
Frontiers in Medicine 01 frontiersin.org

Prediction of postoperative visual 
acuity in patients with age-related 
cataracts using macular optical 
coherence tomography-based 
deep learning method
Jingwen Wang 1†, Jinhong Wang 2†, Dan Chen 1, Xingdi Wu 1, 
Zhe Xu 1, Xuewen Yu 1,3, Siting Sheng 1, Xueqi Lin 1, Xiang Chen 1, 
Jian Wu 4, Haochao Ying 5* and Wen Xu 1*
1 Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 
Zhejiang, China, 2 College of Computer Science and Technology, Zhejiang University, Hangzhou, 
Zhejiang, China, 3 Department of Ophthalmology, The First People’s Hospital of Xiaoshan District, 
Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China, 4 Second 
Affiliated Hospital School of Medicine, School of Public Health, and Institute of Wenzhou, Zhejiang 
University, Hangzhou, Zhejiang, China, 5 School of Public Health, Zhejiang University, Hangzhou, 
Zhejiang, China

Background: To predict postoperative visual acuity (VA) in patients with age-
related cataracts using macular optical coherence tomography-based deep 
learning method.

Methods: A total of 2,051 eyes from 2,051 patients with age-related cataracts were 
included. Preoperative optical coherence tomography (OCT) images and best-
corrected visual acuity (BCVA) were collected. Five novel models (I, II, III, IV, and V) 
were proposed to predict postoperative BCVA. The dataset was randomly divided 
into a training (n = 1,231), validation (n = 410), and test set (n = 410). The performance 
of the models in predicting exact postoperative BCVA was evaluated using mean 
absolute error (MAE) and root mean square error (RMSE). The performance of the 
models in predicting whether postoperative BCVA was improved by at least two 
lines in the visual chart (0.2LogMAR) was evaluated using precision, sensitivity, 
accuracy, F1 and area under curve (AUC).

Results: Model V containing preoperative OCT images with horizontal and 
vertical B-scans, macular morphological feature indices, and preoperative BCVA 
had a better performance in predicting postoperative VA, with the lowest MAE 
(0.1250 and 0.1194LogMAR) and RMSE (0.2284 and 0.2362LogMAR), and the 
highest precision (90.7% and 91.7%), sensitivity (93.4% and 93.8%), accuracy (88% 
and 89%), F1 (92% and 92.7%) and AUCs (0.856 and 0.854) in the validation and 
test datasets, respectively.

Conclusion: The model had a good performance in predicting postoperative 
VA, when the input information contained preoperative OCT scans, macular 
morphological feature indices, and preoperative BCVA. The preoperative BCVA 
and macular OCT indices were of great significance in predicting postoperative 
VA in patients with age-related cataracts.
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1. Introduction

Cataract, defined as the opacity of the lens, is one of the leading 
causes of visual impairment worldwide and a primary cause of 
blindness, estimated to be  responsible for 15.2 million cases of 
blindness in 2020 (1). Many factors lead to the formation of cataracts, 
including age, diabetes, and ultraviolet irradiation, and age remains 
the major risk factor for cataracts (2). The only effective treatment is 
surgery. Most patients can gain excellent visual acuity (VA) after 
cataract surgeries. However, some patients may fail to obtain satisfying 
visual outcomes due to complicated fundus diseases. Predicting visual 
outcomes before cataract surgeries can help patients adjust their 
expectations appropriately and aid doctors in making reasonable 
decisions for patients whose vision may not be improved. This can 
avoid the waste of medical resources and contradictions between 
doctors and patients.

As the sharpest part of the retina for vision, the macula remains 
one of the most important factors in determining VA after cataract 
surgery. Optical coherence tomography (OCT) is a non-invasive, 
high-resolution cross-sectional imaging modality of the structural 
retina in vivo. The introduction of OCT helps ophthalmologists 
qualitatively and quantitatively assess the subtle structural changes in 
the macular region (3, 4). Previous studies have reported that 
abnormal morphological changes in OCT images can lead to worse 
visual outcomes in patients with retinal diseases (5–8). Most 
clinicians currently analyze OCT images empirically to judge the 
function of the retinal macula and thus roughly estimate the 
postoperative VA of patients with cataracts. However, there is no 
standardized evaluation system based on large samples to quantify 
the relationship between macular morphological changes and 
postoperative VA of patients with cataracts.

Artificial intelligence (AI), especially deep learning (DL), has 
been widely used to analyze retinal images in the past few decades. 
Some studies have achieved satisfactory results in applying DL 
algorithms to predict postoperative visual outcomes in retinal 
diseases (9–11). Mao et al. have investigated the predictive factors 
of VA in patients with retinitis pigmentosa after cataract surgery 
(12). The preoperative best-corrected visual acuity (BCVA), the 
status of the external limiting membrane, and central macular 
thickness are found to be  important parameters to predict 
postoperative VA. Recently, Wei et  al. have constructed an 
OCT-based DL approach to predict the postoperative VA of patients 
with high myopia (13). Xiang et al. have developed an intelligent 
system based on OCT images for long-term BCVA prediction in 3 
and 5 years after surgery in patients with congenital cataracts (14). 
All of the above studies have yielded good results. However, these 
studies are hard to explain the underlying mechanism due to the 
lack of anatomic and morphological features integrated with the 
study. It is essential since the microstructure of the macula are 
closely correlated with the postoperative VA of patients with 
cataracts (15).

In the present study, AI models were developed based on 
preoperative macular OCT images and BCVA to predict the 
postoperative VA in patients with age-related cataracts. The AI 
models were then compared to evaluate the prediction 
performances of certain postoperative BCVA and whether 
postoperative BCVA was improved by at least two lines in the 
visual chart (0.2LogMAR).

2. Materials and methods

2.1. Participants

The study was performed on 2,051 eyes from 2,051 patients with 
cataracts who underwent uneventful cataract surgeries operated by 
the same experienced cataract surgeon in the Eye Centre at the Second 
Affiliated Hospital of Zhejiang University, School of Medicine, from 
December 2018 to June 2020. The dataset consisting of 2051 eyes from 
2051 patients with cataracts was randomly divided into a training 
(n = 1,231), validation (n = 410), and test set (n = 410). Collected 
clinical data included gender, laterality, and surgical age, as well as 
BCVA measured preoperatively and 1 month postoperatively. Image 
data included horizontal and vertical B-scan macular OCT images of 
the patient at the same preoperative visit.

Inclusion criteria were as follows: (1) age 50–90 years old, 
diagnosed with senile cataract, the degree of lens opacity was graded 
by the Lens Opacities Classification System III: cortical opacity at 
grade 4 and below, posterior subcapsular opacity at grade 4 and below. 
The hardness of the nucleus was graded by the Emery and Little 
classification: grade IV and below, (2) reliable OCT measurements of 
the macula were performed before cataract surgery, (3) underwent 
peaceful cataract surgeries, and (4) had reliable BCVA measured 
preoperatively and 1 month postoperatively.

Exclusion criteria were as follows: (1) Amblyopia; (2) Congenital 
ocular anomalies; (3) Cataracts caused by trauma or congenital 
anomalies; (4) Refractive media opacities that seriously affected 
macular OCT image clarity or visual prognosis, such as severe lens 
opacities, centered corneal opacities, severe vitreous opacities; (5) 
Poor quality macular OCT images that affected image analysis; (6) 
Combined with retinal detachment, retinitis pigmentosa, and fundus 
lesions such as optic nerve and choroid that might affect VA; (7) 
Combined with nystagmus or head tremor and other diseases that 
were susceptible to interference during macular OCT examination; 
(8) Combined with consciousness or intellectual impairment that 
affected the accuracy of visual acuity test results; The patients are 
excluded if they meet the any of the above exclusion criteria.

This study was approved by the Institutional Review Board of the 
Second Affiliated Hospital of Zhejiang University, School of Medicine. 
Written informed consents was obtained from all the participants. 
This study complied with the Declaration of Helsinki and was 
registered at1 (accession number NCT04887909).

2.2. Macular OCT images

OCT images were acquired from Spectrialis OCT (Heidelberg 
Engineering, Heidelberg, Germany), Cirrus OCT (Carl Zeiss Meditec, 
Dublin, California, United States), and FD-OCT (RTVue; Optovue 
Inc., Fremont, California, USA). Images from Spectrialis OCT had a 
resolution of 768 by 496 pixels, with a scan width of 10,000 μm and a 
scan depth of 2,000 μm in the air. Images from Cirrus OCT had a 
resolution of 938 by 625 pixels, with a scan width of 6,000 μm and a 
scan depth of 2,000 μm in the air. Images from FD-OCT had a 

1 www.clinicaltrials.gov
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resolution of 1,020 by 960 pixels, with a scan width of 10,000 μm and 
a scan depth of 2,000 μm in the air.

To fully obtain the information from OCT images, 
morphological features of the macula were extracted and analyzed. 
The process of image analysis is presented in Figure 1. Firstly, 
irrelevant signal-to-noise was reduced by the denoising algorithm. 
The pixels were smoothly connected using the dilate algorithm, 
and the edges were detected to obtain the layered boundaries. The 
internal limiting membrane (ILM) layer was probed from top to 
bottom (Step  1). A horizontal correction was then performed 
based on the curve of the ILM layer to obtain a profile of the total 
retinal thickness (Step 2). Similarly, by creating a gradient graph 

to filter out the hazy features next to the retinal pigment 
epithelium (RPE) and highlight the RPE layer, the boundary of the 
retinal pigment epithelial cell layer was probed (Step  3). Five 
marks of the fovea were automatically recognized (Step 4). There 
was no slope in the temporal and nasal rims of the fovea in the 
horizontal meridian (Figures  1A,E). The pseudocode of this 
pre-processing process is in Algorithm 1. Additionally, the pit of 
the fovea (Figure 1C) had no slope. A maximum slope for the 
temporal and nasal foveal walls of the horizontal meridian was 
also detected (Figures 1B,D). Five salient features of the foveal pit 
were extracted from these five marks, including foveal thickness, 
pit depth, diameter, maximum thickness, and foveal slope (16, 17).
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2.3. DL models

The models consisted of three submodules based on a DL 
algorithm. The first was the CNN module used to extract features 
from OCT images. The Second was the encoding module used to 
encode the feature and output the embeddings of different models. 
The third module was the transformer module used to fuse each 
model’s embeddings and predict postoperative BCVA. Specifically, 
Resnet-18 was selected as a CNN module whose depth was fit for this 
task, avoiding overfitting and poor efficiency. It flattened the output 
feature into a 1D vector with 512 dim. In the encoding module, the 
vector of the image feature became a token with 128 dim, while the 
vector of preoperative VA (1 dim) and external morphological feature 
(7 dim) became tokens with 32 dim. Since the Transformer has 
powerful capacities in multi-modal fusion (18, 19), we  applied 
Transformer with multi-head self-attention to learn the dependence 
between different models. In the Transformer module, the token of 
each modal and a prediction token, which had the same size, were 
concatenated to a token sequence, and the prediction token 
represented the fusion result. Follow the vanilla Transformer 
architecture (20), each Transformer encoder layer contained Multi-
Headed Self-Attention (MSA), Layer Normalization (LN), and Feed-
Forward Net-work (FFN) blocks using residual connections. 
Specifically, the MSA was defined as follows:

 
MSA Q K V QK
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V

T

k
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�

�
��
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where the Q, K and V denoted the linear result on input feature 
X. Based on the training dataset, the SGD optimizer was used to optimize 
the model to minimize the root mean square error (RMSE) loss function. 
We assume that the VA prediction is yi and true postoperative VA is yi. 
The RMSE loss function is formulated as follows:
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The maximum number of training epochs was set to be 100. The 
initial learning rate was set to 0.01 and attenuated by 0.1 every 40 
epochs. Figure 2 shows the workflow of the DL models.

 The DL models were built based on different input information 
as follows:
Model I: an OCT image of horizontal B-scan,
Model II: an OCT image of vertical B-scan,
Model III: two OCT images of horizontal and vertical B-scans,
 Model IV: two OCT images of horizontal and vertical B-scans, 
preoperative BCVA,

FIGURE 1

Processing of macular images. (A,E) A zero slope and the peak of the temporal and nasal foveal rims; (C) A zero slope and the center of the fovea; (B,D) 
The maximum slopes of the foveal wall. 
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 Model V: two OCT images of horizontal and vertical B-scans, 
preoperative BCVA, and the indices of macula 
morphological features.

2.4. Model performance

Two evaluation metrics, mean absolute error (MAE) and RMSE, 
were applied to quantitatively measure the difference between the 
predicted VA and the true postoperative VA. The MAE represented 
the mean absolute error of the prediction values, which showed the 
difference between the predicted and actual values. The formula for 
MAE was as follows:

 
MAE

N
y yi i

i

N
�

�
�1

1
 �

The RMSE was the square root of the mean square error (MSE). 
The MSE was the mean of the squared error of the prediction values. 
In terms of unit agreement with the original variables, the RMSE was 
more interpretable.

Three general classification metrics, including precision, 
sensitivity, and accuracy, were used to estimate the models’ 
performance in predicting whether postoperative BCVA was 
improved by at least two lines in the visual chart (0.2LogMAR). Their 
methods of calculation were as follows:

Precision = TP/(TP + FP).
Sensitivity = TP/(TP + FN).
Accuracy = (TP + TN) / (TP + FP + TN + FN).
F1 = 2·Sensitivity·Precision/ (Sensitivity + Precision).
Here, TP is the true positive, FP is the false positive, TN is the true 

negative, and FN is the false negative. Receiver operating characteristic 
(ROC) curves for five models were calculated to obtain the area under 
the ROC curves (AUCs).

2.5. Statistics

Statistical analysis was performed using a commercial statistical 
software package (SPSS Statistics 26.0; IBM, Armonk, NY). 
Continuous variables were described as the mean ± standard deviation. 
Normal distributions for all datasets were assessed using Shapiro–
Wilk normality tests. Normally distributed data were analyzed using 
one-way analysis of variance (ANOVA). Nonparametric data were 
analyzed by the Kruskal-Wallis test. The Chi-square test was used to 
test for categorical variables. p < 0.05 was considered statistically 
significant. The TRIPOD statement was followed.

3. Results

3.1. Patient characteristics

A total of 2,051 eyes from 2,051 patients with cataracts were 
included in this study. Table  1 summarizes the demographic 
information. No difference was found in all the clinical characteristics 
among the training, validation, and test datasets (p > 0.05).

Data were shown as the mean ± standard deviation. Abbreviation: 
LogMAR-logarithm of the minimum angle of resolution; BCVA-best 
corrected distance visual acuity.

3.2. Indices of macular morphological 
features

Table 2 illustrates the indices of macular morphological features. 
There was no significant difference among the training, validation and 
test datasets (p > 0.05). Figure 3 showed the OCT images with different 
changes in macular morphology. It demonstrated the normal 

FIGURE 2

The workflow of the DL model.
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(Figure  3A), macular epiretinal membrane (Figure  3B), edema 
(Figure 3C), and retinoschisis (Figure 3D), and the values of indices 
were also shown. The Grad-CAM results were shown in Figure 4, 
showing the highly discriminative region of OCT scans when 
predicting the VA.

Data were shown as the mean ± standard deviation.

3.3. Prediction of postoperative BCVA

Table 3 presents the performance of all five models in predicting 
exact postoperative BCVA in the validation and test datasets. 
Compared with the model I-III, model IV showed better predictive 
performance in the validation (MAE = 0.1355logMAR, 
RMSE = 0.2307logMAR) and test (MAE = 0.1303logMAR, 
RMSE = 0.2566logMAR) datasets. When the detection and analysis of 
macular morphology indices were added to OCT images, the 
performance of model V was greatly promoted, with the lowest MAE 

TABLE 2 The macular morphology detection values.

Training Validation Test

Foveal 

thickness (μm)

277.4 ± 310.32 259.62 ± 267.34 265.16 ± 288.4

Foveal pit depth 

(μm)

89.53 ± 76.38 89.95 ± 74.87 89.3 ± 81.36

Foveal pit 

diameter (μm)

2,199.19 ± 999.12 2,204.41 ± 1004.19 2,218.88 ± 945.39

Temporal max 

thickness (μm)

371.64 ± 317.16 352.68 ± 276.84 358.78 ± 294.41

Nasal max 

thickness (μm)

370.27 ± 314.69 351.71 ± 277.75 357.4 ± 296.17

Temporal foveal 

slope (°)

10.06 ± 5.83 10.02 ± 6.68 10.14 ± 6.67

Nasal foveal 

slope (°)

10.41 ± 5.79 10.41 ± 6.97 10.47 ± 6.71

FIGURE 3

(A–D) The detection results of OCT images with different macular morphological changes. FT, foveal thickness; FPD, foveal pit depth; PD, pit diameter; 
TMT, temporal max thickness; NMT, nasal max thickness; TS, temporal foveal slope; NS, nasal foveal slope.

TABLE 1 Demographic and clinical characteristics of the patients.

Training 
(n = 1,231)

Validation 
(n = 410)

Test 
(n = 410)

Number of eyes 1,231 410 410

Female gender 

(%)

768 (62.4%) 242 (59.0%) 246 (60.0%)

Age (years) 69.94 ± 11.1 69.33 ± 10.78 69.35 ± 10.65

Preoperative 

BCVA 

(LogMAR)

0.66 ± 0.52 0.65 ± 0.53 0.62 ± 0.51

Postoperative 

BCVA 

(LogMAR)

0.17 ± 0.32 0.17 ± 0.32 0.17 ± 0.32

Difference 

between 

postoperative 

BCVA and 

preoperative 

BCVA 

(LogMAR)

−0.48 ± 0.45 −0.47 ± 0.43 −0.44 ± 0.4
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(0.1250 and 0.1194logMAR) and RMSE (0.2284 and 0.2362logMAR) 
in the validation and test datasets, respectively.

3.4. Prediction of postoperative BCVA 
improvement (0.2logMAR)

Table 4 presents the performance of all five models in predicting 
postoperative BCVA improvement (0.2logMAR) in the validation and 
test datasets. Compared with the model I-III, model IV showed better 
prediction performance in the validation (precision = 89.4%, 
sensitivity = 91.7%, accuracy = 85.7%, F1 = 90.5%, AUC = 0.816) and 
test (precision = 90.9%, sensitivity = 91.2%, accuracy = 86.6%, F1 = 91%, 
AUC = 0.804) datasets. Model V provided the highest precision (90.7 
and 91.7%), sensitivity (93.4 and 93.8%), accuracy (88 and 89%), F1 
(92 and 92.7%) and AUCs (0.856 and 0.854) in the validation and test 
datasets, when macular morphology indices on OCT images were 
detected and analyzed (p < 0.05).

4. Discussion

In the present study, we constructed AI prediction models for 
postoperative BCVA of patients with age-related cataracts based on 
macular OCT images and preoperative BCVA using a DL method. AI 
models could help doctors judge the visual outcomes of cataract 

surgery and aid patients in setting their surgical expectations to a 
reasonable level.

Ever since the first cataract surgery was performed, the evaluation 
of postoperative VA has been a major concern for both doctors and 
patients (21). Many ophthalmological examinations have been used 
to predict postoperative VA, such as potential acuity meter (PAM) 
(22–24), laser interferometer (LI) (25–27), critical flicker frequency 
(28–30), electrophysiological examination (31) and so on. PAM is a 
device combined with a slit lamp that projects a light source containing 
a visual chart. Light is projected through the opacified refractive 
media to the retina, thus providing a prediction of the patient’s 
postoperative VA. Gus et al. have compared the accuracy of PAM in 
predicting VA in patients with cataracts with different degrees of lens 
opacities (22). VA at 3 months post-operatively was considered to 
be accurate if it was between the upper and lower rows of the predicted 
VA. It was found that for mild to moderate cataracts, the accuracy of 
PAM ranged from 50 to 58.3%, for patients with severe opacities, the 
accuracy was only 27.8%, and for patients with extremely severe 
opacities, the accuracy was only 6.7%. LI projects two coherent beams 
from a He-Ne laser into the pupil to produce interference fringes, the 
width of which depends on the distance between the two beams and 
can be varied to correspond to the visual acuity chart by changing the 
width of the interference fringes (25). Similar to PAM, studies have 
found the accuracy of LI also needs to be enhanced (25–27). The 
photoreceptor cells of the retina produce a complex series of electrical 
responses upon light stimulation that can be  recorded by visual 
electrophysiological examination. Based on the characteristics of its 
waveform, it can basically reflect the functional condition of the retina 
and the status of the optic nerve. Salvador et al. have performed visual 
electrophysiological examinations on mature cataract patients and 
found that the magnitude of each parameter in the visual 
electrophysiological examination was not affected by the degree of 
lens opacities (31). Analysis of waveform amplitude and latency 
prolongation time could indirectly reflect whether the postoperative 
visual prognosis was good to a certain extent. In addition, some 
studies have tried to explore the correlation between massive 
preoperative biological parameters and postoperative BCVA in 
patients with cataracts (15, 32–34). The preoperatively observed 
macular disease is found to be the factor most strongly associated with 
poor visual outcomes (15). However, the accuracy of the methods 
mentioned above needs to be further improved, and some require the 
subjective cooperation of patients, which is difficult in some cases. In 
the present study, we extracted the macular morphological features on 
OCT images and developed AI models to predict the postoperative 
VA in patients with cataracts. The prediction performance of the 
models was evaluated, and satisfactory prediction results 
were achieved.

With the rapid development of computational power and learning 
algorithms, AI is widely used in the field of ophthalmology, and it has 
also been used in predicting postoperative VA in patients with 
cataracts. Alexeeff et al. have compared the accuracy of three machine 
learning models for predicting BCVA following cataract surgery using 
data recorded in the electronic health system (35). Preoperative 
BCVA, age, and age-related macular degeneration are found to be the 
most critical variables in the final model, which are the key factors of 
our research. However, they just roughly distinguish patients with 
better or worse postoperative BCVA than 20/50. None of the three 
algorithms can accurately predict postoperative VA. Wei et al. have 

FIGURE 4

Grad-CAM results of normal macular and macular with epiretinal 
membrane.

TABLE 3 The performance of five models in predicting postoperative 
BCVA in the validation and test datasets.

Models Validation dataset Test dataset

MAE RMSE MAE RMSE

I 0.1499 0.2761 0.1390 0.2624

II 0.1335 0.2504 0.1377 0.2778

III 0.1392 0.2613 0.1356 0.2730

IV 0.1355 0.2307 0.1303 0.2566

V 0.1250 0.2284 0.1194 0.2362
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developed an OCT-based DL approach to predict postoperative BCVA 
in patients with high myopic (13). The ensemble model is found to 
show stably outstanding performance in internal and external test 
datasets. Xiang et al. have designed a system based on OCT images to 
predict the postoperative long-term BCVA of children with congenital 
cataracts (14). Six machine learning algorithms are applied. For 3-year 
predictions, the MAEs and RMSEs are 0.1482–0.2117 logMAR and 
0.1916–0.2942 logMAR, and for 5-year predictions, they are 0.1198–
0.1845 logMAR and 0.1692–0.2537 logMAR. Nevertheless, no 
anatomic or morphological macular features are incorporated into the 
study, and these data are less explicable. In our current study, 
we developed AI models based on preoperative OCT images and 
BCVA to predict the postoperative BCVA in patients with cataracts. 
The prediction performances of the models were further evaluated to 
clarify whether the model could accurately predict exact postoperative 
BCVA and whether the improvement (0.2logMAR) of postoperative 
BCVA could be predicted precisely. Promising results in the validation 
and test datasets were achieved, when the input information contained 
preoperative OCT images with horizontal and vertical B-scans, 
macular morphological feature indices, and preoperative BCVA. AI 
models that integrate large sample sizes of preoperative VA and 
macular OCT image morphological parameters are promising for 
postoperative VA prediction in patients with cataracts.

Further, the performance of the models was compared. When 
preoperative BCVA was added as input information, model IV 
performed better than Model I-III. It suggested that preoperative VA, 
affected by both cataract and fundus diseases, was a meaningful 
predictor of postoperative VA in patients with cataracts. Studies have 
shown that preoperative VA is related to postoperative VA to some 
extent, which is consistent with our study (15, 35). Model V containing 
preoperative OCT images with horizontal and vertical B-scans, 
macular morphological feature indices, and preoperative BCVA had 
a better performance in predicting postoperative BCVA, with the 
lowest MAE and RMSE, as well as the highest precision, sensitivity, 
and accuracy in the validation and test datasets, respectively. Geng 
et al. (36) have predicted the visual outcomes in patients undergoing 
macular hole surgery with several macular morphological parameters 
on OCT, including macular hole index, tractional hole index, hole 

form factor, area ratio factor (ARF), and volume ratio factor. ARF is 
found to efficiently express three-dimensional characteristics of the 
macular hole and has achieved good prediction results 
(sensitivity = 0.769, specificity = 0.786, AUC = 0.806). Sacconi et al. (37) 
have identified that structural OCT features are associated with BCVA 
outcomes in patients with type 3 macular neovascularization 
secondary to age-related macular degeneration after 3-year treatment 
with anti-VEGF injections. The presence of subretinal fluid at baseline 
is found to be the most significant independent negative predictor of 
functional outcomes. These studies have proved that the 
morphological abnormalities of the macula are closely associated with 
vision in ophthalmic diseases. In our present study, compared with a 
single macular OCT image, the more specific macular morphological 
indices, the higher accuracy of the model was revealed in predicting 
VA. After integrating macular morphological parameters, the 
prediction performance of BCVA was significantly improved, which 
was in consistent with the previous studies. These results suggested 
that OCT images, macular morphological features, and preoperative 
BCVA were all helpful for predicting postoperative BCVA in patients 
with cataracts.

Additionally, deep learning has yielded fresh perspectives on the 
formerly elusive correlation between retinal morphology and 
physiological parameters. Avinash et al. have trained a DL model to 
predict the refractive error from fundus images using two different 
datasets with high accuracy (38). For all types of refractive errors, both 
individual and mean attention maps, emphasizing the features that are 
indicative of refractive error, exhibited a distinct focus on the fovea. 
Yoo et al. (39) have evaluated a DL model for estimating uncorrected 
refractive error using retinal OCT images containing the retina and 
optic disc. It has been discovered that morphological features in OCT 
images contribute to detecting eyes with refractive errors. These 
studies suggest that the retina contains a wealth of previously 
unknown information, and that the combination of AI and retinal 
images may potentially lead to unexpected breakthroughs in 
the future.

Our study has several limitations. A study including data from 
multiple medical centers with a larger sample size will be helpful for 
AI model training. Besides, in the current study, we extracted and 

TABLE 4 The performance of five models in predicting postoperative BCVA improvement in the validation and test dataset.

Model Precision (%) Sensitivity (%) Accuracy (%) F1 (%) AUC p value

Validation dataset

I 90.1 86.7 83.2 88.4 0.813 0.016*

II 90.3 89.4 85.1 89.8 0.815 0.025*

III 88.6 92.1 85.4 90.3 0.826 0.083

IV 89.4 91.7 85.7 90.5 0.816 0.015*

V 90.7 93.4 88 92 0.856 –

Test dataset

I 90.8 83.4 81.2 86.9 0.802 0.001*

II 90.5 84 81.5 87.1 0.786 <0.001*

III 90 90.6 85.4 90.3 0.81 0.017*

IV 90.9 91.2 86.6 91 0.804 0.003*

V 91.7 93.8 89 92.7 0.854 –

*Statistically significant versus Model V.
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analyzed the external morphological features of the macula, and 
stratification within the retina may further improve the prediction 
performance of AI models. The model primarily focused on the 
external morphology of the macula and may not be  optimal for 
diagnosing specific macular pathologies such as subretinal fluid or 
macular edema, without large-scale manually-labeled lesion data. 
Since the opacification of refractive media can interfere with the 
quality of macular OCT image and further affect the observation and 
extraction analysis of macular area morphology, patients with 
relatively good quality macular OCT images were mainly selected for 
this study, and the prediction accuracy of the model needs further 
study for patients with severe dense cataract. Further investigation and 
exploration are needed to integrate with more ophthalmic 
examinations, such as fundus photography and visual sensitivity, to 
establish a more informative database for a comprehensive assessment 
of the patient’s eyes, leading to a more accurate prediction of 
postoperative VA.

5. Conclusion

In summary, our study constructed a novel DL model to predict 
postoperative BCVA, showing a satisfying result in predicting 
postoperative BCVA in patients with cataracts. A combination AI 
model of OCT images, macular morphological feature indices, and 
preoperative BCVA was helpful for predicting postoperative BCVA in 
patients with cataracts.
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