these images are taken at edge locations. This
tendency suggests that the segmentation results may be related
to the slice location data. A previous study demonstrated that
the shape features in MRI images are strongly associated with
genomic subtypes and patient outcomes in LGG; thus, it was
also necessary to incorporate patient genomic cluster data in the
proposed model (3).

An attribute encoder extracts text and position information
and mainly consists of an MLP. The specific operations are as
follows: (1) genome cluster encoding through one-hot encoding,
(2) implementation of the concatenation operation on the above
encoding result and the position information to generate a
sequence of length N, (3) inputting this sequence into the attribute
encoder, and (4) outputting a feature with dimensions 3× H

16 ×
W
16

after the reshaping operation.
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FIGURE 4

Example showing N7 and N21 neighborhoods centered on O. The
value of DensityWhite (O) is the ratio of the number of white dots to
the number of black dots.

3.2.3 ASPP module
The ASPP structure, which was first proposed for DeepLabv2

(33) and then improved in DeepLabv3, uses several parallel atrous
convolutions with different rates to fuse multiscale information.
Hence, semantic information is combined with different perceptual
fields, which is crucial for segmentation accuracy. First, the ASPP
receives feature maps of size 528 × H

16 ×
W
16 and 3 × H

16 ×
W
16

from the image and text encoders, respectively. Second, the dual-
modal fusion work of the feature maps is completed through the

concatenation operation and the result is used as the feature input.
Third, the result is subjected to one 1 × 1 convolution, three 3 × 3
convolutions with rates of (6, 12, 18), and a pooling layer. The
concatenation operation is then performed to adjust the number
of channels through a 1 × 1 convolution. Finally, the encoder
feature is output.

3.3 Decoder

In this study, the decoder component of DeepLabv3+ is
employed directly. In DeepLabv3, direct upsampling of feature
maps is performed eight times. However, a decoder module
is introduced to upsample and fuse the underlying and high-
level features; this provides richer semantic information and a
better edge segmentation effect. First, high-level features of size
256 × H

16 ×
W
16 are restored to feature maps of size 256 × H

4 ×
W
4

through applying bilinear interpolation four times. Then, the
channel number of the low-level features of size 48 × H

4 ×
W
4 is

adjusted through a 1 × 1 convolution. After the two feature types
are processed by concatenation, a 3 × 3 convolution is used to
further fuse them. Finally, a bilinear interpolation is applied four
times to obtain a segmentation prediction map of the same size as
the original image.

3.4 Loss function

3.4.1 Cross-entropy loss function
Cross-entropy is defined as a measure of the difference between

two probability distributions for a given random variable or set
of events. This measure is widely used for classification tasks

FIGURE 5

Distributions of noise-area corner (left) and segmented-object border area (right).

FIGURE 6

Partial images and fluid attenuated inversion recovery (FLAIR) segmentation results from the Lower-Grade Glioma (LGG) Segmentation Dataset.
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TABLE 1 Genomic data and basic data of some patients.

Patient RNASeqCluster MethylationCluster miRNACluster CNCluster ... death01

TCGA_CS_4942 1 5 2 1 ... 1

TCGA_CS_4943 1 5 2 1 ... 0

... ... ... ... ... ... ...

TCGA_CS_5393 4 5 2 1 ... 0

TCGA_CS_5396 3 3 2 3 ... 0

TCGA_CS_6186 2 4 1 2 ... 1

TABLE 2 Ablation analysis of loss function.

Encoder Decoder BCE loss Dice loss Outlier loss DSC IoU

RegNet DeepLabv3+
√

93.21 90.70
√ √

93.86 (+0.65) 91.27 (+0.57)
√ √ √

94.36 (+1.15) 91.83 (+1.13)

Bold values represents the best score.

and works well for segmentation tasks as they can be viewed as
pixel-level classification tasks. The cross-entropy loss function can
be applied to most semantic segmentation scenarios. However,
when the numbers of foreground and background pixels differ,
the training is biased toward the category with more samples; this
causes sample imbalance and, hence, inefficient training.

The LGG dataset has only foreground and background
categories; therefore, the BCE loss can be used:

LBCE (X,Y) = −
(
Y·logX+ (1− Y) ·log (1− X)

)
(2)

3.4.2 Dice loss function
The Dice coefficient is widely used in the field of computer

vision as a metric to calculate the similarity between two images. In
2016, this coefficient was adapted to a loss function, which is called
the Dice loss:

LDice (X,Y) = 1− 2|X ∩ Y|+1
|X|+|Y|+1 , (3)

where |XY| denotes the intersection between X and Y , and |X| and
|Y| denote the number of elements of X and Y , respectively. Note
that the coefficient in the numerator is 2 because the common
elements of X and Y are double counted in the denominator.

3.4.3 Outlier-region loss function
In this study, various models were trained on the LGG dataset

(see section “4.2.2 Ablation analysis of multimodal data”). Their
segmentation results included noisy segmentation regions, as
shown in Figure 3. As noted previously, such noisy regions often
indicate segmentation errors. As confirmed by a segmentation size
analysis for the dataset (see section “4.1.3 Implementation details”),
the noisy segmentation areas were small. However, they affected the
final segmentation quality; therefore, they required attention.

To solve this problem, the outlier loss, which is a density-
based loss function mainly used to suppress generation of a
specifically sized region, was proposed for outlier-region detection.
The underlying concept of the outlier loss function is that the
density of the area in which a point is located is taken as a loss
indicator. As an example, the characteristics of white noise on a
black background are shown in Figure 4.

In this approach, the k × k neighborhood Nk is divided, with
point O as its center. The numbers of white and black points in Nk
are defined as CountWhite(Nk) and CountBlack(Nk), respectively.
Thus, the number of interval points can be written as

CountGapWhite (X) = CountWhite
(
Nj
)
− CountWhite (Ni) ,

(4)

CountGapBlack (X) = CountBlack
(
Nj
)
− CountBlack (Ni) , (5)

where the input X is an n× n prediction mask matrix, the sigmoid
function is used for processing, X ∈ (0, 1), the output has the same
shape as the input, i and j are hyperparameters, and j> i. The white
and black point densities can be defined as

DensityWhite (X) = CountWhite(Ni)+smooth
CountGapBlack(X)+smooth , (6)

DensityBlack (X) = CountBlack(Ni)+smooth
CountGapWhite(X)+smooth , (7)

respectively, where smooth is the smoothing coefficient used to
avoid division by 0.

The density characteristics of the corner area of the noise
and those of the edge area of the segmented object should be
distinguished. In Figure 5, where i is 7 and j is 21, the points O1
in the left image and O2 in the right image represent the pixel at
the corner of the noise area and the pixel point at the edge area
of the segmented object, respectively. In this study, the simplest
method of excluding the edge area from the density calculation was
adopted. Thus, the threshold is calculated according to the number
of points of the same color in the interval area, which is exactly the
number of white points between the yellow and green lines. The left
image can be regarded as the boundary case of point O1. If the value
exceeds the threshold, the operation is set to 0. The threshold can
be calculated using the following formula:

Threshold = i2 −
(
Ceil

( i
2
))2 (8)
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FIGURE 7

Segmentation results and visual analysis obtained using different loss functions. The first and second columns show the segmentation results and
probability heatmaps obtained using the binary cross-entropy (BCE) loss, while the third and fourth columns show the segmentation results and
probability heatmaps obtained using the outlier loss. In the segmentation results, the red line represents the ground truth label, and the green line
represents the predicted result. The probability heatmap represents the confidence of the prediction: darker colors indicate higher confidence.
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where Ceil is a round-down operation. A mask is introduced for
auxiliary operations:

MaskBlack(CountGapWhite(X))

=

{
0, ifCountGapWhite(X) > Threshold
1, otherwise

, (9)

MaskBlack(CountGapBlack(X))

=

{
0, ifCountGapBlack(X) > Threshold
1, otherwise

, (10)

The density matrix can then be expressed as

DensityMap X = Round (X) ·DensityWhite (X) ·MaskWhite (X)

+ (1−Round (X) ·DensityBlack (X))·MaskBlack (X) ,

(11)
where Round indicates a rounding operation that acts as a shield.
Generally, the lower the density of the point, the more likely it
is to be within an outlier region, the greater the likelihood of
misclassification, and the greater the need to assign a greater loss
value. At present, DensityMap values are only calculated from
the point density of the predicted results. Thus, during design
of the proposed model, it was also necessary to integrate the
BCE loss function.

Thus, the final outlier-region loss function of the proposed
model can be expressed as

Loutlier (X,Y) = LBCE (X,Y)− DensityMap X , (12)

where Y is the label value with dimensions of n × n, the output is
the loss value matrix with dimensions of n× n, and a negative sign
is added in front of DensityMap X as the point density is inversely
related to the loss value. The final loss value can be obtained using
a sum or a mean function.

The outlier-region loss function is calculated based on
essentially stable prediction results and assigns higher loss values
upon detection of the small number of anomalous outlier regions.
Thus, this function is more suited for use in combination with
the conventional loss function in a weighted manner, with the
conventional loss function dominating in the early stage of training.
and the weights of the outlier-region loss function gradually being
increased in the later stage once basic stability has been achieved.

The weighted fusion of the above loss functions is

L (X,Y) =α · LBCE (X,Y)+β · LDice (X,Y)+γ · Loutlier (X,Y) ,

(13)
whereα, β, and γ are weight coefficients.

4 Experiment results and analysis

4.1 Experiment settings

4.1.1 Dataset
The LGG Segmentation Dataset was used in this study, as

obtained from https://www.kaggle.com/datasets/mateuszbuda/lgg-
mri-segmentation. The number of MRI slices of patient brains
ranges from 20 to 88, and the preoperative imaging data contain

a fluid attenuated inversion recovery (FLAIR) sequence. This
database includes approximately 3929 brain MRI images along
with the corresponding manual FLAIR segmentation results, which
are shown in Figure 6. Genomic data such as fDNA methylation,
gene expression, DNA copy number, and microRNA expression
and basic data such as age and gender are provided in a.csv file
(Table 1). The values in the genomic data represent the molecular
classifications of LGGs. For example, the RNASeqCluster column
represents the molecular classifications of RNASeq, with values
ranging from 1 to 4. For detailed explanations of each column,
please refer to Buda et al. (1).

4.1.2 Evaluation metrics
In this study, we used the DSC to evaluate the segmentation

results. The DSC is an ensemble similarity measure function, which
is usually used to calculate the similarity between two samples. With
X and Y being the predicted and real results, respectively, the Dice
coefficient is defined as

Dice (X,Y) = 2|X ∩ Y|
|X|+|Y| . (14)

4.1.3 Implementation details
This experiment was conducted on an Ubuntu

server with an NVIDIA RTX 2060 graphics card. The
segmentation_models.pytorch codebase was used, with some
customization to incorporate the attribute encoder model. The
training, validation, and test sets were scaled to 0.7, 0.15, and 0.15,
respectively. In terms of data enhancement, the training set was
processed by randomly deleting channels and applying random
brightness, contrast, and saturation values. The Adam optimizer
was used. The learning rate was set to 0.001 and the random
number seed was set to 23.

In this experiment, a function was added to analyze the
segmentation size in terms of the dataset. A total of six
segmentation regions smaller than 7× 7 were found in the dataset,
with the proportion of such regions being less than 6

3929 . Thus, a

TABLE 3 Ablation analysis of multimodal data.

Attribute encoder DSC IoU

No 92.80 90.22

Yes 93.21 91.02

Bold values represents the best score.

TABLE 4 Ablation analysis of popular models.

Encoder Decoder DSC IoU

U-Net (1) U-Net (1) 82.00 –

ResNet (35) (resnet101) DeepLabv3+ 90.43 87.80

EfficientNet (36) (tf_efficientnet_b5) DeepLabv3+ 91.0 88.13

Xception (37) (xception65) DeepLabv3+ 91.65 89.10

RepVGG (38) (repvgg_b2) DeepLabv3+ 91.87 89.36

EfficientNetV (39)
(tf_efficientnetv2_m)

DeepLabv3+ 91.93 89.29

Swin Transformer v2 (40) (swin_base) DeepLabv3+ 91.98 89.19

RegNet (regnetz_040) DeepLabv3+ 92.80 90.22

Bold values represents the best score.
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FIGURE 8

Segmentation results for different models. In the segmentation results, the red line represents the ground truth label, and the green line represents
the predicted result. The image IDs are TCGA_FG_8189_20030516_21, TCGA_DU_8164_19970111_22, TCGA_CS_5397_20010315_7,
TCGA_CS_5397_20010315_9, and TCGA_CS_6290_20000917_10.
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FIGURE 9

Test image (left) and loss value visualization (right).

segmentation area smaller than 7 × 7 in the segmentation result
was considered to have a high probability of being segmented
incorrectly and, in this experiment, the hyperparameters i and j
were set to 7 and 21, respectively. For the outlier loss function, the
hyperparameters α, β, and γ were all set to 1, and i and j could be
freely set according to the size of the area to be excluded.

4.2 Ablation studies

4.2.1 Loss function ablation
In this study, we used the BCE loss function as the baseline loss

function and added other loss functions separately to compare the
DSC and intersection over union (IoU) scores. The results are listed
in Table 2.

Concurrently, we performed a visual analysis on a subset of
images, as shown in Figure 7. The first and second columns indicate
the segmentation results and probability heatmaps obtained using
BCE loss, whereas the third and fourth columns show the
segmentation results and probability heatmaps obtained using
outlier loss. The red and green lines in the segmentation results
represent the ground truth and predicted labels, respectively. The
probability heatmaps represent the confidence of the predictions:
darker colors indicate higher confidence. From the comparison
of the predicted segmentation results, it is evident that the
use of outlier loss significantly reduces the occurrence of noise
and improves the edge fitting effect, thereby greatly enhancing
the quality of the segmentation results. Furthermore, in the
comparison of the predicted probability results, the use of outlier
loss leads to fewer intermediate colors in the edge regions,
indicating higher confidence and better model performance. The
foreground region exhibits a higher consistency in color, indicating
a smaller variance in the overall predicted results for the foreground
region and a more stable segmentation effect. In contrast, the use
of BCE loss results in lower color consistency for the foreground
region, indicating a larger variance in the overall predicted results
for the foreground region and poor segmentation performance.

4.2.2 Ablation analysis of multimodal data
This study conducted ablation experiments on models with and

without attribute encoders to evaluate the impact of the attribute
encoders on the results. The results are shown in Table 3.

4.2.3 Base model ablation
In this study, we performed a comparative analysis of several

different groups of encoders using DeepLabv3+ as the main
decoder; the results are presented in Table 4. The proposed RegNet
model achieved the highest score.

Notably, the recent transformer-based model (Swin
Transformer v2) did not achieve acceptable results; this was
because of the small dataset used in this experiment.

Similarly, we selected some images for visual analysis, as shown
in Figure 8, From the comparison of the segmentation results, it
can be seen that using RegNet as the encoder of the model leads to
better edge fitting and higher-quality segmentation results.

4.3 Outlier-region loss-function
visualization

To demonstrate the effectiveness of the outlier loss function
more intuitively, a characteristic picture was manually designed
and used as the outlier loss function input. The 100 × 100 input
image and the loss value output are shown on the left and right
of Figure 9, respectively. Here, different shades of gray represent
different loss values, with a lighter shade indicating a higher value.
The input image consisted of five types of white areas. Areas 1–
4 had sizes of less than 7 × 7 and were used to simulate noisy
regions with different characteristics. Area 5, which had a size
of 28 × 28, was used to simulate a normal segmentation area.
Hyperparameters i and j were set to 7 and 21, respectively. In
the figure on the right, the noise regions in Areas 1–4 were given
different loss values according to their density ratios compared to
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the background region. Area 1 was exactly within the size of the
noise region; thus, it was darker overall and, correspondingly, had
a lower loss value. The higher loss values of the edge parts were
determined by the manner in which the density was calculated and
did not affect the determination of the noise region. Area 2 had
the highest loss value because it had the lowest density. Areas 3
and 4 simulated noisy regions with different shapes. Unlike Areas
1–4, Area 5 was not assigned a loss value because its overall size
exceeded that of the noise region, and thus, it was judged to be a
normal segmented region.

5 Conclusion

In this study, a deep learning-based model with an encoder–
decoder structure was proposed for MRI image segmentation
and application to glioma. The model obtained in the RegNet
design space was applied as the encoder and combined with the
decoder component of DeepLabv3+. In the experiment, excellent
segmentation results were obtained. Additionally, to address
the misclassifications occurring in outlier regions of a certain
size, a density-based outlier-region loss function was proposed
to suppress generation of such regions. Finally, multimodal
data fusion in the LGG Segmentation Dataset was explored.
Experiment results with a Dice score of 94.36 were obtained
on the LGG Segmentation Dataset; thus, the proposed method
had excellent performance. Moreover, this model outperformed
other popular models.

As limitations, the application range and detection method
of the proposed model can be improved. Therefore, in future
research, the density-based outlier-region loss function will be
extended for multi-class and three-dimensional segmentation,
thereby improving the application range of this method. To explore
superior detection methods, traditional outlier detection theory
will be introduced. Moreover, the use of the Dice coefficient as
the evaluation function is not intuitive as this method focuses on
the noise removal efficiency. Thus, an evaluation function that can
detect the number of noise points is more reasonable, and such a
function will be studied in future research. Moreover, although the
recently popular transformer-based vision model did not achieve
the best results on the dataset considered in this work, it may
perform better when its global modeling capability is combined
with the advantages of the local extraction feature of traditional
CNNs. Finally, further research is needed regarding quantification

of the effects of data of other modalities on the final result and their
influence scope.
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