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Interferon and autoantigens: 
intersection in autoimmunity
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Interferon (IFN) is a key component of the innate immune response. For reasons 
that remain incompletely understood, the IFN system is upregulated in several 
rheumatic diseases, particularly those that feature autoantibody production, such 
as SLE, Sjögren’s syndrome, myositis and systemic sclerosis. Interestingly, many 
of the autoantigens targeted in these diseases are components of the IFN system, 
representing IFN-stimulated genes (ISGs), pattern recognition receptors (PRRs), 
and modulators of the IFN response. In this review, we describe features of these 
IFN-linked proteins that may underlie their status as autoantigens. Note is also 
made of anti-IFN autoantibodies that have been described in immunodeficiency 
states.
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Introduction

Autoantibodies arise in a wide array of immune-mediated diseases, including both organ-
limited and systemic forms of autoimmunity (1, 2). Some autoantigens are organ-specific 
molecules that are expressed preferentially or even uniquely in the affected organ [e.g., thyroid-
specific proteins in autoimmune thyroid disease (3)]. In contrast, antigens targeted in systemic 
autoimmune rheumatic diseases are frequently ubiquitously expressed, and perform a variety 
of essential cellular functions (2). The antigens most commonly targeted by antibodies in 
systemic rheumatic diseases are nuclear antigens, including proteins, nucleic acids, and 
nucleoprotein complexes (2). The mechanisms responsible for targeting these broadly distributed 
autoantigens are incompletely characterized, but are likely numerous and overlapping. Here, 
we will review the relationship between autoantibodies and the IFN system, highlighting the 
enrichment of IFN-linked antigens in systemic autoimmune rheumatic diseases, and potential 
explanations for their targeting by autoantibodies.

The IFN system (Figure 1) is a molecular network that perform host defense functions. 
Three types of IFNs are found in humans: type I IFNs are expressed by and act on nearly every 
cell type, type II IFN is more specific for immune cells, and type III IFNs mainly act on epithelial 
and endothelial cells at mucosal surfaces (4–6). Cell-intrinsic IFN signaling constitutes a 
primordial layer of innate immunity, enabling resident tissue cells to recognize and respond to 
a variety of microbial pathogens and nonmicrobial threats. Thus IFN induction within activated 
cells leads to IFN signaling in neighboring cells via IFNs and second messengers, and in both 
cases ISG induction occurs. IFNs also perform important cell-extrinsic functions, and are able 
to shape the immune response by influencing the behavior of immune cells (5).

The upstream elements of the IFN system are innate pattern recognition receptors 
(PRRs), which recognize an array of Damage and Pathogen Associated Molecular Patterns 
(DAMPs and PAMPs, respectively) (7). Innate sensors are found in various compartments 
of the cell, including the endosome (e.g., TLR7), cell surface (e.g., TLR4), and cytoplasm 
[e.g., cyclic GMP-AMP synthase (cGAS) (8)]. The interaction of ligand and sensor leads 
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to subsequent activation of downstream signaling adaptors, which 
include molecules such as stimulator of interferon genes (STING), 
mitochondrial antiviral-signaling protein (MAVS) and MyD88 
(8). Activated adaptors then promote signaling through various 
kinases and transcription factors, which ultimately trigger the 
expression of Interferon Stimulated Genes (ISGs) and IFNs 
themselves. This expression of IFNs and ISGs results in both 
autocrine and paracrine cellular effects. Secreted IFNs bind their 
cognate receptors on the cell surface, leading to intracellular 
signaling via the JAK/STAT pathway and expression of ISGs and 
IFNs in IFN-activated cells (9). In this manner, the IFN system 
propagates a danger signal rapidly throughout an affected tissue 
or organ, readying resident parenchymal cells for host defense 
functions, and influencing the cellular immune response 
that follows.

Dysregulation of the IFN system has long been recognized as a 
feature of many autoimmune rheumatic diseases, most notably 
systemic lupus erythematosus (SLE), Sjögren’s syndrome (pSS), 
dermatomyositis (DM), and systemic sclerosis (SSc) (10–12). 
Upregulation of IFNs and ISGs has been observed both in the 
circulation and the target organs of patients with these diseases. In 
SLE, IFN I upregulation has been associated with increased markers 
of serologic and clinical disease activity. Interestingly, longitudinal 
studies have demonstrated that IFN expression is relatively stable 
despite changes in disease activity over time (13–17). In pSS, IFN 
expression has been linked to higher prevalence of autoantibodies and 
hypergammaglobulinemia, and increased lymphocytic infiltration of 
salivary tissues (18). Upregulation of IFN has been observed in many 
types of inflammatory myopathy, with IFN I upregulation particularly 
notable in DM muscle biopsies (19). Dysregulation of type I, II and III 
IFNs have all been observed, although the relative degree to which a 
specific IFN type is activated compared to others varies among 
individuals (19–23). In addition to the idiopathic rheumatic diseases, 
dysregulation of IFN has been identified as the driver of genetically-
derived interferonopathy syndromes such as Aicardi–Goutières 
syndrome (AGS) and STING-associated vasculopathy with onset in 

infancy (SAVI); it is noteworthy that these genetic syndromes present 
with clinical features that often overlap with those of idiopathic 
rheumatic diseases (24). Taken together, these observations suggest 
that IFNs play a key role in the pathogenesis of the autoimmune 
rheumatic diseases. Consistent with this, therapeutic targeting of IFN 
has already shown promise in some patients, and is an area of ongoing 
research (25).

IFN-induced expression of 
autoantigens

An ISG is any gene whose expression is increased in response 
to IFN signaling; there are hundreds of such genes in human cells 
(26). Many autoantigens are included among the ISGs, suggesting 
that IFN-responsiveness may be involved in the development of 
this autoantibody subset. Notable among the IFN-induced 
autoantigens is Ro52 (encoded by the TRIM21 gene), which is 
targeted by autoantibodies in many rheumatic diseases, including 
pSS, SLE, DM, SSc and overlap syndromes (27). An important 
pathologic function of these antibodies has been defined - maternal 
anti-Ro52 antibodies demonstrate pathogenic function by 
mediating congenital heart block (28). In SLE, antibodies against 
Ro52 are associated with higher levels of circulating IFN I (29, 30). 
Ro52 is an IFN-induced E3 ligase that targets various substrates for 
removal via proteasomal degradation. In response to viral 
infection, Ro52 downregulates the innate immune response by 
enhancing clearance of the key transcription factor IRF3 (31, 32). 
Ro52 also promotes antiviral function by serving as a sensor of 
cytoplasmic IgG, marking intracellular viral-IgG immune 
complexes for proteasomal clearance (33, 34). Ro52 is therefore 
both a key regulator of the innate immune response and a 
functional component of the IFN pathway. It provides an important 
example of an antigen against which tolerance may be lost due to 
dysregulated IFN signaling. In this scenario, upregulated antigen 
expression in the setting of inflammation likely promotes the 

FIGURE 1

Schematic overview of the IFN system.
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frequency with which the induced protein is displayed by antigen 
presenting cells, thereby increasing the likelihood that 
autoreactivity might occur. Continued expression of IFN in the 
affected organs would ensure sustained elevated levels of ISG 
antigens, fueling the propagation phase of such an autoimmune 
response. It is noteworthy that ISG upregulation caused by 
interferogenic stimuli (e.g., viral infection) facilitates additional 
intermolecular interactions that may also lead to breaking of 
tolerance against Ro52 or other relevant ISGs.

DNA binding molecules

Several PRRs are included among the autoantigens targeted in 
rheumatic diseases. While some of these PRR antigens are also 
IFN-inducible, others are not. Among these non-IFN-induced 
antigens is Ku - a heterodimeric complex composed of Ku70 and Ku80 
subunits that is targeted by autoantibodies in several autoimmune 
rheumatic diseases (35, 36). In SLE, anti-Ku antibodies have been 
reported at prevalence of 9.8–20.5% (35, 37). Anti-chromatin 
antibodies have been identified at greater prevalence among SLE 
patients with anti-Ku antibodies: anti-chromatin antibodies were 
found in 72.7% of anti-Ku positive versus 43.9% of anti-Ku negative 
patient sera in one study (p < 0.0001) (37). Anti-Ku antibodies have 
also been found in association with autoantibodies against additional 
DNA repair proteins, including DNA-PK, Mre11, WRN and PARP 
(35). While clearly implicated in DNA repair responses, the Ku 
complex has also been shown to serve as a cytoplasmic DNA sensor, 
translocating from the nucleus to the cytoplasm and binding dsDNA 
of various sorts (38, 39). Recently, Tao et  al. demonstrated that 
cytoplasmic Ku interacts with cGAS to promote condensate formation 
and IFN signaling in response to cytoplasmic dsDNA (40). These 
findings raise the intriguing possibility that intermolecular 
interactions occurring in the context of DNA repair in the nucleus 
might underlie the targeting of Ku and related autoantigens in SLE, 
and that Ku may interact with other potential autoantigens in 
the cytoplasm.

A similar scenario has been observed in the case of poly(ADP-
ribose) polymerase (PARP), an additional component of the cellular 
DNA damage response that is targeted as an autoantigen in SLE and 
other autoimmune conditions (41, 42). PARP1 translocates to the 
cytoplasm upon viral infection, where it PARylates cGAS. Interestingly, 
in contrast to the pro-IFN effect of Ku, this PARylation was reported 
to inhibit cGAS signaling (43). In addition, the catalytic subunit of 
DNA-dependent protein kinase (DNA-PKcs), has also been identified 
as a sensor of cytoplasmic DNA (44), and recently demonstrated to 
negatively regulate cGAS via phosphorylation (45). It is noteworthy 
that DNA-PKcs, PARP and Ku are all translocated to the cytoplasm in 
the setting of dsDNA sensing, and together modulate the cell-intrinsic 
IFN I response generated by cGAS. Activation of the cytoplasmic 
dsDNA sensing pathway may therefore represent a stimulus that 
triggers antigenic changes in these proteins that are relevant to 
SLE pathogenesis.

RNA polymerase III (POL III) is a well-described autoantigen 
targeted in 15.3–26.6% of systemic sclerosis patients (46, 47). This 
enzyme transcribes a variety of noncoding RNA molecules required 
for routine cellular functions (48). However, its role in activating the 
IFN system is much less appreciated. A specific function for POL III 

in the innate immune response was reported by Chiu et  al., who 
showed that POL III converts cytosolic dsDNA into 5′-ppp RNA, 
which is subsequently detected by RIG-like receptors (RLRs), 
generating a MAVS-dependent IFN response (49). Thus, Ku, PARP 
and POL III are all involved in the innate response to cytoplasmic 
dsDNA. The altered subcellular localization and interactions that 
occur in the setting of cytoplasmic dsDNA sensing therefore might 
represent additional mechanisms that could contribute to loss of 
tolerance against these antigens in autoimmune diseases characterized 
by an aberrant IFN I response.

Oligomerizing innate sensors

Several additional autoantigens combine the characteristics of 
IFN-induced expression, nucleic acid binding, and a third feature 
specific to their activation: oligomerization. Recent findings from this 
interesting autoantibody group are reviewed below.

Antibodies against a 140 kDa protein were first described in a 
Japanese cohort of patients with clinically amyopathic DM (50). The 
identity of this autoantigen was later demonstrated to be melanoma 
differentiation-associated protein 5 (MDA5) (51). The initial clinical 
phenotype described in association with MDA5 antibodies was that 
of mild muscle involvement, with severe pulmonary manifestations 
and a variety of cutaneous findings; additional cohort studies have 
yielded a broader spectrum of clinical manifestations (52). MDA5 is 
a member of the RIG-Like Receptor (RLR) group of cytoplasmic 
dsRNA sensors that promote antiviral IFN I production. Upon sensing 
long dsRNA, MDA5 assembles into filamentous oligomers that 
activate MAVS and trigger downstream IFN I signaling (53–55). Like 
Ro52, MDA5 expression is induced by IFN and interestingly, these 
two antibodies are often targeted together in this subset of DM 
patients. As MDA5 is both an IFN-inducible and an interferogenic 
protein, its dysregulation could readily contribute to sustained IFN 
signaling. Indeed, gain of function mutations in the gene encoding 
MDA5 (IFIH1) have been identified in patients with interferonopathy 
syndromes as well as SLE (56–58). Strong IFN I upregulation has been 
identified in anti-MDA5-associated DM (59), and some have 
proposed labeling this syndrome an acquired type 
I interferonopathy (60).

IFI16 is an IFN-inducible dsDNA sensor in the AIM-like receptor 
(ALR) family (61). Similar to Ku, IFI16 translocates from the nucleus 
to the cytoplasm upon dsDNA sensing, where it promotes IFN 
signaling through STING (61). Similar to MDA5, IFI16 also assembles 
into filamentous oligomers when activated by dsDNA (62). Anti-IFI16 
antibodies have been identified in SLE and pSS patients, and are 
associated with more severe disease features (63–66).

Absent in melanoma 2 (AIM2), another IFN-inducible dsDNA 
sensor in the ALR family, activates apoptosis-associated speck-like 
protein containing a caspase-recruitment domain (ASC) upon dsDNA 
sensing, triggering inflammasome assembly and IL-1/18 secretion 
(67). We recently identified anti-AIM2 autoantibodies in SLE. These 
frequently co-occurred with anti-IFI16 and anti-dsDNA antibodies, 
as well as disease activity markers (68). Autoantibodies targeting ASC 
(which is also IFN-inducible) have been identified in patients with 
inflammatory diseases, and anti-ASC antibodies demonstrated a 
pathogenic ability to enhance inflammasome activation in recipient 
phagocytes in mice (69).
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A noteworthy feature common to the 3 autoantigens MDA5, 
IFI16 and AIM2 is that they are all IFN-inducible innate sensors of 
double stranded nucleic acids. Their activation leads to the generation 
of large, filamentous oligomers of protein and bound nucleic acid 
ligand. Sustained activation of these sensors at a disease site is one 
potential explanation for their targeting by autoantibodies. Indeed, 
our own observation of activated filamentous IFI16 present in the 
salivary tissues of some pSS patients supports this concept (70). In 
addition, cytoplasmic interaction of AIM2 and dsDNA has been 
detected in cell lines derived from pSS salivary tissue (71), and 
we observed both IFI16 and AIM2 bound to neutrophil extracellular 
trap DNA in SLE renal tissues (68). These findings provide compelling 
additional evidence that DNA-bound sensors are present at sites of 
disease activity.

The presence of oligomerized sensors coupled to nucleic acid 
ligands may lead to the generation of novel epitopes not found in the 
monomeric forms, or may increase the potential for autoreactivity via 
the increased valence present in oligomers that are conveyed to 
immune cells at sites of immune activation. These autoantigens may 
therefore represent key molecules whose activation causes pathogenic 
inflammatory signaling in affected organs, as well themselves being 
targets of the autoimmune response. Future studies are warranted to 
examine whether these and/or other autoantibodies serve as 
biomarkers that identify subsets of patients in whom such innate 
signaling pathways are especially relevant to disease initiation or 
propagation. Insights from such studies will likely inform the more 
effective use of IFN-specific therapies.

Interferons as autoantigens

In addition to the spectrum of intracellular autoantigens 
associated with systemic autoimmune rheumatic diseases, antibodies 
against extracellular antigens have also been described in a variety of 
scenarios. Anti-cytokine antibodies have been observed in patients 
with SLE and other rheumatic diseases, and also in viral infection and 
immunodeficiency states (72). In SLE, antibodies against type I, II and 
III IFNs have been observed (73). These authors found that antibodies 
against type I IFNs had a neutralizing function, and patients with 
blocking anti-type I IFN antibodies demonstrated normalized IFN 
expression levels. Conversely, SLE patients with anti-IFN II antibodies 
suffered from more severe disease manifestations, including 
upregulation of type I  IFNs. Antibodies against IFNs were also 
measured in patients with pSS at a comparable prevalence, but were 
not observed as often in RA.

Nearly 20 years ago, neutralizing antibodies against type II 
IFN were recognized in patients suffering unusual, severe 
mycobacterial infections (74, 75). Since that time, several 
hundred cases of anti-IFN-gamma-autoantibodies (AIGA) have 
been reported in patients presenting with a variety of infections. 
In addition to mycobacterial disease, salmonella, varicella, and 
fungal species have also been recorded, making AIGA an 
antibody-mediated form of acquired immunodeficiency. Recent 
studies in SARS-CoV2 have strengthened the evidence that 
anti-IFN autoantibodies have functional consequences in the 
setting of infection, as antibodies directed against type I IFNs 
have been measured in patients who suffer severe disease 
outcomes from COVID19 (76–78). These observations suggest 

that, in the setting of infection, anti-IFN antibodies constitute a 
potentially treatable form of immunodeficiency that renders the 
host more susceptible to infection. Conversely, in the setting of 
autoimmune diseases such as SLE, it remains less clear whether 
anti-IFN antibodies contribute to disease pathogenesis, or serve 
as markers of aberrant IFN signaling.

Conclusion

Autoantibodies target a multitude of cellular antigens, and 
diverse mechanisms are likely responsible for their targeting 
through the humoral immune response. Several autoimmune 
rheumatic diseases feature upregulation of IFN signaling along 
with autoantibodies directed against components of the IFN 
system. These IFN-linked autoantigens include ISGs, DNA-binding 
proteins, and oligomerizing pattern recognition receptors. 
Pathogenic activation of these IFN system components may 
underlie their status as autoantigens, and these autoantibodies 
might therefore indicate patients in whom the antibody-targeted 
antigens play critical roles in driving IFN activation. Antibodies 
against IFNs themselves mediate increased susceptibility to some 
infections and represent a form of acquired immunodeficiency 
mediated by humoral autoimmunity.
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