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Introduction: Glioblastoma is the most common and malignant primary brain 
tumour with median survival of 14.6 months. Personalised medicine aims to 
improve survival by targeting individualised patient characteristics. However, a 
major limitation has been application of targeted therapies in a non-personalised 
manner without biomarker enrichment. This has risked therapies being discounted 
without fair and rigorous evaluation. The objective was therefore to synthesise the 
current evidence on survival efficacy of personalised therapies in glioblastoma.

Methods: Studies reporting a survival outcome in human adults with supratentorial 
glioblastoma were eligible. PRISMA guidelines were followed. MEDLINE, Embase, 
Scopus, Web of Science and the Cochrane Library were searched to 5th May 
2022. Clinicaltrials.gov was searched to 25th May 2022. Reference lists were 
hand-searched. Duplicate title/abstract screening, data extraction and risk of bias 
assessments were conducted. A quantitative synthesis is presented.

Results: A total of 102 trials were included: 16 were randomised and 41 studied newly 
diagnosed patients. Of 5,527 included patients, 59.4% were male and mean age 
was 53.7 years. More than 20 types of personalised therapy were included: targeted 
molecular therapies were the most studied (33.3%, 34/102), followed by autologous 
dendritic cell vaccines (32.4%, 33/102) and autologous tumour vaccines (10.8%, 11/102). 
There was no consistent evidence for survival efficacy of any personalised therapy.

Conclusion: Personalised glioblastoma therapies remain of unproven survival 
benefit. Evidence is inconsistent with high risk of bias. Nonetheless, encouraging 
results in some trials provide reason for optimism. Future focus should address 
target-enriched trials, combination therapies, longitudinal biomarker monitoring 
and standardised reporting.
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Introduction

Glioblastoma is the most common and malignant primary brain tumour (1, 2). It accounts for 
48% of all primary central nervous system (CNS) cancers, with estimated annual incidence and 
prevalence of 3.2 and 9.2 per 100,000 population in North America (3). Incidence is 1.6 times higher 
in males and greater than 2 times higher in Caucasians than in Black and Asian populations (2, 4).
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The nomenclature of CNS tumours is rapidly evolving. The 2021 
WHO classification characterised all glioblastoma as IDH wild type, 
with IDH mutant glioblastoma eliminated as a term and classified 
within IDH mutant astrocytoma (5). Nonetheless, aetiology remains 
unknown, with ionizing radiation the only proven environmental risk 
factor (6, 7). With the exception of hereditary tumour syndromes (8), 
glioblastoma appears sporadic with no proven genetic 
predisposition (2, 9).

Standard therapy is maximal safe surgical resection (10, 11), 
adjuvant radiotherapy and temozolomide (TMZ) chemotherapy, 
maintenance TMZ and, in some countries, electromagnetic tumour 
treating fields (12–14). Despite the economic burden of current 
therapy often amassing hundreds of thousands of US dollars (15), 
glioblastoma cannot be cured; the disease is rapidly and uniformly 
fatal with a median on-treatment overall survival of 14.6 months and 
a 5-year survival rate of 5% (16, 17). With a prognosis that has not 
improved in the past 3 decades and an average number of life years 
lost, that at 20.1 years, is the highest of any cancer, therapeutic 
advances are gravely needed (2, 18).

A surgical cure appears unattainable due to the highly infiltrative 
nature of disease, spreading far beyond intraoperative and radiological 
margins(Figure 1A) (19, 20). Nonetheless, a promising approach lies 
in personalised medicine (21). This encompasses a paradigm shift 
from disease-centric therapeutics that overlook inter-patient variation 
(22), towards individualised and precise targeting of unique patient 
characteristics (Figure 1B).

Glioblastoma appears particularly suited to biomarker-driven 
personalised genomic medicine. It was the first cancer to undergo 
comprehensive genomic analysis in the Cancer Genome Atlas project 
(23) and characterisation of variants in genes and pathways has rapidly 
accrued (24–26). Furthermore, glioblastoma demonstrates high inter- 
and intra-tumour spatial and temporal genomic heterogeneity (27–
29), predicting targeted combination therapies may have higher 
efficacy than indiscriminate single agents. For example, mutually 
exclusive EGFR and PDGFRA oncogene amplification in intermingled 
subclones of glioblastoma cells (30) requires simultaneous inhibition 
of both for pathway inhibition in vitro (31). Moreover, the dynamic 
nature of genomic heterogeneity appears to fuel recurrence and 
resistance; therapy drives clonal evolution secondary to novel 
mutational events and selection of resistant subclones (32). 
Longitudinal biomarker monitoring may facilitate dynamic 
adjustment of personalised therapy (Figure 1C), with current focus on 
non-invasive methods (33, 34).

An extensive number of targets for personalised glioblastoma 
medicine have been identified. For example, variants disrupting 
receptor tyrosine kinase (RTK) pathways have been characterised, 
including amplification and/or mutation in EGFR, KIT, PDGFRA, 
FGFR1, FGFR3, and MET (28, 35). Variants have also been described 
in the PI3K/Akt/mTOR and MAPK signalling pathways, including in 
PTEN, PIK3CA, NF1, and BRAF (36). In addition, variants in cycle 
control genes, such as MDM2 and TP53 in the p53 pathway 
(Figure 1D) and CDK4, CDK6 and RB1 in the Rb pathway have been 
identified (28, 37). Despite this extensive genomic characterisation, 
the functional, biological and clinical relevance of the majority of 
variants is currently poorly characterised (20), making target 
prioritisation a major challenge (38, 39).

Furthermore, several vaccine-based personalised approaches have 
been explored (40). Vaccines stimulate tumour-specific immune 

responses to injected antigens, aiming to overcome some of the unique 
challenges of glioblastoma, including an immunosuppressive tumour 
microenvironment, low mutational burden and a relatively 
immunologically isolated location within the CNS (41, 42). In 
addition, clinical trials of non-vaccine immunotherapies are also 
ongoing, including immune checkpoint inhibitors and chimeric-
antigen receptor (CAR) T cell therapies (41).

Despite conceptual rationale and pre-clinical data, clinical 
trials have so far been unable to demonstrate survival efficacy for 
most targeted glioblastoma therapies (20). However, most trials of 
targeted therapies have not been personalised due to lacking 
biomarker enrichment. For example, whilst 20–30% of 
glioblastoma is estimated to express EGFRvIII (20, 35), any efficacy 
signal from patients expressing the variant may be lost in a trial in 
which most patients would not be expected to express this target. 
Furthermore, nearly all trials have studied single agents, 
overlooking the redundancy within molecular pathways. Given the 
substantial need for interventions that improve glioblastoma 
survival, personalised targeted therapies should be rigorously and 
fairly evaluated before being discounted.

The aim of this quantitative systematic review of effectiveness was 
therefore to synthesise the current evidence on survival efficacy of 
personalised therapeutic approaches in glioblastoma. The objective 
was to evaluate past approaches and identify possible future directions.

Methods

Study design

A systematic review was conducted with reference to the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) 2020 checklists (Appendix F) (43, 44).

Eligibility criteria

Inclusion criteria

 • Adult ≥ 18 years;
 • Human study;
 • English language;
 • Supratentorial glioblastoma population, including extraction of 

glioblastoma-specific data from a broader cohort;
 • Any personalised therapy including genomic, transcriptomic, 

proteomic and vaccines;
 • Clinical trial or observational study;
 • Survival outcome.

Exclusion criteria

 • Review or meta-analysis;
 • Case report;
 • Letter;
 • Editorial;
 • Opinion article;
 • Correction.
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Information sources

MEDLINE, Embase, Web of Science, Scopus and the Cochrane 
Library were searched from inception to 5th May 2022. MEDLINE 
and Embase searches were performed using the Ovid platform (Ovid 
Technologies, New York, NY, United States). ClinicalTrials.gov was 
searched on 25th May 2022; references lists of included studies and 
related review articles were hand searched for additional studies.

Search strategy

Scoping searches were performed to refine the review question. 
Final search strategies (Appendix A) were developed and piloted using 
an iterative process. To maximise sensitivity, no automated search 
limits were applied. Scottish Intercollegiate Guidelines Network 
(SIGN) randomised controlled trial (RCT) and observational study 
search filters were included in the MEDLINE and Embase searches 

(45). Cochrane RCT search filters were utilised in the Web of Science 
and Scopus searches (46); the key words from the SIGN MEDLINE 
observational study filter were used to capture observational studies 
in Web of Science and Scopus because observational study filters do 
not exist for these databases. Search sensitivity was evaluated using a 
list of 8 papers known to meet inclusion criteria: all papers were 
successfully captured.

Selection process

De-duplication of search results was completed in EndNote 
(Version 20.3.0.17787, Clarivate, London, United Kingdom) (47). Title 
and abstract screening were completed using Rayyan (Rayyan Systems 
Inc., Cambridge, MA, United States). All records were screened in 
duplicate by 2 blinded reviewers (ODM and JB/MEK/CPS/HB/FB); a 
pilot of 100 records were screened by all reviewers to ensure 
concordance. On screening completion, 146 conflicts from 6,738 

A B
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FIGURE 1

(A) Glioblastoma presents as a space occupying tumour within the central nervous system, most commonly occurring within the supratentorial region. 
(B) Personalised medicine aims to tailor therapeutics to individual patients to maximise efficacy: numerous genomic variants have been identified as 
potential targets in glioblastoma. (C) Molecular targets in malignant glioblastoma cells evolve over time in response to selection pressures, such as 
exposure to therapies. Non-invasive liquid biopsy holds significant potential as a facilitator of personalised therapy; longitudinal monitoring of tumour 
biomarkers may permit dynamic optimisation of targeted therapies. (D) The p53 pathway is one of the key cellular signalling pathways in which variants 
have been identified in malignant glioblastoma cells, including in MDM2 and TP53. The redundancy seen within and between cellular pathways likely 
contributes to therapeutic failure of single agents. Figure created using BioRender.com.
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screening decisions were resolved by discussion. Full-text screening 
was completed in duplicate (ODM and JB/CPS/MEK).

Data collection

Manual data extraction was completed in duplicate (ODM and JB/
CPS/MEK) in Microsoft Excel (Version 16.63, Microsoft 365) using a 
piloted extraction form.

Data items

Data were sought for any survival outcome. Survival is typically 
measured as progression-free survival (PFS) and overall survival (OS). 
PFS is defined as the length of time from randomisation or initiation 
of treatment to disease progression or death; OS is the length of time 
from diagnosis or randomisation or initiation of treatment until death 
(48, 49). Participant and study characteristics for each included study 
were also sought (Appendix C).

Risk of bias assessment

Risk of bias of included studies was assessed in duplicate (ODM 
and MEK/JB/CP) using the Joanna Briggs Institute critical appraisal 
tools checklists (50).

Synthesis methods

Due to the heterogeneity in inclusion criteria, baseline 
characteristics and interventions of included studies, meta-analysis 
was not possible. A qualitative synthesis without meta-analysis 
(SWiM) (51) was therefore conducted. To facilitate synthesis, survival 
in individual studies was scored on a 4-point scale: associated with 
survival benefit, appears beneficial, appears unbeneficial and 
associated with no survival benefit. Only studies reporting an 
appropriate statistical test comparing survival between an intervention 
group and a control group were scored as associated with benefit or 
no benefit. Where no appropriate statistical test was performed, a 
score of appears beneficial or appears unbeneficial was assigned with 
reference to established survival data for standard of care therapy (12).

Certainty assessment

Confidence in the body of evidence was assessed using the 
Grading of Recommendations, Assessment, Development and 
Evaluations (GRADE) framework (52).

Results

Study selection

A total of 11,218 records were identified from database searching; 
102 studies were included in the review (Figure 2).

Study characteristics

All included studies were interventional, of which 15.7% (16/102) 
were randomised trials, 84.3% (86/102) non-randomised trials and 
84.3% (86/102) phase I, phase I/II or phase II trials (Figure 3A). Trials 
were conducted in 20 countries, with 7 international trials (Figure 4). 
Newly diagnosed patients and patients with recurrent disease were 
each studied by 40.2% (41/102) of trials (Figure 3B). Seventy-nine 
trials exclusively studied glioblastoma; 23 trials included glioblastoma 
within broader cohorts (Supplementary Table 1).

Risk of bias

Randomisation, allocation concealment and intention to treat 
analysis were poorly reported for randomised trials (Appendix D). For 
non-randomised trials, the similarity of comparison groups was not 
always clear, and it was common for studies to lack a control group.

Patient characteristics

A total of 5,527 patients were included (Supplementary Table 2). 
Ten trials included greater than 100 patients; the mean number of 
patients per trial was 54. A minority of trials (37.3%, 38/102) included 
a control group. The mean age of patients included in all trials was 
53.7 years and mean Karnofsky Performance Status was 82%. A mean 
of 59.4% of patients were male. Ethnicity was reported by 9.8% of 
trials (10/102); a mean of 88.1% of patients were of white ethnicity. A 
mean of 62.2% of patients had undergone complete surgical resection 
before personalised therapy; 34.9% had MGMT promoter methylated 
tumours. Time from diagnosis to personalised therapy ranged from 
10 days to greater than 1 year. The mean reported objective response 
rate was 18.9%.

Survival following personalised therapy

More than 20 types of personalised therapy were studied 
(Figure 3C; Supplementary Table 3). Targeted molecular therapies 
were the most studied (33.3%, 34/102) followed by autologous 
dendritic cell vaccines (32.4%, 33/102) and autologous tumour 
vaccines (10.8%, 11/102). Reporting of prior and concurrent therapies 
was inconsistent; all patients had completed at least surgical resection 
and radiotherapy, with most also receiving concurrent 
temozolomide chemotherapy.

Targeted molecular therapies

Targets included the epidermal growth factor receptor (EGFR), 
particularly the EGFRvIII variant, vascular endothelial growth factor 
receptor (VEGF), MET-kinase, cyclin-dependent kinases 4 and 6 
(CDK4/6), phosphatidylinositol 3-kinase (PI3K), and programmed 
cell death protein 1 (PD1).

The EGFRvIII peptide vaccine rindopepimut was the most studied 
targeted molecular therapy, including 2 randomised and 4 
non-randomised trials. Weller et al. (53) conducted a double-blind, 
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placebo-controlled trial of 745 newly diagnosed patients and found 
no difference in PFS or OS between treated patients and controls in 
either ITT analysis or analysis of only patients with minimal residual 
disease after chemotherapy and radiotherapy. A subsequent double-
blind, placebo-controlled, randomised phase II trial of rindopepimut 
in combination with the anti-VEGF monoclonal antibody 
bevacizumab in 73 patients with recurrent disease demonstrated a 
survival advantage in the treated group (54). In addition, rindopepimut 
was associated with a survival benefit (55, 56) or appeared beneficial 
(57, 58) in 4 non-randomised trials studying a total of 134 patients.

There were 2 randomised and 3 non-randomised trials of the 
EGFR monoclonal antibody-drug conjugate Depatuxizumab 
mafodotin. A randomised double-blind placebo-controlled phase III 
trial of 639 newly diagnosed patients reported no survival difference 
between treated and control patients (59); a randomised open-label 
phase II trial of 260 patients with recurrent disease found prolonged 
survival in the treated group in long-term follow up analysis but not 
in primary efficacy analysis at 15 months (60). The 3 non-randomised 
trials had mixed survival results (61–63).

A total of 9 of the non-rindopepimut/depatuxizumab molecular 
therapies were also targeted at EGFR (64–72) and a further 3 trials 
studied other receptor tyrosine kinase inhibitors (73–75). These trials 
were all non-randomised and had mixed survival results.

Personalised chemotherapy regimens informed by in vitro drug 
sensitivity testing on autologous resected tumour cells appeared 

beneficial in 2 non-randomised trials studying a total of 105 patients 
(76, 77). However, 3 non-randomised trials using genomic-profiling 
to guide personalised molecular therapy had mixed survival results 
(78–80).

Dendritic cell vaccines

The most studied vaccine therapies (17%, 17/102) consisted of 
autologous dendritic cells pulsed with autologous tumour lysates (ATL/
DC). There were four reports of ATL/DC randomised trials, the largest 
of which reported interim data on 331 patients in a double-blind, 
placebo-controlled cross-over trial in patients with newly diagnosed 
glioblastoma (81). This trial reported mOS of 23.1 months and described 
a subgroup consisting of 30% of the ITT population that showed an 
extended mOS of 40.5 months that could not be explained by known 
prognostic factors. Furthermore, Cho et  al. (82) conducted a 
randomised phase II trial of 34 patients, reporting significantly 
prolonged OS in a group of patients receiving ten subcutaneous ATL/
DC vaccinations in addition to standard of care therapy compared to a 
control group receiving standard of care therapy alone. However, two 
other randomised-controlled phase II studies on 76 and 58 patients 
found no survival benefit associated with ATL/DC (83, 84). A total of 
13 non-randomised trials had mixed results with 11 in favour (85–95) 
and two unsupportive (96, 97) of a survival benefit of ATL/DC.

FIGURE 2

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram of study selection. Following the removal of duplicates, 
titles and abstracts of 6,738 records were screened and 115 studies were sought for retrieval. An additional 19 studies were identified from ClinicalTrials.
gov and by hand searching reference lists of included studies and relevant review articles. Reports for 2 studies were not retrievable and 30 studies that 
initially appeared to meet inclusion criteria were excluded during full text screening (Appendix B). A total of 93 full text articles and 9 conference 
abstracts were included in the review.
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In addition, three non-randomised trials studying vaccination 
with autologous tumour peptide pulsed DCs in a total of 198 
patients reported significantly improved survival in treated patients 
(98, 99) or survival that appeared to be beneficial (100). Two trials, 
including a randomised trial by Mitchell et al. (101, 102), studied 
vaccination with cytomegalovirus phosphoprotein 65 RNA pulsed 
DCs, both reporting a significant association between therapy and 
prolonged survival. Two non-randomised trials studied vaccines 
consisting of DCs pulsed with mRNA from tumour stem cells in a 
total of 105 patients; median PFS was 2.9 times longer in vaccinated 
newly diagnosed patients compared to controls (103), however 
there was no survival benefit demonstrated in patients with 
recurrent disease (104).

Furthermore, a randomised double-blind placebo-controlled 
phase II trial of DCs pulsed with synthetic peptide epitopes targeting 
glioblastoma tumour and stem-cell associated antigens (ICT-107) 
included 124 patients and found prolonged PFS but not OS in treated 
patients compared to controls (105). An earlier non-randomised trial 
of ICT-107 in 16 patients reported an association between expression 
of target antigens and significantly prolonged PFS and OS in newly 
diagnosed patients (106).

Other DC vaccine approaches included pulsing autologous DCs 
with antigens including glioma stem cell like antigens (107), 
personalised mRNA tumour associated antigens (108) and allogeneic 
cells from glioma cell lines (109). Efficacy ranged from being 
associated with a survival benefit (107), to appearing beneficial (108, 
110, 111), to appearing unbeneficial (109, 112, 113).

Other vaccines

The overall effect on survival was unclear across 2 randomised 
and 9 non-randomised trials of autologous tumour vaccines. Neither 
randomised trial was able to demonstrate a difference between treated 
patient and controls, including a double-blind placebo-controlled 
phase IIb/III trial of 60 newly diagnosed patients (114). However, a 
non-randomised phase I/II trial of 110 newly diagnosed patients in 
which tumour cells were infected with Newcastle Disease Virus before 
vaccination reported significantly longer PFS and OS in vaccinated 
patients compared to controls (115).

In single non-randomised vaccine trials, Wilms tumour 1 peptide 
(116), survivin peptide (117) and 9 HLA-A2 restricted peptides eluted 

A B
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FIGURE 3

(A) There were a range of designs of included studies: 7 pilot studies, 2 retrospective analyses, 1 multicohort basket trial, 1 phase 0 trial, 32 phase I trials, 
23 phase I/II trials, 31 phase II trials and 5 phase III trials. (B) Newly diagnosed and recurrent disease cohorts were each studied by 40.2% of included 
trials, 15.7% (16/102) included mixed cohorts and the status of patients was unclear for 3.9% (4/102) of trials. (C) More than 20 distinct types of 
personalised therapy were studied, including a range of targeted molecular therapies and dendritic cell vaccine approaches. (D) Overall survival 
efficacy of all personalised therapies; in 62.7% (64/102) of studies there was a survival benefit or personalised therapy appeared beneficial.
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from the surface of glioblastoma samples combined with 2 HLA-class 
II-binding peptides (118) all appeared beneficial for survival. However, 
four trials of personalised peptide vaccines (119–122), 1 of which was 
randomised, and 3 non-randomised trials of autologous heat shock 
protein peptide complex-96 (123–125) had overall mixed 
survival results.

Other immunotherapies

Overall, there were conflicting survival results for adoptive cell 
therapies. A randomised open-label phase III trial of intravenous 
autologous cytokine-induced killer cells in 180 patients reported 
prolonged PFS but not OS in treated patients (126); a randomised 
phase II trial of autologous lymphoid effector cells specific against 
tumour (ALECSAT) in 62 patients found no significant survival 
difference between treated and control patients (127). A further 
non-randomised phase I  study conducted by Smith et  al. (128) 
reported favourable survival in 25 patients treated with autologous 
cytokine-specific T cells; patients treated before recurrence had 
significantly improved OS than patients who had progressed. In 
addition, 3 non-randomised trials of chimeric antigen receptor (CAR) 
T cell therapy, two of which were directed towards EGFRvIII, appeared 
unbeneficial for survival (129–131).

Two non-randomised trials of haematopoietic stem cell therapies 
studying a total of 10 patients reported results that appeared beneficial 
(132, 133), whilst 4 non-randomised trials of lymphokine activated 
killer cells, 3 of which studied patients with recurrent disease, had 
mixed survival results (134–137). Finally, individualised multimodal 
immunotherapy (IMI) appeared beneficial when studied in 164 
patients across 2 non-randomised trials conducted by van Gool et al. 
One trial studied newly diagnosed patients and the other a mixed 
population (138, 139). The trial in newly diagnosed patients reported 

significantly prolonged survival in patients treated with IMI and 
concurrent temozolomide compared to IMI alone (139).

Reporting bias

A total of 93.1% (95/102) of studies reported OS, 71.6% (73/102) 
reported PFS and 58.8% (60/102) reported at least 1 additional 
survival outcome. Additional survival outcomes were reported at time 
points that differed between studies. Moreover, it was not uncommon 
for a survival outcome specified amongst a priori endpoints not to 
be reported.

Certainty of evidence

Certainty of the body of evidence was low for all therapies 
(Table 1). There was a high risk of bias due to most trials being small 
and non-randomised. Associations between therapies and survival 
were frequently conflicting between trials, including between the 
highest quality randomised trials.

Discussion

Summary of main findings

The objective of this systematic review was to synthesise evidence 
on the survival efficacy of personalised therapies in glioblastoma. 
Most studies reported either a survival benefit or survival that 
appeared beneficial following a personalised therapy (Figure 3D), 
however there was no consistent high-quality evidence of efficacy for 
any individual personalised therapy.
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FIGURE 4

Personalised therapy trials were mostly non-randomised and were conducted in more than 20 countries worldwide. The United States conducted the 
most trials with a total of 42.2% (43/102), followed by Japan with 11.8% (12/102).
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TABLE 1 Summary and certainty of evidence.

Therapy Number 
of trials

Number 
randomised

Number 
non-

randomised

Survival efficacy Overall 
efficacy

Certainty of 
evidence 
(GRADE)

Non-rindopepimut/

depatuxizumab targeted 

molecular therapy

23 0 23 Associated with benefit 1NR

Appears beneficial 8NR

Appears unbeneficial 13NR

Associated with no benefit 1NR

Unclear ⊕ ⊕ ⊝⊝

Low

Due to risk of bias and 

inconsistency

Vaccine of autologous 

DCs pulsed with 

autologous tumour lysate

17 4 13 Associated with benefit: 1R 4NR

Appears beneficial: 1R 7NR

Appears unbeneficial: 2NR

Associated with no benefit: 2R

Likely 

beneficial

⊕ ⊕ ⊝⊝

Low

Due to risk of bias and 

inconsistency

Autologous tumour 

vaccine

11 2 9 Associated with benefit 2NR

Appears beneficial 5NR

Appears unbeneficial 1R 1NR

Associated with no benefit 1R 1NR

Unclear ⊕ ⊕ ⊝⊝

Low

Due to risk of bias and 

inconsistency

Rindopepimut 

(EGFRvIII peptide 

vaccine)

6 2 4 Associated with benefit 1R 2NR

Appears beneficial 2NR

Associated with no benefit 1R

Unclear ⊕ ⊕ ⊝⊝

Low

Due to risk of bias and 

inconsistency

Depatuxizumab 

mafodotin (EGFR mAb-

drug conjugate)

5 2 3 Appears beneficial 1R 2NR

Appears unbeneficial 1NR

Associated with no benefit 1R

Unclear ⊕ ⊕ ⊝⊝

Low

Due to risk of bias and 

inconsistency

Personalised peptide 

vaccine

4 1 3 Appears beneficial 2NR

Appears unbeneficial 1NR

Associated with no benefit 1R

Unclear ⊕ ⊕ ⊝⊝

Low

Due to risk of bias and 

inconsistency

Lymphokine activated 

killer cells

4 0 4 Associated with benefit 1NR

Appears beneficial 1NR

Appears unbeneficial 2NR

Unclear ⊕ ⊕ ⊝⊝

Low

Due to risk of bias and 

inconsistency

Vaccine of autologous 

DCs pulsed with 

autologous tumour 

peptides

3 0 3 Associated with benefit 2 NR

Appears beneficial 1 NR

Beneficial ⊕ ⊕ ⊝⊝

Low

Due to risk of bias

Other peptide vaccine 3 0 3 Appears beneficial 3NR Beneficial ⊕ ⊕ ⊝⊝

Low

Due to risk of bias

HSPPC-96 vaccine 3 0 3 Appears beneficial 2NR

Appears unbeneficial 1NR

Unclear ⊕ ⊕ ⊝⊝

Low

Due to risk of bias and 

inconsistency

CAR T cell therapy 3 0 3 Appears unbeneficial 3NR No benefit ⊕ ⊕ ⊝⊝

Low

Due to risk of bias

Other adoptive cell 

therapy

3 2 1 Associated with benefit 1R

Appears beneficial 1NR

Associated with no benefit 1R

Unclear ⊕ ⊕ ⊝⊝

Low

Due to risk of bias and 

inconsistency

Vaccine of autologous 

DCs pulsed with 

cytomegalovirus pp65 

RNA

2 1 1 Associated with benefit 1R 1NR Beneficial ⊕ ⊕ ⊝⊝

Low

Due to risk of bias

(Continued)
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Context of findings

Central nervous system tumours have historically been 
characterised using histological features such hypercellularity, nuclear 
atypia and necrosis (140). Nomenclature has evolved with each 
iteration of the WHO classification, driven by increasingly precise 
molecular characterisation (5). This is revealing increasing 
heterogeneity of tumour types in historical trials. Molecularly distinct 
tumours may require distinct therapeutic approaches. Therefore, the 
utility of past trials may diminish with time, with heterogeneity likely 
contributing to lack of efficacy in non-molecularly defined 
populations, specifically that associated with IDH mutation and the 
inclusion of patients classified, currently, as astrocytoma grade 4. This 
is to some extent circumvented in this review, which studied only 
molecularly selected patient cohorts and excluded therapies applied 
in a non-personalised manner.

Personalised therapy should target unique features of each 
patient’s disease. Included trials mostly considered single agents, 
which is problematic given a single molecular difference is highly 
unlikely to define tumour identity. Furthermore, variants do not occur 
in isolation but affect cellular pathways and networks of molecules, in 
which there is redundancy and adaptation (20). Therefore, it is 
unsurprising that single agent efficacy is underwhelming. As profiling 
of tumours becomes increasingly precise, more detailed 
characterisation of differences between tumours will follow, including 
how variants synergise and should be prioritised therapeutically. Only 
a small number of currently known variants have been targeted, with 
EGFR a major focus. Combination approaches may offer superior 
efficacy, with promising pre-clinical and early clinical examples (53, 
54, 141, 142). However, more therapeutic options are needed to 
address already identified targets. Due to its low mutational burden, 
glioblastoma is an ideal cancer candidate in which to pursue this study.

In addition, a number of trials reported associations of therapy 
with prolonged PFS but not OS (103, 105, 126). PFS and OS are 
strongly correlated outcomes, with PFS offering earlier assessment 

and higher statistical power at time of analysis (143). However, 
progression is technically challenging to decipher from 
pseudoprogression, a not infrequent response following 
chemoradiotherapy or immunotherapy in which a tumour initially 
increases in size or new lesions appear (144). PFS is therefore less 
reproducible, reflected in many trials mandating centralised 
assessment of progression (145).

Limitations of included studies

Heterogenous measurement and reporting of 
survival

Overall, survival measurements were poorly described, limiting 
confidence in comparisons. A total of 49% of trials did not specify how 
survival was measured and those that did reported various start points 
including diagnosis, recurrence and commencement of therapy. The 
majority reported median survival, whilst others reported mean 
values; rates of OS and PFS were quoted at unstandardised time 
intervals. Furthermore, whilst PFS and TTP are strictly distinct 
measures (146), this terminology appeared to be used interchangeably 
by some included trials (64, 77).

Quality of evidence
The overall quality of evidence is low. Many trials were small, 

non-randomised and single arm. Whilst early phase trials and proof 
of principle studies have value in assessing safety and feasibility, they 
are not powered for survival analysis, selection criteria often limit 
generalisability and patients are exposed to unstandardised schedules 
and doses of therapy. Survival reported by these trials should therefore 
be  interpreted cautiously. Furthermore, trials included many 
uncontrolled variables including surgical factors, past chemotherapy 
drugs and doses and radiotherapy regime before and after personalised 
therapy. In addition, many trials used historical control groups, which 
provide a convenient comparison but with higher risk of confounding.

TABLE 1 (Continued)

Therapy Number 
of trials

Number 
randomised

Number 
non-

randomised

Survival efficacy Overall 
efficacy

Certainty of 
evidence 
(GRADE)

Vaccine of autologous 

DCs pulsed with 

peptides targeting 

tumour/stem cell-

associated antigens (ICT-

107)

2 1 1 Associated with benefit 1R

Appears beneficial 1NR

Beneficial ⊕ ⊕ ⊝⊝

Low

Due to risk of bias

Vaccine of autologous 

DCs pulsed with tumour 

stem cell RNA

2 0 2 Associated with benefit 1NR

Appears unbeneficial 1NR

Unclear ⊕ ⊕ ⊝⊝

Low

Due to risk of bias and 

inconsistency

Individualised 

multimodal 

immunotherapy

2 0 2 Associated with benefit 1NR

Appears beneficial 1NR

Beneficial ⊕ ⊕ ⊝⊝

Low

Due to risk of bias

Haematopoietic stem cell 

therapy

2 0 2 Associated with benefit 1NR

Appears beneficial 1NR

Beneficial ⊕ ⊕ ⊝⊝

Low

Due to risk of bias
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Methodological challenges
The focus of trials was on short-term survival rates, in the context 

of a disease that has very low rates of long-term survival. However, it 
is becoming clear that survival efficacy of several immunotherapies 
may lie in a small subgroup of long-term survivors (81). Greater focus 
on this subgroup may yield insight into factors driving survival 
efficacy to improve future therapy personalisation.

Furthermore, it was not uncommon for patients to be excluded 
from trials before commencing therapy due to progression (112, 147, 
148). This was particularly true for vaccine therapies, which typically 
took up to 8 weeks to manufacture.

Standardisation needed to aid synthesis and 
promote reproducibility

Personalised glioblastoma trials would benefit from definition of 
core data elements, measurement and outcome sets, as significant 
heterogeneity exists which limits comparability and synthesis (149). 
For example, performance status was inconsistently reported using 
KPS, WHO and ECOG scales and for many datapoints there was 
inconsistency in whether mean, median or modal values were 
reported. The terms newly diagnosed and recurrent were utilised in 
this review to address inconsistent use of the word “primary,” referring 
to either newly diagnosed or arising de novo without evolution from 
a lower grade glioma (128, 137, 150, 151). In addition, there was little 
consensus on the definition of complete resection, varying between 
90, 95 and 99% (55, 77, 113, 152).

Furthermore, there was inconsistency in inclusion criteria, with 
some trials stating a focus on glioblastoma but also including 
anaplastic astrocytoma patients (153) and other trials studying 
broader cohorts of glioma (64, 123, 154). In addition, most DC 
vaccine trials had highly precise administration schedules, for which 
the rationale was often unclear. Others had limited descriptions of the 
schedule, hindering replicability and reproducibility. Time from 
diagnosis to commencement of personalised therapy was often not 
specified or highly variable within and between studies. Furthermore, 
there was inconsistency in response rate calculations; standardisation 
in objective response rate definition outlined by the Revised 
Assessment in Neuro-Oncology (RANO) criteria is therefore 
welcomed (155).

Generalisability
The generalisability of many included trials is limited due to 

included patients being highly and heterogeneously pre-treated with 
other therapies. Failure of a personalised therapy in a trial of last line 
therapy in highly treated patients with recurrent disease should not 
be extrapolated beyond this context.

Implications and future directions
Targeted and personalised therapy are not synonymous: most 

trials of targeted therapies have not used target-enrichment criteria 
and were consequently excluded. Comprehensive molecular 
characterisation is needed to identify personalised spectra of 
targetable molecular alterations, with next generational sequencing 
panels of utility (156, 157). Future efficacy trials should only be studied 
in a population proven to express the target of interest and employ 
combination approaches to overcome redundancy. Furthermore, 
glioblastoma is a moving target; 60% of tumours expressing EGFRvIII 

at primary resection lose expression by recurrence (54). Genomic 
instability and immune evasion appear to be  driven by complex 
interactions encompassing epigenetic changes, metabolic 
reprogramming and oxidative stress responses within the tumour 
microenvironment (158). Therefore, methods to monitor genomic 
heterogeneity will be essential to tailor therapy, with non-invasive 
strategies most favourable (Figure 1C) (34). In addition, methods to 
improve delivery across the blood brain barrier, such as convection 
enhanced delivery (159) and nanoparticle drug delivery systems (160), 
may catalyse the success of personalised therapies.

Finally, differences in allele frequencies between populations 
are well-described, as is differing glioblastoma prevalence. 
Unfortunately, only 10% of included studies considered ethnicity; 
future work should do so as differing genomic profiles between 
populations may prove another important consideration in 
personalisation of therapy.

Conclusion

Personalised therapy remains of unproven benefit to survival for 
patients with glioblastoma, with no therapy currently ready for routine 
clinical application. Nonetheless, encouraging results in some trials 
provide reason for optimism. Future advances in this field may depend 
on target-enriched trials, dynamic combination therapies with 
longitudinal monitoring of genomic biomarkers and standardised 
reporting in clinical trials.
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