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Introduction: Preterm birth is a leading cause of infant mortality and morbidity. 
Despite the improvement in the overall mortality in premature infants, the intact 
survival of these infants remains a significant challenge. Screening the physical 
growth of infants is fundamental to potentially reducing the escalation of this 
disorder. Recently, machine learning models have been used to predict the growth 
restrictions of infants; however, they frequently rely on conventional risk factors 
and cross-sectional data and do not leverage the longitudinal database associated 
with medical data from laboratory tests.

Methods: This study aimed to present an automated interpretable ML-based 
approach for the prediction and classification of short-term growth outcomes in 
preterm infants. We prepared four datasets based on weight and length including 
weight baseline, length baseline, weight follow-up, and length follow-up. The 
CHA Bundang Medical Center Neonatal Intensive Care Unit dataset was classified 
using two well-known supervised machine learning algorithms, namely support 
vector machine (SVM) and logistic regression (LR). A five-fold cross-validation, 
and several performance measures, including accuracy, precision, recall and F1-
score were used to compare classifier performances. We further illustrated the 
models’ trustworthiness using calibration and cumulative curves. The visualized 
global interpretations using Shapley additive explanation (SHAP) is provided for 
analyzing variables’ contribution to final prediction.

Results: Based on the experimental results with area under the curve, the discrimination 
ability of the SVM algorithm was found to better than that of the LR model on three 
of the four datasets with 81%, 76% and 72% in weight follow-up, length baseline 
and length follow-up dataset respectively. The LR classifier achieved a better ROC 
score only on the weight baseline dataset with 83%. The global interpretability results 
revealed that pregnancy-induced hypertension, gestational age, twin birth, birth 
weight, antenatal corticosteroid use, premature rupture of membranes, sex, and 
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birth length were consistently ranked as important variables in both the baseline and 
follow-up datasets.

Discussion: The application of machine learning models to the early detection and 
automated classification of short-term growth outcomes in preterm infants achieved 
high accuracy and may provide an efficient framework for clinical decision systems 
enabling more effective monitoring and facilitating timely intervention.

KEYWORDS

preterm birth, extrauterine growth restriction, machine learning, classification, model 
trustworthy, interpretability

1 Introduction

Preterm infants are increasingly being diagnosed with extrauterine 
growth restriction (EUGR). EUGR refers to insufficient growth during 
hospitalization and represents a significant clinical challenge globally, 
particularly in preterm infants. The inadequate growth of EUGR can 
extend beyond the hospitalization period and have both short- and 
long-term implications, including growth failure (1), adverse 
neurodevelopmental outcomes (2), and cardiovascular risk (3). 
According to their clinical circumstances, preterm newborns currently 
constitute a large and heterogeneous population. Premature birth is a 
leading cause of long-term neurodevelopmental difficulties and 
disabilities (4). According to the World Health Organization, 15 
million infants are delivered prematurely each year throughout the 
world (5). However, the incidence of EUGR has been reported to 
jeopardize 40 to 95% of premature infants (6). Typically, EUGR is 
diagnosed when the newborn’s weight is <10th percentile at either 
discharge or 36 to 40 weeks postmenstrual age (7, 8). In fact, statistics 
published by Clark et al. revealed significant EUGR results in terms of 
weight (28%), length (34%), and head circumference (16%) (9) in 
preterm infants during hospitalization. Furthermore, the National 
Institute of Child and Human Development (NICHD), has reported 
that the prevalence of postnatal growth failure in preterm infants with 
very low birth weight admitted to neonatal intensive care units 
(NICU) is approximately 89% (10), which may further worsen the 
prognosis. EUGR is multifactorial in etiology, in which both genetic 
and environmental factors play a role, and it potentially exposes 
preterm infants to multiple morbidities. Notably, several studies have 
linked poor postnatal growth to an increased morbidity and mortality 
both in the neonatal period and in later life (11–14).

Assessing and monitoring the physical growth of infants is 
fundamental to effective treatment of EUGR, which can potentially 
reduce the escalation of this disorder. However, early evaluation and 
recognition of EUGR should be emphasized when caring for preterm 
infants, given the similarities in the clinical manifestations, especially in 
extremely premature newborns. Therefore, the development of optimal 
strategies for early diagnosis of clinical deterioration based on longitudinal 
data is necessary. Ongoing research is focused on developing data mining 
strategies to improve the understanding of the underlying disease 
processes. Biomarkers, including clinical symptoms, laboratory results 
and imaging modalities, play a critical role in this regard. As laboratory 
testing is the backbone of clinical decision-making, its application in 
medicine is quite promising. The application of ML algorithms may 
deliver insights that help healthcare systems diagnose and treat these 

diseases early. Consequently, the use of ML in laboratory medicine is 
gaining popularity and becoming increasingly vital for clinicians (15, 16). 
Despite significant improvements in neonatal care over the past two 
decades that have led to better survival rates and reduced complications 
in preterm infants, growth restriction remains a common issue during the 
postnatal period (17). As a result, there is an urgent need for novel 
approaches to reduce the risks associated with EUGR (18). Consequently, 
the attention of healthcare professionals is shifting to preventive strategies 
based on prospective longitudinal studies with long-term follow-up care 
and is not limited to cross-sectional measurements. However, obtaining 
long-term follow-up data can be challenging, and such data remain scarce 
(19, 20). Over the previous few decades, considerable advances have been 
made in health data generation and collection, particularly in terms of 
clinical information (21). This health record information may contain 
personal disease histories, diagnosis mechanisms, treatment processes, 
and hospital administration information to provide statistical background 
for epidemiological records (22, 23). It is of great value to discover hidden 
patterns in this information.

Given the current pace of artificial intelligence (AI) development 
in medical fields, many healthcare systems need an evidence-based 
approach based on longitudinal-oriented data to realize automated 
analysis, which may facilitate treatment planning and decision-
making processes (24, 25). Therefore, accurate computer-aided 
diagnosis (CAD) methods can help clinicians to discover hidden 
patterns in data. CAD system are being extensively used in healthcare 
(26). Despite the significant advances in AI in medical fields, the field 
of pediatrics has been slow to adopt these technologies. AI-based 
predictive analysis incorporates a variety of ML algorithms and data 
mining techniques that use data to predict future events. ML is a 
powerful automated analysis technique and subfield of AI, which uses 
computer algorithms and has been successfully employed in clinical 
applications for classification, prediction, and decision-making in a 
multitude of disciplines (27–30). To address the above-mentioned 
issues, this study aimed to develop a ML system capable of accurately 
predicting EUGR and identifying the clinical risk factors associated 
with EUGR in preterm infants.

The use of machine learning algorithms in neonatal care has been 
gaining attraction in recent years, with several studies demonstrating the 
effectiveness of these techniques in predicting various outcomes. For 
instance, Han et al. (31) aimed to predict postnatal growth failure (PGF) 
among very low birth weight (VLBW) infants using machine learning 
models. They compared four different techniques [extreme gradient 
boosting (XGB), random forest, support vector machine, and 
convolutional neural network] against the conventional multiple logistic 
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regression (MLR) model. The XGB algorithm showed the best 
performance, with a 74% area under the receiver operating characteristic 
curve (AUROC) and 68% accuracy for Day 7 compared to MLR. The 
authors concluded that machine learning algorithms, particularly XGB, 
could help neonatologists identify high-risk infants for PGF and enable 
early intervention. Leigh et al. (32) applied machine learning to predict 
bronchopulmonary dysplasia (BPD)-free survival among very preterm 
infants using data from 689 infants. The final model demonstrated 
92.10% receiver operating characteristics performance in both the 
training and validation datasets. The study suggested that machine 
learning-based BPD prediction, considering perinatal features and 
respiratory data, may have clinical applicability for early targeted 
intervention in high-risk infants. Wu et al. (33) conducted a retrospective 
cohort study to predict late respiratory support in preterm infants using 
machine learning algorithms. They collected data on very-low-birth-
weight infants born between 2016 and 2019 from the Taiwan Neonatal 
Network database. Logistic regression yielded the 88.10% (AUROC) 
overall mortality. The authors concluded that machine learning could 
be used to develop models for predicting late respiratory support, with 
simplified estimators for clinical application. Additionally, Podda et al. 
(34) developed the Preterm Infants Survival Assessment (PISA) predictor 
using machine learning methods, specifically artificial Neural Networks 
(NN), on a cohort of neonates with gestational age <30 weeks or birth 
weight <1,501 g. The resulting predictor was compared with logistic 
regression models, and the NN approach showed (91.49%) a small but 
significant advantage over logistic regression 91.47% approaches. These 
studies collectively highlight the potential for machine learning to 
improve outcomes in neonatal care and enable early targeted intervention 
for high-risk infants.

However, only a few published articles on laboratory test 
biomarkers exists, and there is a lack of measuring these biomarkers in 
a follow-up manner, in which infants’ data are tracked after a period of 
time. These limitations underscore the need for more research in this 
area to improve our understanding of the underlying disease processes 
and enable early diagnosis of clinical deterioration. Given the potential 
benefits of ML algorithms in predicting outcomes and enabling early 
intervention in neonatal care, we aim to conduct a comprehensive 
analysis of the applications of ML techniques using a longitudinal 
approach. In addition, we aim to conduct a global interpretation to 
identify the most important variables during each time period, 
providing a more comprehensive understanding of the factors that 
contribute to growth failure in premature infants. Specifically, by 
generating four datasets, two each for weight and length outcomes, for 
both baseline and follow-up measurements, we  aim to investigate 
potential risk factors for growth failure and examine how these factors 
change over time. The use of standardized growth charts and the 
longitudinal approach will enable more accurate comparisons and 
provide a comprehensive understanding of the factors that contribute 
to growth failure in premature infants. This comprehensive analysis of 
potential risk factors for growth failure among preterm infants utilizes 
a longitudinal approach that tracks changes in these factors over time, 
allowing for better insights into the underlying mechanisms 
affecting growth.

The remainder of the paper is structured as follows. Section 2 
presents the data used in the research and describes the preprocessing 
and classification algorithms. Next, Section 3 presents the 
experimental results of this study, and the discussion is presented in 
Section 4. Finally, the conclusions are found in Section 5.

2 Materials and methods

2.1 Data description

A single-center prospective observational cohort study was 
conducted in which infants received either fortified breast milk or 
preterm formula in a level 3 NICU in South Korea. All infants 
admitted to the NICU of CHA Bundang Medical Center were eligible 
for participation if their gestational age was less than 34 weeks or their 
birth weight was less than 1,500 g. The gestational age was determined 
based on the menstrual history and antenatal ultrasound, or by 
physical examination if discrepancies were present. The exclusion 
criteria were the presence of a major congenital anomaly, 
gastrointestinal tract disorder, or failure to commence enteral feeding 
within 7 days of life. Infants were assigned to the fortified-breast-
milk-fed (BM) or premature-formula-fed (PM) groups according to 
their initial analysis results. After exclusion, we  included 124 
premature infants in this study. The collected data with the same race 
and ethnicity included demographic data and the initial assessment 
results (including vital signs, imaging findings, and laboratory tests). 
We  employed 26 predictor variables (independent variables) and 
target outcome as input to ML models. These predictors were carefully 
selected based on their relevance to the EUGR as target outcome. The 
22 predictor variables cover a range of factors that potentially influence 
the occurrence of EUGR. The infants who have genetic diseases or 
whose mothers have genetic diseases during the recruitment phase, 
similar to patients with significant congenital anomalies were 
excluded. All the medications administered to the enrolled infants 
included surfactant, antibiotics, intravenous immunoglobulin, 
granulocyte colony-stimulating factor(G-CSF), caffeine citrate, 
ibuprofen, calcium gluconate, and prophylactic antifungal agents, as 
clinically indicated. Additionally, during the period of inadequate 
enteral nutrition, total parenteral nutrition was delivered, which was 
subsequently followed by the provision of multivitamins and 
additional vitamin D supplementation. Notably, no detectable adverse 
effects were observed throughout the study period. The demographic 
attributes included the gestational age, sex, twin, weight at birth, 
length at birth, and head circumference at birth. The maternal 
characteristic attributes included the maternal height and maternal 
body mass index. The perinatal characteristic attributes included 
assisted reproductive technologies such as in vitro insemination (IVF) 
and intrauterine insemination (IUI), gestational diabetes mellitus 
(GDM), pregnancy-induced hypertension (PIH), antenatal 
corticosteroids (ANC), premature rupture of the membrane 
(PROM) ≥ 18 h, cesarean section, and APGAR (Appearance, Pulse, 
Grimace, Activity, and Respiration) score at 1–5 min. The neonatal 
characteristic attributes included respiratory distress syndrome of 
newborns (RDS), hemodynamically significant patent ductus 
arteriosus (hsPDA), duration of positive pressure ventilation (PPV), 
duration of oxygen supply, types of feeding, and days to full feeding. 
This study was approved by the Institutional Review Board of the 
CHA Bundang Medical Center (BD2015-223). The data were 
prospectively collected after informed consent was obtained from 
all participants.

This study focuses on two primary outcomes, extrauterine growth 
restriction by weight and length, using the 25th percentile as a cutoff 
for proper growth. Growth percentiles for weight and length were 
calculated using the Fenton preterm growth chart (35), which takes 
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into account the gestational age and sex of the infant at birth for 
infants born between 22 and 40 weeks of gestation. The Fenton growth 
chart is a widely accepted tool for assessing preterm infant growth and 
provides a standardized means of evaluating growth percentiles, 
enabling more accurate comparisons across different populations and 
research studies. Four datasets were generated for baseline and 
follow-up measurements, including two datasets for baseline (weight-
baseline and length-baseline) and two follow-up datasets (weight 
follow-up and length follow-up). While all datasets use the same 
predictor variables, their values differ as time passes during the 
follow-up period. For the baseline datasets, the outcome variable in 
the weight-based dataset is the infant’s weight at baseline, while the 
outcome variable in the length-based dataset is the infant’s length at 
baseline. For the follow-up datasets, the outcome variable in the 
weight-based dataset is the infant’s weight at follow-up, while the 
outcome variable in the length-based dataset is the infant’s length at 
follow-up.

The dataset descriptions for weight and length are provided in 
Tables 1, 2, respectively. These tables provide a detailed overview of 
the datasets used in the study, including the number of subjects, the 
distribution of EUGR cases, and the key features used in the ML 
models. The dataset descriptions are an important reference for in 
replicating results or applying similar ML approaches to datasets.

2.2 Data preprocessing

The test results of the classifier depend heavily on the background 
knowledge of the sample data. Therefore, it is of great importance to 
preprocess the sample raw data to acquire an effective classification 
performance. Data normalization is a crucial preprocessing step that 
involves scaling or transforming the data before evaluating it with 
machine learning algorithms (31). In this study, we addressed the 
missing values in the dataset by employing the mean imputation 
technique where the missing values are replaced with the mean value 
of the corresponding feature. Mean imputation is a widely-used 
approach for handling missing data that preserves the mean and 
variance of the original data. Additionally, we  also applied the 
MinMaxScaler technique for data normalization. This method scales 
each feature to a range between 0 and 1, by subtracting the minimum 
value and dividing by the range of the feature.

2.3 Machine learning

The performance of different classification algorithms used for 
classifying non-EUGR and EUGR infants was tested. In many studies, 
authors often used two validation methods, namely the hold-out and 
k-fold cross-validation methods to evaluate the capabilities of a model. 
Cross-validation is a standard method for testing models when 
datasets are too small to be split into training and test sets (36). Based 
on the size of dataset, a five k-fold cross-validation method without 
repetition was used to evaluate the proposed model. The input data 
were randomly split into five subsets of approximately equal size. 
During each run, for each subset, the classifier was trained on k-1 
folds and then its performance was validated on data in the k-th fold. 
The final result is the average of all test performances of all folds. For 
each fold, the area under the curve (AUC) was estimated in both the 

training and test set. This step is critical to avoid overfitting the 
classifier to a single training set and ensure that the training and 
testing datasets are evenly distributed. We  used two well-known 
classifiers, logistic regression (LR) and support vector machine (SVM) 
to perform classification and build the risk assessment model. To 
enable a direct and unbiased comparison between the SVM and LR 
models, the default settings were employed, refraining from the 
implementation of hyperparameter tuning. In the SVM model, these 
default settings encompassed the utilization of a radial basis function 
(RBF) kernel, a regularization parameter (C) set to 1.0, and the 
automatic estimation of the kernel’s scaling parameter (gamma) based 
on the characteristics of the dataset. Similarly, the default settings for 
the LR model involved L2 regularization with an inverse regularization 
strength (C) of 1.0 and the application of the ‘lbfgs’ solver. The decision 
to avoid hyperparameter tuning in this study was supported by several 
factors. Firstly, it ensured a fair and unbiased comparison between the 
SVM and LR models, eliminating potential biases introduced by 
inconsistent tuning processes. Secondly, it saved computational 
resources and time, allowing focus on other critical aspects of the 
research. Lastly, default settings are often carefully chosen by experts, 
providing reasonable configurations for a wide range of applications. 
Thus, refraining from hyperparameter tuning facilitated a 
straightforward comparison while leveraging the expertise embedded 
in the default settings of the models. The workflow of proposed 
methodology is depicted in Figure 1.

2.3.1 Logistic regression
Logistic regression, another technique from the field of statistics 

borrowed by machine learning, involves modeling the probability of 
a discrete outcome given an input variable (37). The outcome is 
measured using a dichotomous variable. LR involves the 
transformation of linear regression using the sigmoid function, where 
it gets a linear combination of variables and then applies them to a 
non-linear sigmoidal function. It is a valuable analysis method for 
classification problems compared to a regression model as it tries to 
obtain reliable performance with linearly separable classes and can 
also be generalized to multiclass classification.

2.3.2 Support vector machine
This method involves determining the class of data points using 

appropriate hyperplanes in a multidimensional space (38). By using 
SVM, we  aim to find a hyperplane that separates cases of two 
categories of variables that take up neighboring clusters of vectors on 
the other. Support vectors are those that are closer to the hyperplane. 
Training data is categorized into target values and attributes, and it 
produces a model for predicting target values for test data.

2.4 Evaluation criteria

Model evaluation is an essential component of a classification 
task. To perform a fair comparison between the classifiers and 
measure the prediction performance of the ML models, several 
evaluation metrics including the accuracy (ACC), recall (REC), 
precision (PREC), F1-score (F1), the area under the receiver operating 
characteristic curve (AUROC), and the area under the precision–recall 
curve (AUPRC) were used. The predictive values are also demonstrated 
in a two-by-two confusion matrix. In this text, true positive (TP) 
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TABLE 1 Demographic and laboratory test characteristics of the subjects in the baseline dataset.

Baseline length dataset Baseline weight dataset

Diagnosis EUGR (n  =  35) Non-EUGR (n  =  89) EUGR (n  =  29) Non-EUGR (n  =  95) Missing values (%)

GA 32.02 ± 2.06 31.31 ± 2.45 32.55 ± 1.76 31.20 ± 2.43 -

Birth weight 1471.29 ± 391.32 1697.70 ± 457.33 1434.31 ± 294.84 1694.68 ± 472.20 -

Birth length 38.40 ± 2.90 41.36 ± 3.72 39.71 ± 3.03 40.77 ± 3.92 -

Sex -

Male 20 (57.14%) 52 (58.43%) 17 (58.62%) 55 (57.89%) -

Female 15 (42.86%) 37 (41.57%) 12 (41.38%) 40 (42.11%) -

Twin -

Singleton 21 (60.00%) 49 (55.06%) 15 (51.72%) 55 (57.89%) -

Twin 14 (40.00%) 40 (44.94%) 14 (48.28%) 40 (42.11%) -

Maternal age 33.23 ± 3.57 32.37 ± 4.43 33.41 ± 4.75 32.37 ± 4.02 -

Maternal BMI 22.20 ± 2.88 23.85 ± 3.71 23.44 ± 2.86 23.37 ± 3.76 -

GDM -

No 30 (85.71%) 74 (83.15%) 24 (82.76%) 80 (84.21%) -

Yes 5 (14.29%) 15 (16.85%) 5 (17.24%) 15 (15.79%) -

PIH -

No 21 (60.00%) 80 (89.89%) 15 (51.72%) 86 (90.53%) -

Yes 14 (40.00%) 9 (10.11%) 14 (48.28%) 9 (9.47%) -

ANC -

Yes 22 (62.86%) 60 (67.42%) 24 (82.76%) 58 (61.05%) -

No 13 (37.14%) 29 (32.58%) 5 (17.24%) 37 (38.95%) -

PROM -

No 32 (91.43%) 73 (82.02%) 29 (100.00%) 76 (80.00%) -

Yes 3 (8.57%) 16 (17.98%) 0 (0.00%) 19 (20.00%) -

Csec -

Yes 30 (85.71%) 76 (85.39%) 25 (86.21%) 81 (85.26%) -

No 5 (14.29%) 13 (14.61%) 4 (13.79%) 14 (14.74%) -

5APGAR 7.77 ± 1.03 7.79 ± 1.06 7.90 ± 1.01 7.75 ± 1.06 -

WBC 5971.10 ± 2307.99 8642.44 ± 5774.19 6184.08 ± 2441.38 8408.71 ± 5665.85 7.26

Hb 16.42 ± 1.63 14.96 ± 1.83 16.46 ± 1.92 15.04 ± 1.75 7.26

CRP 0.03 ± 0.06 0.07 ± 0.24 0.02 ± 0.04 0.07 ± 0.23 7.26

Albumin 3.25 ± 0.27 3.08 ± 0.29 3.23 ± 0.30 3.10 ± 0.28 7.26

BUN 11.86 ± 7.24 19.06 ± 98.42 11.66 ± 7.15 18.66 ± 95.26 7.26

Cr 0.61 ± 0.20 0.50 ± 0.17 0.64 ± 0.21 0.50 ± 0.16 7.26

Ca 9.21 ± 0.96 9.42 ± 0.72 9.13 ± 0.86 9.43 ± 0.77 7.26

P 5.92 ± 0.81 5.93 ± 0.93 6.01 ± 0.89 5.90 ± 0.90 7.26

Mg 3.16 ± 1.09 3.06 ± 0.92 3.49 ± 1.15 2.97 ± 0.87 22.58

VitD 18.54 ± 8.75 20.14 ± 7.40 18.00 ± 8.45 20.20 ± 7.56 12.90

BM 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 -

Invasive MV -

Yes 22 (62.86%) 57 (64.04%) 16 (55.17%) 63 (66.32%) -

No 13 (37.14%) 32 (35.96%) 13 (44.83%) 32 (33.68%) -

PPV -

Yes 29 (82.86%) 67 (75.28%) 22 (75.86%) 74 (77.89%) -

No 6 (17.14%) 22 (24.72%) 7 (24.14%) 21 (22.11%) -

1Data are presented as the mean ± SD values except were indicated; n/N (%), the figures in parentheses are percentages. n, number of participants; EUGR, extrauterine growth restriction; BL, 
birth length; BWt, birth weight; GA, gestational age; BMI, body mass index; GDM, gestational diabetes mellitus; PIH, pregnancy-induced hypertension; ANC, antenatal corticosteroid; PROM, 
premature rupture of membrane; Csec, Cesarean section; 5APGAR, Apgar score at 5 min.; WBC, white blood cells; Hb, hemoglobin; CRP, C-reactive protein; BUN, blood urea nitrogen; Cr, 
creatinine; Ca, calcium; P, phosphorous; Mg, magnesium; Vit D, vitamin D; MV, mechanical ventilation; PPV, positive pressure ventilation.
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TABLE 2 Demographic and laboratory test characteristics of the subjects in the follow-up dataset.

Follow-up length dataset Follow-up weight dataset

Diagnosis EUGR (n  =  83) Non-EUGR (n  =  41) EUGR (n  =  72) Non-EUGR (n  =  52) Missing values (%)

GA 31.27 ± 2.47 31.85 ± 2.17 31.31 ± 2.48 31.93 ± 2.05 -

Birth weight 1485.76 ± 421.04 1838.75 ± 409.47 1483.43 ± 392.15 1938.17 ± 406.65 -

Birth length 39.28 ± 3.46 42.24 ± 3.46 39.52 ± 3.54 42.56 ± 3.34 -

Sex -

Male 40 (55.56%) 32 (61.54%) 49 (59.04%) 23 (56.10%) -

Female 32 (44.44%) 20 (38.46%) 34 (40.96%) 18 (43.90%) -

Twin -

Singleton 38 (52.78%) 32 (61.54%) 42 (50.60%) 28 (68.29%) -

Twin 34 (47.22%) 20 (38.46%) 41 (49.40%) 13 (31.71%) -

Maternal age 32.83 ± 3.94 32.31 ± 4.57 32.89 ± 4.05 32.05 ± 4.52 -

Maternal BMI 23.34 ± 3.71 23.44 ± 3.38 22.81 ± 3.04 24.55 ± 4.25 -

GDM -

No 58 (80.56%) 46 (88.46%) 70 (84.34%) 34 (82.93%) -

Yes 14 (19.44%) 6 (11.54%) 13 (15.66%) 7 (17.07%) -

PIH -

No 53 (73.61%) 48 (92.31%) 63 (75.90%) 38 (92.68%) -

Yes 19 (26.39%) 4 (7.69%) 20 (24.10%) 3 (7.32%) -

ANC -

Yes 45 (62.50%) 37 (71.15%) 53 (63.86%) 29 (70.73%) -

No 27 (37.50%) 15 (28.85%) 30 (36.14%) 12 (29.27%) -

PROM -

No 63 (87.50%) 42 (80.77%) 73 (87.95%) 32 (78.05%) -

Yes 9 (12.50%) 10 (19.23%) 10 (12.05%) 9 (21.95%) -

Csec -

Yes 65 (90.28%) 41 (78.85%) 76 (91.57%) 30 (73.17%) -

No 7 (9.72%) 11 (21.15%) 7 (8.43%) 11 (26.83%) -

5APGAR 7.82 ± 1.04 7.73 ± 1.07 7.73 ± 1.04 7.88 ± 1.08 -

WBC 9672.26 ± 1970.56 8979.25 ± 2022.27 9775.25 ± 1944.22 8584.82 ± 1935.97 16.94

Hb 10.38 ± 1.00 10.64 ± 1.24 10.37 ± 1.06 10.73 ± 1.18 17.74

CRP 0.06 ± 0.07 0.07 ± 0.14 0.07 ± 0.12 0.05 ± 0.04 18.55

Albumin 3.44 ± 0.18 3.38 ± 0.18 3.42 ± 0.18 3.40 ± 0.18 16.33

BUN 5.26 ± 1.46 5.59 ± 1.46 5.33 ± 1.55 5.55 ± 1.27 16.33

Cr 0.31 ± 0.08 0.33 ± 0.09 0.31 ± 0.08 0.33 ± 0.09 16.33

Ca 10.35 ± 0.35 10.25 ± 0.22 10.32 ± 0.33 10.29 ± 0.24 14.52

P 6.46 ± 0.50 6.44 ± 0.42 6.42 ± 0.50 6.51 ± 0.38 14.52

Mg 2.03 ± 0.09 2.05 ± 0.10 2.04 ± 0.11 2.05 ± 0.05 34.63

VitD 25.71 ± 5.61 22.86 ± 6.86 24.53 ± 6.36 24.47 ± 6.25 14.52

BM 0.60 ± 0.34 0.62 ± 0.34 0.66 ± 0.31 0.51 ± 0.38 -

Invasive MV -

No 70 (97.22%) 49 (94.23%) 80 (96.39%) 39 (95.12%) -

Yes 2 (2.78%) 3 (5.77%) 3 (3.61%) 2 (4.88%) -

PPV -

No 59 (81.94%) 47 (90.38%) 68 (81.93%) 38 (92.68%) -

Yes 13 (18.06%) 5 (9.62%) 15 (18.07%) 3 (7.32%) -

1Data are presented as the mean ± SD values except were indicated; n/N (%), the figures in parentheses are percentages. n, number of participants; EUGR, extrauterine growth restriction; BL, 
birth length; BWt, birth weight; GA, gestational age; BMI, body mass index; GDM, gestational diabetes mellitus; PIH, pregnancy-induced hypertension; ANC, antenatal corticosteroid; PROM, 
premature rupture of membrane; Csec, Cesarean section; 5APGAR, Apgar score at 5 min.; WBC, white blood cells; Hb, hemoglobin; CRP, C-reactive protein; BUN, blood urea nitrogen; Cr, 
creatinine; Ca, calcium; P, phosphorous; Mg, magnesium; Vit D, vitamin D; MV, mechanical ventilation; PPV, positive pressure ventilation.
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refers to an EUGR positive outcome where the model correctly 
predicts the positive class, false negative (FN) refers to a non-EUGR 
infant in which the model incorrectly predicts the EUGR positive 
class, true negative (TN) refers to a non-EUGR infant where the 
model correctly predicts the non-EUGR class, and false positive (FP) 
refers to a non-EUGR infant where the model incorrectly predicts the 
EUGR positive class. Given TP, TN, FP and FN data, all evaluation 
metrics were calculated as follows.

Accuracy is the ratio between the overall correctly predicted 
samples and the total number of examples in the evaluation dataset.
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All samples

TP TN

TP FP TN F
= =
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Recall, also known as the sensitivity or true positive rate (TPR), is 
the ratio between correctly predicted positive cases from all the 
samples assigned to the actual positive cases.
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Precision is the ratio between correctly positive predicted samples 
concerning all samples assigned to the positive class.
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F1-score is generally defined as the harmonic mean of precision 
and recall, which penalizes extreme values of either.
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The receiver operating characteristic (ROC) curve is a valuable 
metric that shows the performance of a classification model at all 

classification thresholds (39). It is widely used in binary 
classification and has two parameters. The area under the 
precision–recall curve (AUPRC) is a valuable metric for classifying 
imbalanced data (40). We  further illustrated the models’ 
trustworthiness using calibration and cumulative curves and used 
global interpretations using Shapley additive explanation (SHAP) 
(41) for analyzing variables’ contribution to final prediction 
we  employed the Shapley Additive Explanations (SHAP) 
methodology to establish a ranking of the feature importance in 
our models. SHAP provides each feature with an importance score 
for a given prediction, and this is done by relying on principles 
derived from cooperative game theory. Upon training the models, 
the SHAP Python library applied to calculate the SHAP values for 
every feature in datasets. This was done by using the 
KernelExplainer and LinearExplainer from the SHAP library, 
which is suitable for SVM and LR models, respectively. A SHAP 
value illustrates the influence a feature has on shifting the 
prediction, with these values summing up to the difference 
between the predicted outcome and the base (expected) outcome. 
By taking the mean of the absolute SHAP values for each feature 
across all instances, we were able to obtain a measure of global 
feature importance. Higher SHAP values signify a more important 
feature, as these contribute more to the prediction outcome. 
We then ranked the features according to their average absolute 
SHAP values, thereby gaining a comprehensive understanding of 
feature importance.

2.5 Statistical analysis

The programming work for this study was performed in the 
Python programming language (version 3.9) (42). All data 
preprocessing and analysis were carried out using Pandas (43) and 
NumPy (44), Python libraries for data manipulation and analysis, and 
Scikit-learn (45), a Python module integrating a wide range of 

FIGURE 1

Flowchart of the five-fold cross-validation of the proposed machine learning method.
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machine learning algorithms. We performed all analyses on 24-core 
Intel(R) Xeon(R) Gold 5,118 CPU @ 2.30GHz, RAM 128 GB (Intel 
Corporation, Santa Clara, CA, United States) running Windows 10 Pro.

3 Experiment and results

3.1 Study population characteristics

This prospective observational study included 124 cases of 
preterm infants classified as non-EUGR and EUGR based on their 
weight percentile on day 7 for the baseline dataset and day 28 for the 
follow-up dataset. We generated four datasets, including a baseline 
length dataset (89 non-EUGR infants and 35 EUGR infants), a 
baseline weight dataset (95 non-EUGR infants and 35 EUGR infants), 
a follow-up length dataset (41 non-EUGR infants and 83 EUGR 
infants), and a follow-up weight dataset (52 non-EUGR infants and 
72 EUGR infants). In the baseline datasets, the birth weight and length 
of the non-EUGR group were higher than the EUGR group. Contrary 
to the length dataset in which the maternal age was greater in 
non-EUGR infants, the maternal age in baseline weight dataset was 
lower in the non-EUGR infants than the EUGR infants. Detailed 
baseline infant characteristics (weight and length) are presented in 
Table 1 and follow-up infant characteristics (weight and length) are 
presented in Table 2.

3.2 Correlation analysis

Correlation is a statistical approach that determines a relationship 
between two or more variables with one another. The Pearson 
coefficient is an indicator used to measure the strength and direction 
of a linear relationship between given variables and responses (46). 
The heatmap generated by Pearson correlation has been commonly 
used in numerous research fields (47–49). The study conducted a 
correlation analysis to gain an initial understanding of the 
relationships between the predictor variables and the outcome 
variables in all datasets. By comparing the correlation coefficients in 
the baseline and follow-up datasets, the study aimed to identify 
potential trends and changes in the factors affecting the outcome 
variables (weight and length) in the context of EUGR. This analysis 
was a crucial step in exploring the structure of the datasets and 
selecting appropriate statistical models for subsequent analyses. The 
absence of evident multicollinearity was an important diagnostic 
finding, as it ensured that the assumptions of the selected models were 
met and that the results were valid and interpretable. The Pearson 
correlation coefficient, like other correlation measurements, can 
be  positive or negative between −1 and + 1  in value. A positive 
correlation means that the variables increase or decrease together. A 
negative correlation suggests that if one variable increases, the other 
decreases, and vice versa. The correlations between predictors are 
shown as feature-correlation heat maps in Figure 2. Color type and 
intensity are used to indicate the degree of correlation. Detecting 
multicollinearity problems requires demonstrating a lack of strong 
correlation between the covariates (50, 51). To check for instances of 
multicollinearity problems, Pearson correlation coefficients were 
determined. As revealed by the heat maps in Figure 2, all four datasets 
were free of multicollinearity among the variables.

The correlation between predictor variables and the target variable 
can be a significant indicator as the predictor variables that tend to 
have a high correlation with the target variable but exhibit low inter-
correlation are efficient for classification tasks. To consider the 
existence of a correlation between predictor variables and the target 
variable, Pearson correlation coefficients were evaluated. Figure  3 
shows the Pearson correlation coefficients between the target variables. 
As reflected in this figure, PIH exhibited the highest correlation with 
the target in the weight bassline and length follow-up groups. The 
follow-up birth length and birth weight showed high negative 
correlation with the target, and a strong positive correlation was found 
for different follow-up datasets. Among the top ten most positive 
correlations with the target, PIH, creatinine (Cr), Hemoglobin (Hb), 
gestational age (GA), albumin, maternal age MA, and breast milk 
(BM) were the same for the baseline datasets. However, considering 
the ten top negative correlations, birth weight (BWt), white blood cells 
count (WBC), PROM, birth length (BL), Vitamin D (Vit D), calcium 
(Ca), and C-reactive protein (CRP) were the same for follow-up 
datasets. Conversely, maternal body mass index (mBMI) in the weight 
baseline, Apgar score at 5 min (5APGAR) in the length baseline, Vit 
D in the weight baseline, and mBMI in the length follow-up datasets 
were demonstrated to exhibit the lowest correlation with the target.

3.3 Comparison of model performances

Table 3 presents the results achieved by the algorithms according 
to the selected performance metrics. When comparing the baseline 
and follow-up datasets in terms of accuracy, the baseline datasets for 
weight and length obtained a better performance than the follow-up 
datasets. Furthermore, when comparing the baseline datasets, the 
weight dataset achieved a better performance than the length dataset 
for both the baseline and follow-up datasets. Regarding the classifiers, 
our study found that the LR algorithm exhibited the best accuracy, 
with 83.07% for the weight baseline and 74.97% for the length baseline 
datasets, which demonstrates that the LR model performed better 
than the SVM model on the two baseline datasets. However, the SVM 
model performed better on the follow-up datasets. Our results indicate 
that weight-based classification, using either the baseline or follow-up 
approach, can provide a reliable benchmark for disease diagnosis. The 
better performance of SVM might be  attributed to its geometric 
method that maximize the margins to each class, aiding in dividing 
the feature space with a more accurate decision boundary than 
LR. Overall, our study highlights the importance of selecting the 
appropriate algorithm for the dataset and considering the context in 
which the algorithm will be applied.

Precision and recall are important metrics in medical diagnosis 
because they measure the accuracy and completeness of a diagnostic 
test. They are widely used in medical research and are valuable tools 
for improving the accuracy and reliability of diagnostic tests (52–54). 
Precision measures how well a test identifies true positive cases, while 
recall measures how well it detects all positive cases, including true 
and false positives. Inaccurate results can have serious consequences 
for patients, making it essential to evaluate diagnostic tests using 
metrics that account for both the accuracy and completeness of the 
results. On the Baseline dataset, the LR model has better precision on 
both the weight and length data. The LR model scored 80.00 ± (0.24) 
on the weight baseline and 76.67 ± (0.37) on the length baseline, while 
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the SVM model scored 65.33 ± (0.30) and 48.67 ± (0.33) respectively. 
This means that the LR model was better at avoiding false positives in 
both cases. Regarding recall score, the LR model also has better recall 
on the weight data with a score of 33.48 ± (0.11), compared to SVM’s 
29.48 ± (0.11). However, in the length data, the LR model’s recall is 
only slightly better than SVM’s, with scores of 22.44 ± (0.16) and 
15.56 ± (0.02) respectively. For F1-Score, the LR model has better 
F1-Scores on both the weight and length data, scoring 47.10 ± (0.15) 
and 32.82 ± (0.21) respectively, compared to SVM’s 38.83 ± (0.14) and 
22.35 ± (0.13).

When comparing the follow-up dataset, the precision is quite 
close between the models. The LR model scored slightly higher than 
the SVM model on the weight data, 77.78 ± (0.14) vs. 76.20 ± (0.13), 
but slightly lower on the length data, 68.01 ± (0.08) versus 
68.30 ± (0.08). In terms of recall, the SVM model has better 

performance on both the weight and length data. The SVM model’s 
recall scores were 91.49 ± (0.07) and 84.21 ± (0.12), while the LR 
models were 87.61 ± (0.14) and 77.22 ± (0.12) respectively. For the 
F1-Score, the SVM model scored higher on the weight data, 
82.01 ± (0.06), compared to LR’s 80.51 ± (0.09). However, there seems 
to be an error in your report for the length data. The SVM’s F1-Score 
is reported as 4.60 ± (0.05), which is much lower than expected. The 
LR model’s F1-Score for the length data is 71.40 ± (0.06). In conclusion, 
on the baseline dataset, the LR model outperforms the SVM model in 
terms of precision, recall, and F1-Score for both the weight and length 
data. This suggests that the LR model is more reliable for predicting 
baseline conditions, with fewer false positives and false negatives. On 
the Follow-up dataset, the situation exhibits more complexity. For 
precision, the models are quite close, with the LR model doing slightly 
better on the weight data, and the SVM model doing slightly better on 

FIGURE 2

Feature correlation analysis with heatmaps. (A) Weight baseline; (B) weight follow-up; (C) length baseline; (D) length follow-up. Positive impact sizes 
are represented by hues of red, while negative effect sizes are represented by shades of blue.
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the length data. For recall, the SVM model performs better on both 
the weight and length data, suggesting that it might be  better at 
catching positive cases in the follow-up data. However, the F1-Score, 
which balances precision and recall, is better for the LR model on the 
weight data and better for the SVM model on the length data, 
assuming there’s a mistake in the reported SVM F1-Score for the 
Length data.

Given that ML models tend to overfit to small datasets, especially 
in the medical field, it is important to investigate the occurrence of 
overfitting (55). It can also help determine if additional training 
examples could improve the model’s performance. The performance 
associated with repeated tasks improves with experience, practice, and 

training (56). This improvement is typically very quick at first but then 
gradually slows down (57). This process is sometimes referred to as a 
learning curve. In ML, a learning curve is a common diagnostic tool 
that shows how a model’s performance varies when more or less 
training samples are utilized (58). Learning curves can be used to 
determine if more training examples can improve validation scores. 
This measure also detects underfit, overfit, and well-fit models. In this 
study, we employed learning curves to evaluate the learning capacities 
of prediction models with varying amounts of training data (Figures 4, 
5). In the weight baseline dataset (Figures 4A,C), both LR and SVM 
models demonstrate high training scores that gradually decrease as 
the number of samples increases, indicating that these models are 

FIGURE 3

Feature correlation with the EUGR outcome. (A) Weight baseline; (B) weight follow-up; (C) length baseline; (D) length follow-up. Positive impact sizes 
are represented by hues of red, while negative effect sizes are represented by shades of blue.

TABLE 3 Test results of all evaluated algorithms.

ML models Accuracy (%) Precision (%) Recall (%) F1-score (%)

Weight baseline

LR 83.07 ± (0.04) 80.00 ± (0.24) 33.48 ± (0.11) 47.10 ± (0.15)

SVM 79.03 ± (0.05) 65.33 ± (0.30) 29.48 ± (0.11) 38.83 ± (0.14)

Weight follow-up

LR 72.47 ± (0.12) 77.78 ± (0.14) 87.61 ± (0.14) 80.51 ± (0.09)

SVM 74.10 ± (0.09) 76.20 ± (0.13) 91.49 ± (0.07) 82.01 ± (0.06)

Length baseline

LR 74.97 ± (0.09) 76.67 ± (0.37) 22.44 ± (0.16) 32.82 ± (0.21)

SVM 72.60 ± (0.07) 48.67 ± (0.33) 15.56 ± (0.02) 22.35 ± (0.13)

Length follow-up

LR 65.50 ± (0.08) 68.01 ± (0.08) 77.22 ± (0.12) 71.40 ± (0.06)

SVM 66.90 ± (0.08) 68.30 ± (0.08) 84.21 ± (0.12) 74.60 ± (0.05)

AUC, area under the ROC curve; LR, logistic regression; SVM, support vector machine.
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complex enough to fit the data accurately. However, the cross-
validation scores paint a different picture. The LR model’s score starts 
at 74 and increases to 85, indicating that it is improving its ability to 
generalize to unseen data. The SVM model starts at a similar score and 
slightly outperforms the LR model with a final score of 87, suggesting 
that it might be better at generalizing on this dataset. Similarly, in the 
weight follow-up dataset (Figures 4B,D), the LR model’s training score 
starts high and slightly decreases, while the cross-validation score 
increases, indicating effective learning. The SVM model’s training 
score decreases slightly more than the LR models, but its cross-
validation score improves and ends slightly higher than the LR 
model’s.

Concerning the length baseline data (Figures  5A,C), the LR 
model’s training score starts high and decreases more significantly, 
while the cross-validation score increases from 60 to 81, indicating 
effective learning. The SVM model’s training score decreases slightly, 
while its cross-validation score also rises significantly but ends slightly 
lower than the LR model’s. For the length follow-up data 
(Figures 5B,D), both models’ training scores decrease, but the SVM 
model’s decreases less. Their cross-validation scores also rise, but less 
dramatically than for the baseline data.

Overall, the SVM model generally maintains higher training 
scores, suggesting that it might be  better at fitting the data or 
potentially overfitting. However, its cross-validation scores are 

generally comparable to or slightly higher than the LR model’s, 
indicating that it might be  slightly better at generalizing. These 
findings indicate that both models are learning effectively from the 
data and are not suffering from underfitting or overfitting. The choice 
between the two models may depend on the specific requirements of 
the task, such as the importance of precision or recall.

The models were further evaluated using the ROC curve and 
precision–recall curve (PRC) parameters. ROC shows the relationship 
between the rate of true positives and false positives, while precision–
recall (PR) curve and the area under it is widely used to summarize 
the performance of machine learning classifier results, especially when 
evaluating classifiers on imbalanced datasets. This curve represents the 
tradeoff between the proportion of positively labeled examples that are 
truly positive (precision) as a function of the ratio of correctly 
classified positives (recall). The ROC and PRC curves for the different 
types of EUGR ML classification are presented in Figures  6, 
7 respectively.

For the weight-based dataset, we  observe that both models 
demonstrate comparable performance, as indicated by their respective 
AUC values. Specifically, the SVM model achieved an AUC of 80% 
with the baseline data (Figure 6A), while LR outperformed slightly 
with an AUC of 83%. In Figure 5B, the SVM model improved slightly 
to 81%, surpassing the performance of the LR model in weight 
follow-up dataset which displayed a slight decrease to 78%. This 

FIGURE 4

Comparison of the learning curves generated by the machine learning models for weight-based datasets based on the number of samples using five-
fold cross-validation. (A) Weight baseline with LR; (B) weight follow-up with LR; (C) weight baseline with SVM; (D) weight follow-up with SVM. LR, 
logistic regression; SVM, support vector machines.
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suggests that the SVM model may perform better under certain 
conditions or with certain data subsets within the weight-based 
dataset. However, given the marginal difference in performance, both 
models can be considered competent for this dataset.

Regarding the length-based dataset, the performances of the two 
models were more closely matched. In Figure 5C, the SVM model 
achieved an AUC of 76%, marginally outperforming the LR model, 
which achieved an AUC of 75%. Similar performance was observed 
in length follow-up dataset as demonstrated in Figure 5D, where the 
SVM model and the LR model achieved AUCs of 72 and 71%, 
respectively. While the SVM model displayed slightly superior 
performance in both cases, the difference is minor, suggesting that 
both models are similarly effective when applied to the length-
based dataset.

Therefore, it can be concluded that SVM outperformed LR in all 
comparison results. Comparing the baseline datasets, the ROC value 
of the weight dataset is higher than the length dataset. This trend was 
also observed for the follow-up datasets, in which weight-based 
datasets performed better than length-based datasets. When 
comparing between baseline and follow-up generated datasets, the 
latter performs better. In contrast, in length format, length baseline 
performs better than length follow-up.

After performing ROC analysis, we  next investigated the 
Precision-Recall Curve (PRC) to evaluate the performance of our ML 

models. The results are illustrated in Figure 7. When examine the 
models’ performance on the weight dataset, as illustrated in Figure 7A, 
both the SVM and LR models have identical PR scores of 61%. 
However, in weight follow-up (Figure 7B), we notice a substantial 
improvement in performance, with the SVM model attaining a PR 
score of 91%, slightly outperforming the LR model that scored 89%. 
On the basis of the weight dataset, it is clear that the SVM model 
displays marginally superior performance. Comparing the length 
dataset, as it is demonstrated in Figure 7C the LR model outperformed 
the SVM model, achieving a PR score of 63% compared to the SVM’s 
54% in length baseline. Similarly, in Figure 7D, the LR model again 
demonstrated better performance with a PR score of 77%, slightly 
higher than the SVM model’s score of 75%. From the perspective of 
the length dataset, it is evident that the LR model exhibits better 
performance than the SVM model.

Based on the performance of both models across all datasets, it 
appears that the SVM model shows a slightly better performance on 
the weight dataset, while the LR model is more proficient on the 
length dataset. However, the disparity in PR scores across the models 
is relatively small, suggesting that both models demonstrate 
comparable performance.

The confusion matrix is more extensively applied than 
classification accuracy because it provides a clearer overview of a 
model’s performance. Consider classification accuracy; there is 

FIGURE 5

Comparison of the learning curves generated by the machine learning models for length-based datasets based on the number of samples using five-
fold cross-validation. (A) Length baseline with LR; (B) length follow-up with LR; (C) length baseline with SVM; (D) length follow-up with SVM. LR, 
logistic regression; SVM, support vector machines.
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currently no way to learn the percentage of incorrect labels. 
Conversely, the confusion matrix will provide more insight into a 
classifier’s performance because it shows the correctly and incorrectly 
classified cases for all classes. To evaluate the performance of the ML 
algorithms in classifying EUGR, the confusion matrix for the binary 
classification tasks were calculated to obtain disease-wise classification 
performance of the models. The rows represent the actual class, 
whereas the columns represent the predicted class. The confusion 
matrix obtained by the machine learning models for EUGR and 
non-EUGR classification is shown in Figure 8. In the weight dataset, 
the LR model demonstrated a non-EUGR accuracy of 98% and an 
EUGR accuracy of 45% at baseline (Figure 8A). At the follow-up stage, 
the non-EUGR accuracy decreased to 59%, whereas the EUGR 
accuracy significantly increased to 94% (Figure 8B). On the other 
hand, the SVM model showed similar non-EUGR accuracy at baseline 
(98%) but slightly higher EUGR accuracy (48%) (Figure 8E). In the 
follow-up stage, the non-EUGR accuracy slightly increased to 66% 
compared to the LR model, and the EUGR accuracy reached an 
impressive 98% (Figure 8F). Thus, based on the weight dataset, the 
SVM model outperformed the LR model, particularly in terms of 
EUGR accuracy in the follow-up stage.

Turning to the length dataset, the LR model achieved a non-EUGR 
accuracy of 97% and an EUGR accuracy of 43% at baseline (Figure 8C), 
with the follow-up stage showing a decrease in non-EUGR accuracy to 
60% but an increase in EUGR accuracy to 86% (Figure  8D). In 
comparison, the SVM model displayed a higher non-EUGR accuracy 
of 98% and a slightly lower EUGR accuracy of 40% at baseline 
(Figure 8G). The follow-up stage revealed a decrease in non-EUGR 
accuracy to 58% but an increase in EUGR accuracy to 93% (Figure 8H). 
Considering these results, the SVM model’s performance is comparable 
to the LR model’s performance when using the length dataset, with a 
slight edge in EUGR accuracy in the follow-up stage.

Comparing both models across all datasets, the SVM model 
appears to have a slight edge over the LR model. While both models 
show similar non-EUGR accuracy at baseline, the SVM model 
consistently displays higher EUGR accuracy in the follow-up stage, 
regardless of the dataset used. This suggests that the SVM model may 
be  better at capturing the complexity of the data and providing 
accurate predictions over time. However, the decision between using 
SVM or LR should consider the specific requirements of the task, such 
as the relative importance of non-EUGR and EUGR accuracy and the 
potential changes in these metrics over time.

FIGURE 6

Receiver operating characteristic curves for 5-fold cross-validation. (A) Weight baseline; (B) weight follow-up; (C) length baseline; (D) length follow-up. 
AUC, area under the receiver operating characteristic curve; ROC, receiver operating characteristic curves; LR, logistic regression; SVM, support vector 
machines.
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FIGURE 7

Precision-recall curves for 5-fold cross-validation. (A) Weight baseline; (B) weight follow-up; (C) length baseline; (D) length follow-up. AP, average 
precision; LR, logistic regression; SVM, support vector machines.

FIGURE 8

Confusion matrices of the logistic regression and support vector machine models. (A) Weight baseline; (B) weight follow-up; (C) length baseline; 
(D) length follow-up; (E) weight baseline; (F) weight follow-up; (G) length baseline; (H) length follow-up with.
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4 Model trustworthy and 
interpretability

Although ML-based models hold potential for clinical adoption, 
their trustworthiness and interpretability are often disregarded. 
Recent years have seen an increasing tendency toward making ML 
models more open, with an emphasis on revealing the inner working 
of black-box algorithms via post-hoc, model-agnostic techniques to 
help the user grasp the model’s working (59–61). Accurate 
probabilistic predictions are crucial in medicine to ensure 
trustworthiness. However, the process of model calibration and the 
learning of well-calibrated probabilistic models have not been 
explored as thoroughly as discriminative ML models, which are 
designed to maximize class discrimination. Evaluating the calibration 
process is a crucial step in developing and verifying clinical prediction 
models. Therefore, it is essential to investigate the calibration of 
probabilistic models, especially in medical applications, to ensure 
reliable predictions and improve the overall quality of clinical 
decision-making. The term “calibration” refers to the degree to which 
the expected risk aligns with the actual risk (62). The calibration curve 
shows the linear relationship between the independent and dependent 
(response) variables using the least-squares method (63). The data are 
categorized into groups that are referred to as bins. The probability 
predicted by a classifier is shown along the x-axis, while the number 
of positive examples found in each bin is shown along the y-axis. The 

closer the generated calibration curves are to the standard line, the 
more the model’s predictions align with the actual class distribution 
in the dataset. In recent decades, the assessment of the calibration 
performance of risk prediction models based on ML algorithms have 
received considerable attention in the medical field (64, 65). In a 
classification task, a calibration curve plot can demonstrate the 
comparison of two machine learning models in terms of their 
calibration performance. A calibration curve shows the relationship 
between the predicted probability and the true probability of the 
positive class for a binary classification task. The calibration 
performances of the prediction methods are illustrated in Figure 9. 
The calibration slope generated with the LR model from all datasets 
fit well with the optimal curves compared to those of the SVM model. 
Calibration curves for EUGR status predictions in the follow-up 
datasets (Figures 9B,D) demonstrated favorable performance than 
baseline datasets (Figures 9A,C). The calibrated LR classifier exhibited 
a good performance, as data were generated according to the dotted 
line, and outperformed the SVM classifiers.

The cumulative gains curve is a widely used visualization method 
that examines the performance and trustworthiness of a model and 
compares the outcome with a random selection (66, 67). It displays 
the proportion of positive targets achieved by considering a specific 
percentage of the population most likely to be positive, as per the 
model’s predictions. We  also evaluated models’ trustworthy and 
reliability using cumulative gains as shown in Figure 10. In examining 

FIGURE 9

Calibration curves of models for the four datasets. (A) Weight baseline; (B) weight follow-up; (C) length baseline; (D) length follow-up. The dotted lines 
indicate the optimal probability prediction model, while the solid line represents the obtained data.
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the weight baseline dataset, the LR and SVM models demonstrate 
better predictive potential. Upon screening 20% of the population, 
approximately 70 and 60% of EUGR patients could be identified using 
the LR and SVM models, respectively (Figures  10A,C). However, 
similar to the length dataset, the performance drops in the weight 
follow-up stage where both models could identify nearly 30% of actual 

high-risk patients within the top  20% of the population 
(Figures 10B,D).

With respect to the length baseline dataset, the cumulative gains 
curve reveals that selecting the top 20% of the population, considered 
high-risk for EUGR based on the LR model’s predictions, would 
contain approximately 60% of actual high-risk EUGR cases 

FIGURE 10

Cumulative gain curves of logistic regression and support vector machine models for the four datasets. (A,C) Weight baseline; (B,D) weight follow-up; 
(E,G) length baseline; (F,H) length follow-up. Class 0: non-EUGR; class 1: EUGR. LR, logistic regression; SVM, support vector machines.
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(Figure 10E). In contrast, SVM model predictions within the same 
population proportion would capture only 45% of the actual high-risk 
cases (Figure 10G). Nevertheless, when applied to the length follow-up 
dataset, both models show a substantial decrease, identifying only 30% 
of actual high-risk cases within the top  20% of the population 
(Figures 10F,H). In summary, these results emphasize the dynamic 
nature of model performance, highlighting the importance of 
continuous model evaluation and adjustment in predictive healthcare.

While current ML-based classification systems yield good 
prediction accuracy, a significant hurdle to their broad application 
is the lack of attention given by researchers to the problem of 
model interpretability (61, 68). In addition, considerable work is 
required to address the question of how effectively models can 
be perceived by humans. To improve the interpretation of ML 
methods, this study used the state-of-the-art Shapley additive 
explanation (SHAP) technique (41), to achieve global 
interpretability of applied models. This will allow to better 

understand the overall impact of each predictor variable on the 
EUGR target outcome. The Shapley value is borrowed from the 
field of game theory (69) and serves as the foundation for the 
SHAP approach. Table 4 ranks the contributions of all features 
based on their ranking for all datasets; the features are ordered in 
terms of their importance.

As reflected in Table 4, in weight baseline dataset for both LR and 
SVM models, PIH, GA, Twin, and BWt are considered the most 
influential features. However, the LR model ranks ANC higher than 
the SVM model, whereas the SVM model ranks PPV higher than the 
LR model. On the lower end, the LR model considers mBMI, CRP, and 
Mg as less impactful, while the SVM model finds Csec, CRP, and 
mBMI to be less influential. In weight follow-up dataset, the LR model 
places high importance on Twin, BWt, PIH, and BM, while the SVM 
model ranks Csec, Twin, and BWt as top features. For weaker 
contributors, the LR model finds PPV as less impactful, while the 
SVM model ranks IMV, Mg, and CRP lower.

TABLE 4 Model interpretation using feature importance based on SHAP ranking.

Baseline Follow-up

Weight Length Weight Length

LR SVM LR SVM LR SVM LR SVM

PIH PIH PIH PIH Twin Csec BWt Twin

GA ANC BL Twin BWt Twin PIH PIH

Twin GA GA BL PIH BWt BL BWt

BWt PPV ANC BWt BM BM ANC BL

ANC BWt BWt GA Csec Sex Twin ANC

PROM PROM BM PROM Sex PIH GDM Sex

Sex Twin mBMI BM BL BL 5APGAR GDM

PPV GDM PPV GDM mBMI ANC IMV Csec

BL Sex PROM PPV GA PROM VitD PROM

BM 5APGAR Twin mBMI PROM GDM BUN PPV

Csec VitD Csec ANC MA mBMI Csec VitD

MA BL P P WBC WBC PROM 5APAGAR

P ALB Ca BUN ANC PPV WBC BUN

5APGAR BM Sex Sex IMV GA BM MA

BUN BUN BUN Mg P MA ALB ALB

WBC Mg MA VitD Hb Hb GA IMV

Ca MA ALB Cr VitD VitD Cr BM

VitD WBC VitD Ca Cr ALB MA GA

GDM P Mg MA 5APGAR P Ca Hb

IMV Cr 5APGAR IMV Ca 5APGAR Hb WBC

ALB Ca GDN WBC GDM BUN Sex mBMI

Hb mBMI IMV Csec ALB Ca CRP P

Mg Hb Hb 5APGAR CRP Cr Mg Ca

Cr IMV Cr Hb Mg CRP mBMI CRP

CRP CRP WBC ALB BUN Mg P Cr

mBMI Csec CRP CRP PPV IMV PPV Mg

BL, birth length; BWt, birth weight; GA, gestational age; BMI, body mass index; GDM, gestational diabetes mellitus; PIH, pregnancy-induced hypertension; ANC, antenatal corticosteroid; 
PROM, premature rupture of membrane; Csec, Cesarean section; 5APGAR, Apgar score at 5 min.; WBC, white blood cells; Hb, hemoglobin; CRP, C-reactive protein; BUN, blood urea 
nitrogen; Cr, creatinine; Ca, calcium; P, phosphorous; Mg, magnesium; Vit D, vitamin D; MV, mechanical ventilation; PPV, positive pressure ventilation.
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Regarding to length baseline dataset, both models rank PIH 
highly. The LR model emphasizes BL, GA, and ANC, while the SVM 
model considers Twin, BL, and BWt as top influencers. On the weaker 
side, the LR model finds PPV to be less impactful, whereas the SVM 
model ranks ALB, CRP, and Hb lower. In length follow-up dataset, for 
both models, BWt and PIH remain crucial, with the LR model also 
highlighting BL and ANC. The SVM model places more importance 
on Twin and BL. In terms of less influential features, the LR model 
ranks PPV lower, while the SVM model finds Cr, Mg, and P to be less 
impactful. In summary, the importance of features varies between the 
models and datasets. These insights can guide future feature selection 
and model refinement for EUGR prediction (Supplementary Figures S1, 
S2 for weight and length baseline dataset; Supplementary Figures S3, 
S4 for weight follow-up and length follow-up datasets).

5 Discussion

The use of AI models in the diagnosis of EUGR is gradually 
increasing. This study aimed to develop an outcome prediction model 
for infants using an explainable ML approach. We  successfully 
generated a prediction model for preterm infants with EUGR using 
data sourced from the electronic health records at CHA Bundang 
Medical Center in South Korea. Four datasets were generated based 
on the weight and length (weight baseline, weight follow-up, length 
baseline and length follow-up) and we evaluated their effectiveness for 
predicting EUGR outcomes using 27 variables based on clinical and 
laboratory factors. These variables are the most clinically common and 
readily available, thereby further proving the model’s reliability can 
be  used successfully when the baseline and follow-up datasets 
are varied.

Correlated variables are prevalent in high-dimension data. The 
correlation analysis was performed to provide initial insights into the 
relationships between the predictor variables and the outcome 
variables (weight-based and length-based) across all datasets (baseline 
and follow-up). The correlation analysis enables a comparison 
between the baseline and follow-up datasets, allowing us to observe 
how the relationships between the predictor variables and outcomes 
change over time and ensured the reliability of our model. 
We investigated the potential correlations between predictor variables 
and the target outcome. Our analysis revealed no significant 
collinearity within our dataset, suggesting that the correlations 
between the variables were mostly in line with expectations (Figure 2). 
PIH exhibited the most substantial correlation with the target 
outcome. Other variables, such as Cr, Hb, GA, ALB, MA, and BMR, 
were among the top 10 most positively correlated with the target in 
the baseline datasets. Conversely, when we examined the ten strongest 
negative correlations, we found that BWt, WBC, PROM, BL, VitD, Ca, 
and CRP were consistently featured across the follow-up datasets 
(Figure 3). In the medical diagnosis, reliable and accurate predictions 
are crucial, making the choice of machine learning model and its 
performance a critical aspect of any investigation. As presented in 
Table 3, we compared the performance of two widely used algorithms 
across four distinct datasets. When analyzing the baseline datasets for 
both weight and length, LR outperformed SVM in terms of accuracy, 
achieving 83.07 and 74.97%, respectively. This suggests that when 
dealing with initial baseline data, LR may provide more reliable 
predictions. However, this trend reversed in the follow-up datasets, 

where SVM demonstrated superior performance, indicating its 
potential for more accurate predictions in a time-series or sequential 
data context. Furthermore, our results emphasize that the nature of 
the data itself, whether it is weight or length, can also influence the 
model’s performance. For both the baseline and follow-up datasets, 
weight-based classification models generally outperformed length-
based models for the prediction and classification of EUGR (Table 3). 
Our results suggest that weight-based classification, using either the 
baseline or follow-up approach, can serve as a reliable outcome 
indicator for disease diagnosis. This improved performance of weight-
based datasets implies that using weight as the primary outcome 
variable may lead to more accurate and reliable classification of 
EUGR. It is important to note that our findings do not necessarily 
establish weight as the definitive benchmark for disease diagnosis. 
Instead, the results suggest that, in the context of our study and the 
datasets we analyzed, weight-based classification models performed 
better in identifying EUGR.

Precision and recall, key metrics in medical diagnosis, also played 
a significant role in evaluating model performance. These metrics 
provide a view of the model’s capability to identify true positive cases 
(precision) and detect all positive cases, including true and false 
positives (recall). In the baseline datasets, LR demonstrated superior 
precision and recall for both weight and length, suggesting its ability 
to minimize false positives and false negatives. However, in the 
follow-up datasets, the situation was more complex, with the SVM 
model demonstrating better recall in both weight and length data, 
implying its potential strength in identifying more true positive cases 
over time (Table  3). Additionally, we  evaluated the F1-Score, a 
harmonic means of precision and recall, providing a balanced measure 
of the model’s performance. While LR outperformed SVM in the 
baseline datasets, the trend was not as clear in the follow-up datasets. 
We  observed higher F1-scores for SVM in weight data, but the 
reported F1-Score for SVM in length data seemed unusually low, 
possibly indicating a reporting error.

Learning curves serve as valuable tools to measure a model’s 
performance during the training process, assessing whether the model 
is underfitting or overfitting the data. In our study, we observed the 
performance of LR and SVM models across two datasets, weight 
(Figure 4) and length (Figure 5). The training scores of both models 
for all datasets demonstrated a gradual decrease as the number of 
samples increased, indicating the complexity and adaptability of these 
models to fit the data accurately. While both models showed effective 
learning without signs of underfitting or overfitting, the SVM model 
consistently exhibited a slight advantage in generalizing from the 
training data. However, its cross-validation scores were typically 
comparable to or slightly higher than the LR model’s, suggesting it 
might be slightly better at generalizing.

Examining the ROC curve analysis, the SVM model displayed 
marginally superior performance, particularly with the follow-up 
data. However, the difference was minor, suggesting both models are 
effectively applicable to this dataset. Weight-based datasets performing 
better than length-based ones. Follow-up datasets generally 
outperformed baseline datasets, except in length where the baseline 
was superior. Precision-Recall curve analysis revealed that, in the 
context of the weight dataset, the SVM model displayed slightly 
superior performance, particularly with the follow-up data. In 
contrast, for the length dataset, the LR model outperformed the SVM 
model. Analyzing the confusion matrices (Figure  8) both models 
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demonstrate high non-EUGR accuracy at baseline, but SVM 
consistently shows higher EUGR accuracy during follow-up, 
indicating its superior ability to capture the complexity of changes 
over time. This suggests that SVM may be more adept at handling 
complex, time-dependent clinical data.

When comparing with other related studies, Han et al. (31) achieved 
an AUROC of 74%, Leigh et  al. (32) achieved a receiver operating 
characteristics performance of 92.10%, Wu et  al. (33) achieved an 
AUROC of 88.10%, and Podda et al. (34) achieved an accuracy of 91.49%, 
our study achieved an AUC of 83 and 78% for the weight-based dataset 
using LR and SVM, respectively. For the length-based dataset, our study 
achieved an AUC of 75 and 71% using LR and SVM, respectively. While 
these results show comparable or slightly lower AUC performance than 
the related studies. However, it is important to consider the specific tasks 
and datasets used in each study, which can affect the performance of the 
machine learning models. Additionally, our study may have additional 
strengths in terms of the use of calibration plots, cumulative curves, and 
global interpretability, as well as correlation analysis. The use of calibration 
plots and cumulative curves can help evaluate the calibration and 
discrimination performance of a machine learning model, respectively, 
and provide insights into the model’s strengths and weaknesses. Similarly, 
global interpretability and correlation analysis can help identify the most 
important features and relationships between them, providing a better 
understanding of the underlying mechanisms driving the model’s 
predictions. These additional analyses can add value to the overall 
evaluation of the machine learning models and provide a more 
comprehensive assessment of their performance and potential 
clinical applicability.

Trustworthy ML has gained considerable interest in recent years, with 
the development of model explainability (70). This work aimed to 
enhance the interpretability of ML models by utilizing post-hoc 
calibration, cumulative gains, and global interpretation techniques, such 
as probability calibration, cumulative gain, and SHAP. However, few 
studies have investigated models’ calibration and cumulative gain analysis. 
These techniques effectively tackle uncertainty and explainability. 
Calibration and cumulative gain analysis are crucial tools for evaluating 
the performance of predictive models, particularly in medical applications. 
A well-calibrated model will have predicted probabilities that are close to 
the actual probabilities, which is important for ensuring reliable 
predictions and informed clinical decision-making (71). The plot is useful 
in making informed decisions about selecting the best model for medical 
diagnosis where accurate probability estimates are crucial. Cumulative 
gain analysis, on the other hand, evaluates the effectiveness of a model by 
comparing the cumulative gain of the model against a baseline model 
widely used in many fields (72, 73). By incorporating calibration and 
cumulative gain analysis into the evaluation of predictive models, we can 
ensure that the models are reliable, effective, and practical for use in 
clinical settings. The calibration curves (Figure 9) reveal the reliability of 
the LR and SVM models’ probability predictions. For all datasets, the LR 
model’s predictions align more closely with the optimal curve, indicating 
superior calibration. Notably, both models demonstrate better calibration 
performance with follow-up datasets, suggesting improved reliability over 
time. To gain a more profound understanding, cumulative gain analysis 
helped shed light on the models’ trustworthiness (Figure 10). In the 
cumulative gains analysis (Figure 10), the findings imply that while both 
models can identify a significant proportion of high-risk EUGR cases, the 
LR model’s performance is generally more reliable across different datasets 
and over time. However, the observed drop in performance during the 

follow-up stage underscores the importance of continuous model 
evaluation and adjustment. Furthermore, the SVM model’s weaker 
performance suggests potential areas for model improvement, perhaps 
through hyperparameter tuning or additional feature engineering. In 
summary, our study employed calibration and cumulative gain analysis 
to augment the trustworthiness and interpretability of the model’s 
predictions across different datasets. This approach confirms that the 
predicted probabilities align with observed outcomes, thus providing a 
robust basis for making informed, data-driven decisions derived from the 
model’s outputs. Given that explicitly describing a black-box model 
remains a niche (74), our study employed a global interpretable ML 
models to construct a decision support system, especially for making 
critical medical decisions. Although preterm infant prediction models 
that utilize ML have been previously reported (32, 34, 75), longitudinal 
studies involving the comparative evaluation of ML methods in an 
interpretable approach have been limited. Due to dynamic nature of 
infant growth, infants undergo rapid growth and development within 
their first few weeks of life. As their weight and length change significantly 
during this period, it is crucial to consider these changes in terms of 
features contribution to accurately classify and predict their growth 
patterns. We hypothesized that the importance of specific features might 
change over time as infants grow and develop. We believe that analyzing 
these pattern changes longitudinally will enable us to identify the most 
influential variables and ultimately provide a more comprehensive 
understanding of the data. Thus, we decided to identify which variables 
contribute the most to the classification of infant growth at each stage 
based on different outcome. Tracking changes in variable contribution 
from week 1 (baseline) to week 4 (follow-up) provides a longitudinal 
perspective, which allows for the observation of trends and patterns over 
time. This can help identify specific patterns and trends that may differ 
between populations or individual cases and lead to more effective 
interventions to optimize infant health and development and factors that 
influence infant growth, as it accounts for the dynamic nature of infant 
growth. In the process of developing ML models for predicting 
extrauterine growth restriction, both at the baseline and follow-up stages, 
certain variables consistently emerged as highly influential in 
the classification.

As presented in Figure 11, in the baseline datasets, regardless of 
the model used (LR or SVM), Pregnancy-Induced Hypertension 
(PIH), Gestational Age (GA), Twin, Birth Weight (BWt), Antenatal 
Corticosteroid (ANC), Premature Rupture of Membrane (PROM), 
Sex, Birth Length (BL), Body Mass Index (BMI), and Positive Pressure 
Ventilation (PPV) were identified as the top ten influential variables. 
These variables provide a comprehensive insight into the various 
elements that potentially influence EUGR at birth. During the 
follow-up stage, the top ten influential variables included Twin, Birth 
Weight (BWt), Pregnancy-Induced Hypertension (PIH), Sex, Birth 
Length (BL), Body Mass Index (BMI), Premature Rupture of 
Membrane (PROM), Gestational Age (GA), Antenatal Corticosteroid 
(ANC), and Cesarean Section (Csec). This shift in variable importance, 
including the appearance of Cesarean Section in the top ten, reflects 
the evolving nature of growth restriction dynamics, indicating the 
potential impact of postnatal medical and care-related factors on 
EUGR progression.

Interestingly, several variables consistently ranked high in both the 
baseline and follow-up stages. These included pregnancy-induced 
hypertension, gestational age, twin, birth weight, antenatal corticosteroid, 
premature rupture of membrane, sex, and birth length. Their persistent 
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significance across different stages underscores their fundamental role in 
the occurrence and development of EUGR. These findings emphasize the 
importance of a holistic approach when assessing the risk of 
EUGR. Multiple factors, spanning from pregnancy complications to 
neonatal characteristics and medical interventions, contribute to the risk 
and progression of EUGR. This insight can guide healthcare professionals 
to develop effective prevention and intervention strategies. However, 
these results should be  interpreted with consideration of the specific 
dataset and model used, as the importance of each variable can vary in 
different contexts. We also compared the outcomes of feature importance 
analysis and correlation analysis to get a better grasp of the variables at 
play. This method not only highlighted the variables most influential to 
the model’s predictions but also showed how these variables relate to the 
target outcome in terms of direction and strength. This dual approach 
helps uncover intricate details in the data that could be overlooked if only 
one method was used.

From the analysis of SHAP feature importance and correlation 
analysis of four different datasets, pregnancy-induced hypertension was 
consistently found in the top ten features of importance in all models, as 
well as being in the top five positively correlated features across the four 
datasets. This indicates PIH is a key feature across all models and datasets, 
having a significant positive association with the target variable. Birth 
Weight and birth length are important features across all models and are 
also among the top five negatively correlated features in all datasets. This 
suggests that these features have a significant inverse relationship with the 
target variable, implying that as birth weight or length increases, the target 
variable decreases. Gestational age appeared in the top ten of the SHAP 
analysis for the weight baseline and was also in the top five positively 
correlated features for the same dataset. However, in the weight follow-up 
dataset, it was negatively correlated, suggesting that the relationship of GA 
with the target variable may vary over time. Twin status was found to 
be important in the weight follow-up dataset and was also positively 
correlated in the same dataset, indicating a significant positive relationship 
with the target variable in the follow-up period. Maternal body mass was 
found to be important and positively correlated in the weight follow-up 
dataset. However, in the length baseline dataset, it was negatively 
correlated, suggesting a complex relationship with the target variable that 
may vary depending on the specific context of the study.

PIH has been consistently ranked among the top ten features in all 
models, indicating its significant influence on the prediction models. The 
impact of PIH on the development of EUGR can be associated with the 
fact that hypertension during pregnancy can lead to restricted fetal 

growth (76, 77). This is a well-established clinical fact, and our models 
reflect this correlation, explaining the high SHAP values of PIH. Birth 
weight and birth length also were significant across all models. It is 
clinically intuitive since higher birth weight and length reduce the 
likelihood of growth restriction. Therefore, these factors’ high SHAP 
values emphasize their importance in predicting growth outcomes. In the 
weight baseline dataset, GA displayed a positive correlation, suggesting 
that lower gestational age at birth, a common risk factor for EUGR, is 
linked with growth restriction (78, 79). However, in the weight follow-up 
dataset, GA was negatively correlated. This might indicate a “catch-up” 
growth phenomenon, where preterm infants born at lower GA can 
demonstrate accelerated growth postnatally when provided with adequate 
nutrition and care, thereby lowering their risk of EUGR at later stages. 
Twin status was significant in the weight follow-up dataset and also 
displayed a positive correlation, reflecting the known increased risk of 
growth restriction in multiple pregnancies (80). Twins often face 
competition for nutrients in utero, leading to lower birth weights 
compared to singletons. This might result in persistent growth disparities 
in the postnatal period, even with adequate nutrition, hence the increased 
SHAP value for twin status in the follow-up dataset. Maternal body mass: 
The relationship between maternal body mass is associated with neonatal 
outcomes, which can be attributed to the multifactorial influences on fetal 
growth (81, 82). While higher maternal body mass often suggests better 
nutritional status, it can also be associated with metabolic conditions like 
gestational diabetes, which could impair fetal growth. This may explain 
the contrasting correlations in the weight follow-up and length 
baseline datasets.

The comparison between the results of feature importance and 
correlation analysis has demonstrated that feature importance and 
correlation are interconnected, and there are key variables, such as 
pregnancy-induced hypertension, birth weight, and birth length, that 
consistently show up as significant across different models and 
datasets. However, the relationship of some features with the target 
variable can change over time or depending on the dataset, as 
observed with gestational age and maternal body mass. Therefore, it’s 
essential to consider the context and time point when interpreting 
these results. This analysis has provided valuable insights into the most 
influential features affecting the target variable, offering a deeper 
understanding of the model’s behavior and potentially informing 
further research or interventions in this area.

The designed model in this study can be applied to clinical practice 
in multiple ways. First, it serves as a tool for early detection and 

FIGURE 11

Consistency in feature importance over time.
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automated classification of short-term growth outcomes in preterm 
infants. By providing this information, clinicians can monitor and 
assess the growth progress of preterm infants more effectively and 
promptly, thus facilitating timely and personalized interventions. 
Second, the model’s ability to assess and rank the importance of various 
features using SHAP values can help healthcare professionals 
understand which factors contribute most significantly to the predicted 
outcomes. This information can be  invaluable in devising targeted 
treatment plans and preventive measures. Furthermore, the model can 
be integrated into a clinical decision support system (CDSS), providing 
healthcare professionals with valuable insights and recommendations 
based on the individual’s data. Through the CDSS, clinicians can 
receive risk predictions and potential growth trajectories for each 
infant, which can inform their decision-making process. Finally, our 
machine learning models can be continuously updated and refined as 
new patient data become available, allowing the predictive performance 
to improve over time. This adaptability can make it a powerful tool in 
managing and monitoring the growth of preterm infants.

As added merit of this study is that that our methodology 
diverges from the traditional longitudinal analysis for following 
reasons; (a) by separately analyzing baseline and follow-up datasets, 
we could meticulously evaluate and fine-tune our models for each 
specific time point. This allowed us to avoid potential biases or over-
generalizations that might occur in joint analyses, (b) Enhanced 
interpretability by focusing on the shift in variable importance over 
time, our approach makes it easier for clinicians and researchers to 
grasp the changing dynamics of pediatric growth and EUGR risk 
factors. This is crucial for real-world applications where 
understanding the ‘why’ behind predictions is as important as the 
predictions themselves, (c) Diversity of data with the use of three 
distinct datasets ensured a broad spectrum of data, capturing the 
intricacies and nuances of infant growth over a period. This adds 
depth and richness to our analysis (that cannon be found in other 
studies), providing a more holistic view of pediatric growth 
trajectories, (d) Opportunity for targeted interventions, recognizing 
the changing significance of variables over time provides valuable 
insights for timely and specific interventions. For instance, a variable 
that’s highly significant in week 1 but not in week 4 might suggest 
early-stage intervention strategies, (e) Foundation for future studies 
by pioneering this unique approach, our study can serve as a reference 
point for future research. Researchers can further explore the 
implications of changing variable significance over time, potentially 
unveiling novel insights into pediatric care.

While the results of this study are promising, there are several 
limitations and weaknesses that should be considered. Firstly, the study 
was conducted using data from a single medical center in South Korea, 
which may not be  representative of other populations or healthcare 
settings. Therefore, caution should be  taken when generalizing the 
findings to other contexts. Secondly, the study only included infants with 
a gestational age of less than 32 weeks, which limits the generalizability of 
the results to preterm infants with a gestational age greater than 32 weeks. 
Thirdly, the study did not include data on certain variables that may 
impact infant growth, such as feeding patterns and nutrient intake, which 
may limit the accuracy of the models. Fourthly, Considering the 
characteristics of our dataset and its relatively small size, it was crucial for 
us to carefully select a model to avoid overfitting. We  conducted 
preliminary tests using advanced models like XGBoost, which raised 
concerns regarding this issue. Specifically, when analyzing the importance 

of features in our baseline (Supplementary Figure S5) and follow-up 
(Supplementary Figure S6) datasets using XGBoost, we found that more 
than one-third of variables had no impact on the model’s decision-making 
by presenting 0 values in their feature ranking. These results raised doubts 
about the reliability and meaningful interpretability of the model’s 
decisions, especially when a significant portion of features appeared to 
have no influence. These findings suggested that despite its seemingly 
high accuracy, the model might not truly reflect the underlying structure 
of the data and could provide misleading interpretations. Guided by these 
observations and our commitment to providing consistent and 
trustworthy insights, we  made a deliberate choice to avoid complex 
models like boosting and deep learning. Instead, we opted for simpler yet 
reliable models such as SVM, and LR. While this approach may slightly 
increase computational complexity, it reflects our priority of emphasizing 
robust interpretability over mere accuracy.

Overall, while the study provides valuable insights into the use of 
machine learning for predicting EUGR in preterm infants, further 
research is needed to validate these findings in diverse populations 
and healthcare settings and to address the limitations of the study. The 
strengths of this study include the generation of four datasets and our 
experimental results demonstrating that all datasets can effectively 
predict and differentiate cases of EUGR and non-EUGR. Furthermore, 
the weight-based datasets provide higher prediction performance than 
length-based datasets, and the follow-up datasets outperformed the 
baseline datasets as they exhibited greater differentiation abilities.

6 Conclusion

We presented a workflow to extend ML models to EUGR 
classification and achieved high accuracy for two-scheme classification 
across four datasets. We  developed and validated interpretable ML 
predictive models for EUGR classification from prospective longitudinal 
clinical data. In general, ML tools have the potential to aid in the early 
diagnosis and treatment of infants with inadequate growth. The dynamic 
nature of infant growth and the critical role of tracking changes in weight 
and length over time necessitate a holistic approach when assessing the 
risk of EUGR. Monitoring shifts in variable contribution from week 1 
(baseline) to week 4 (follow-up) offers a longitudinal perspective, allowing 
the observation of trends and patterns over time, thus providing a more 
comprehensive understanding of the data. These findings carry important 
implications for the development of effective prevention and intervention 
strategies for infants at risk of inadequate growth. The application of our 
machine learning model to clinical practice can serve as a potent tool for 
the early detection and classification of growth outcomes in preterm 
infants, enabling more effective monitoring and facilitating timely 
intervention. The use of global interpretation further aids clinicians by 
highlighting crucial contributing factors to the predicted outcomes, 
thereby helping in devising targeted treatment plans. The possibility of 
integrating these models into a clinical decision support system presents 
an opportunity for personalized and dynamic care, providing healthcare 
professionals with valuable insights and recommendations. However, the 
significance of specific variables may fluctuate depending on the dataset 
and model used, underscoring the necessity for careful interpretation of 
these results. Overall, this study exhibits the potential of ML tools to aid 
in the early diagnosis and treatment of infants with inadequate growth, 
offering valuable insights for healthcare professionals aiming to develop 
efficacious prevention and intervention strategies.
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SHAP feature importance measured as the mean absolute Shapley values for 
weight baseline dataset. (A) Logistic regression (B) support vector machine.

SUPPLEMENTARY FIGURE S2

SHAP feature importance measured as the mean absolute Shapley values for 
length baseline dataset. (A) Logistic regression (B) support vector machine.
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SHAP feature importance measured as the mean absolute Shapley values for 
weight follow-up dataset. (A) Logistic regression (B) support vector machine.
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SHAP feature importance measured as the mean absolute Shapley values for 
length follow-up dataset. (A) Logistic regression (B) support vector machine.

SUPPLEMENTARY FIGURE S5

SHAP feature importance measured as the mean absolute Shapley values 
with XGBoost model in baseline datasets. (A) Weight baseline dataset 
(B) length baseline dataset

SUPPLEMENTARY FIGURE S6

SHAP feature importance measured as the mean absolute Shapley values 
with XGBoost model in follow-up datasets. (A) Weight follow-up dataset 
(B) length follow-up dataset.
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