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Background: Sepsis-associated acute kidney injury (S-AKI) is a major contributor

to mortality in intensive care units (ICU). Early prediction of mortality risk is crucial

to enhance prognosis and optimize clinical decisions. This study aims to develop a

28-day mortality risk prediction model for S-AKI utilizing an explainable ensemble

machine learning (ML) algorithm.

Methods: This study utilized data from the Medical Information Mart for Intensive

Care IV (MIMIC-IV 2.0) database to gather information on patients with S-AKI.

Univariate regression, correlation analysis and Boruta were combined for feature

selection. To construct the four ML models, hyperparameters were tuned via

random search and five-fold cross-validation. To evaluate the performance of

all models, ROC, K-S, and LIFT curves were used. The discrimination of ML

models and traditional scoring systems was compared using area under the

receiver operating characteristic curve (AUC). Additionally, the SHapley Additive

exPlanation (SHAP) was utilized to interpret the ML model and identify essential

variables. To investigate the relationship between the top nine continuous

variables and the risk of 28-day mortality. COX regression-restricted cubic splines

were utilized while controlling for age and comorbidities.

Results: The study analyzed data from 9,158 patients with S-AKI, dividing them

into a 28-day mortality group of 1,940 and a survival group of 7,578. The results

showed that XGBoost was the best performing model of the four ML models

with AUC of 0.873. All models outperformed APS-III 0.713 and SAPS-II 0.681. The

K-S and LIFT curves indicated XGBoost as the most effective predictor for 28-

day mortality risk. The model’s performance was evaluated using ROCpr curves,

calibration curves, accuracy, precision, and F1 scores. SHAP force plots were

utilized to interpret and visualize the personalized predictive power of the 28-

day mortality risk model. Additionally, COX regression restricted cubic splines

revealed an interesting non-linear relationship between the top nine variables and

28-day mortality.

Conclusion: The use of ensemble ML models has shown to be more effective

than the LR model and conventional scoring systems in predicting 28-day
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mortality risk in S-AKI patients. By visualizing the XGBoost model with the best

predictive performance, clinicians are able to identify high-risk patients early on

and improve prognosis.

KEYWORDS

sepsis-associated acute kidney injury, ensemble machine learning, prediction model,
XGBoost, MIMIC-IV database

Introduction

Sepsis continues to be a major cause of life-threatening
conditions in critically ill patients. The excessive pro- or anti-
inflammatory response can lead to cellular and organ dysfunction,
ultimately resulting in death (1, 2). The most significant sepsis-
associated organ disorder is acute kidney injury (AKI), which
has a high prevalence (2, 3). AKI is an independent risk factor
for high mortality (3, 4), and contributes to 58.6% of the excess
attributable mortality (5). Sepsis-associated acute kidney injury (S-
AKI) can be caused by microvascular dysfunction, inflammation,
and metabolic reorganization. These play a crucial role in the
development of S-AKI (3). However, the high heterogeneity in
S-AKI is associated with multiple pathogenic mechanisms (3, 4),
and there are currently no effective preventive or therapeutic
measures available. The treatment for S-AKI is reactive and non-
specific, which can result in a high mortality rate due to the
difficulty in predicting AKI at the time of patient presentation. As
such, salvage therapy is often the primary treatment option (3).
However, providing early warning to patients at high mortality risk
can help clinicians stratify patient management and improve the
prognosis of patients with S-AKI.

Acute kidney injury, is a frequently encountered clinical
syndrome that often accompanies critical illness. Its developmental
process is complex and multifaceted. It is not sufficient to rely
on a single variable to predict the mortality rate associated with
AKI. Instead, combining multiple factors would be a more accurate
way to forecast the prognosis of AKI (3). In the field of intensive
care, conventional scoring systems that integrate clinical symptoms
and laboratory data have been extensively utilized to forecast the
prognosis of severely ill patients. Notably, the Sequential Organ
Failure Assessment (SOFA), Acute Physiology Score III (APS-III),
and Simplified Acute Physiology Score II (SAPS-II) scores have
demonstrated robust predictive capabilities (6, 7). The prediction

Abbreviations: DM-without-cc, diabetes mellitus without complications;
DM-with-cc, diabetes mellitus with complications; AMI, acute myocardial
infarction; CHF, congestive heart failure; LMR, lymphocyte to monocyte
ratio; CeVD, cerebrovascular disease; NLR, neutrophil to lymphocyte ratio;
SBP, systolic blood pressure; DBP, diastolic blood pressure; MBI, body mass
index; ROX_HR, the ratio of ROX index over HR (beats/min), multiplied by a
factor of 100; PF_ratio, PaO2/FiO2 ratio; M_solid_tumor, metastatic solid
tumor; BUN, blood urea nitrogen; S-AKI, sepsis-associated acute kidney
injury; ICU, intensive care units; ML, machine learning; MIMIC-IV, the Medical
Information Mart for Intensive Care IV; SMOTE, The Synthetic Minority
Oversampling Technique; RF, random forest; GBM, Gradient Boosting
Machine; XGBoost, Extreme Gradient Boosting; LR, logistic regression; AUC,
the area under the receiver operating characteristic curve; SHAP, SHapley
Additive exPlanation.

of 90-day mortality caused by severe infection-related AKI in China
was carried out using COX regression analysis. The study identified
several independent predictor variables including age, emergency
ICU admission, post-surgical cases, admission diagnosis, AKI
etiology, disease severity score, mechanical ventilation, use of
boosters and blood outcomes such as albumin, potassium, and
pH (8). In a study analyzing 30-day mortality in elderly patients
with sepsis, a multivariate logistic regression-based analysis was
conducted and resulted in a more accurate prediction with an
AUC of 0.831 (9). Additionally, a multivariate prediction model for
ICU and in-hospital death in AKI patients undergoing continuous
renal replacement therapy found to be more accurate than SOFA,
APACHE-II, and SAP-II scores (10). Recent trends suggest that the
implementation of big data technologies in healthcare, specifically
machine learning, has led to an improvement in the quality of
care and optimization of healthcare processes and management
strategies (11, 12). Studies have shown that machine learning
prediction models have been successful in early warning of AKI
occurrence and mortality risk (13, 14), with the XGBoost model
achieving a high performance in predicting S-AKI (AUC 0.821)
(15). Zhou et al. utilized data from the MIMIC III database to create
a machine learning model for predicting AKI within 48 h of sepsis-
related ARDS cases. Their model outperformed the discriminatory
ability of SOFA (16). This highlights the potential of machine
learning algorithms in accurately predicting the development
of S-AKI.

Recent studies have shown that machine learning algorithms
have achieved better performance in predicting S-AKI prognosis.
For instance, the XGBoost model was constructed in a recent
study to outperform the SOFA score and SAP-II in predicting
mortality at different periods based on dynamic data of S-AKI cases
updated every 12 h in the MIMICIV public database (14). However,
there is a lack of research comparing multiple ensemble machine
learning algorithms for early predict on of the high risk of 28-day
mortality in S-AKI. Ensemble ML algorithms differ from traditional
prediction models like logistic regression in that they do not involve
rigorous screening of variables or adjustment for data imbalance
during the construction process. This can lead to overfitting and
classification boundary shifting in the resulting models. Previous
studies on ML models have not extensively explored the linear or
non-linear relationships between significant individual variables of
the prediction model and the resulting outcomes.

This project aims to train and test multiple ensemble ML
models using S-AKI data from the MIMIC-IV library. The goal
is to select the best model that can provide early warning of
the 28-day mortality risk in S-AKI cases. The interpretation and
visualization of the prediction models are done using SHAP
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values. Specifically, SHAP force plots are analyzed to identify
important mortality-related variables for individual cases. We
utilized COX regression-restricted cubic spline plots to analyze
the correlation between crucial, independent variables and 28-
day mortality. Our ultimate goal is to develop a prediction model
that can aid in treatment decisions for patients with S-AKI who
are at a high risk of 28-day mortality, ultimately improving their
chances of survival.

Materials and methods

Participants

The subject case dataset was obtained from the Medical
Information Mart Intensive Care IV (MIMIC IV 2.0)
database, which provides extensive information on more
over 250,000 patients who were admitted to Beth Israel
Deaconess Medical Center in Boston, Massachusetts, USA,
from 2008 to 2021. The MIMIC IV public database was
approved by the Institutional Review Board (IRB) and has
undergone a thorough deidentification process. The database
is freely available to researchers worldwide after receiving joint
approval from the ethics review boards of MIT and Harvard
Medical School. Informed consent was waived as the study
was retrospective. To request access to the database, one
of the investigators (HP) obtained a certificate (certification
number 50527660) by passing the Human Research Participant
Protection Examination.

Patients

The study included adult patients aged ≥18 years or older
who met the Third International Consensus Definitions for
Sepsis and Septic Shock (Sepsis-3) criteria (2), which requires
the presence of known or suspected infection along with organ
dysfunction wand a Sequential Organ Failure Assessment (SOFA)
score of 2 or higher. Additionally, the study also included
patients with AKI that was diagnosed and staged according to
the 2012 Kidney Disease: Improving Global Outcomes (KDIGO)
guidelines. The study excluded patients with renal disease,
such as glomerulonephritis, diabetic nephropathy, hypertensive
nephropathy, hereditary nephritis, and chronic renal failure caused
by various other diseases. Additionally, only the first hospitalization
was considered and patients with ICU stays (LOS) of less than 24 h
were also excluded.

The study collected a comprehensive set of data on each patient,
including their demographics (3 items), vital signs, blood gas
analysis, blood cell count, blood biochemistry, hemodialysis phase
reduction, and co-morbidities. Additionally, the study recorded
information on AKI staging, use of an invasive ventilator, and
urine output 24 h after ICU admission, resulting in a total of
60 variables. The study measured disease severity score (SOFA,
ASPIII, SAPAII) within 24 h of ICU admission, length of stay, ICU
time, 90-day mortality subgroup, in-hospital mortality subgroup,
and follow-up time from hospitalization to death. Participants
were divided into mortality and groups based on whether death
occurred within 28 days.

Outcomes

The primary outcome after ICU admission was death within
28 days. Secondary outcomes included hospital mortality, length of
stayin both the hospital and ICU, and COX regression-restricted
cubic spline analysis.

Statistical methods

In our study, we excluded any variables with missing data
greater than 20% of the case data. For the remaining missing
values, we used the random forest method to interpolate. We
recorded physiological data of patients every hour and used the
mean value. For laboratory data, we selected the maximum or
minimum value based on the basis that had the greatest impact on
outcome in the clinic.

In the baseline data table, continuous variables are presented
as median (IQR), and categorical variables as n (%). Appropriate
statistical tests such as the Mann–Whitney U test, Student’s t-test,
chi-square test, or Fisher’s exact test were used to compare baseline
characteristic variables.

In the variable screening process, we first eliminated variables
with P > 0.05 using univariate logistic regression analysis as they
were deemed less likely to be relevant for 28-day mortality. We
then removed variables with correlations greater than 0.75 through
eliminated by correlation analysis. Finally, we used the “Boruta”
package with the random forest algorithm to screen for essential
characteristic variables to be included in the final model.

To calculate the lambda value of each variable in the
right-skewed distribution, we used the Box-Cox method. We
then performed a series of transformations, including square
root, inverse, log, and inverse transformations, to obtain the
transformed data-set.

To address data imbalance, we utilized the Synthetic Minority
Oversampling Technique (SMOTE) algorithm during the ensemble
machine learning model fitting process. The data-set was divided
into training and testing sets at a 7:3 ratio. Ensemble learning
algorithms, known for their superior performance in machine
learning, were employed for the model fitting process. We utilized
four models to construct the prediction model: Logistic regression
(LR) as the baseline model, and Random Forest (RF), Gradient
Boosting Machine (GBM), and Extreme Gradient Boosting Tree
(XGBoost) representing the Bagging and Boosting algorithms. The
hyperparameters were tuned using the random search method,
and the ensemble machine learning model was fitted using the
5-fold cross-validation method. These models were automatically
constructed using the ’creditmodel’ data package. The performance
of the four ensemble learning models was evaluated using ROC,
K-S, and LIFT curves. AUC values were utilized to compare the
differentiation ability of the prediction models with two traditional
scoring systems, ASP III and SAPS II, ultimately selecting the best
prediction model Additional evaluation of the prediction models’
performance was conducted using ROCpr curves, calibration
curves, accuracy, precision, and F1-score. SHapley’s Additional
exPlanation (SHAP) is a model-agnostic technique based on
cooperative game theory. It is used to explain the predictions
filtered through the best ensemble machine learning model. The
model construction process was shown in Figure 1A.
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The study will also analyze hospital mortality, hospital length of
stay, and ICU length of stay as secondary outcomes. In particular,
the COX regression analysis will focus on the relationship between
important continuous variables and the 28-day risk of death.
To analyze the relationship between important continuous data
variables and 28-day mortality, we will use COX regression
restricted cubic splines with 3 knots. This will be done after
adjusting for age and comorbidities, based on the ranking of the
most important variables in the prediction model. Both linear and
non-linear relationships will be examined.

The analyses were conducted using R version 4.2.1. Our
findings are fully reproducible, and the data is available online
through the MIMIC-IV(2.0) database.

Result

Baseline characteristics

In this study, we extracted data from 69,639 first ICU
admissions in MIMIC IV (2.0), and identified 9,158 patients who
were diagnosed with sepsis and AKI, had no previous renal disease,
and were aged ≥18 years based on nadir criteria. The patients were
then divided into two groups: a mortality group (1,940 cases) and
a survival group (7218 cases) based on whether they died within
28 days (Figure 1B). The 28-day mortality rate for S-AKI from
the MIMIC IV (2.0) dataset was found to be 21.2%. The mortality
and survival groups showed significant differences in most baseline
variables, as indicated by Tables 1, 2. Patients who died had higher
SOFA, APSIII, and SAPS II scores compared to those who survived,
as shown in Table 1.

Data cleaning and features selection

In our study, we excluded variables with missing values greater
than 20%. For the remaining variables, we used the random
forest method to perform multiple interpolations on the missing
values (Supplementary Figure 1). The interpolation density plot
demonstrated that the five interpolated datasets closely matched
the distribution of the original data set (Supplementary Figure 2).
The complete data set, consisting of 60 independent variables, was
obtained after selecting the best-interpolated data set.

Univariate regression analysis was performed for all variables,
and those with a p-value greater than 0.05 were removed. The
following variables were excluded: ROX, Platelets, Basophils,
Lymphocytes, PLR, Peripheral vascular disease, Chronic
pulmonary disease, Rheumatic disease, Peptic ulcer disease,
AIDS, Dialysis, and Dialysis type. The study conducted a univariate
regression analysis on all variables and presented the results using
forest plots (Supplementary Figure 3). In the correlation study
of continuous variables, those with a correlation greater than
0.75 were eliminated, leaving only the variable with the most
significant impact on 28-day death. As a result, Base excess was
eliminated (Supplementary Figure 4). The Boruta algorithm,
which is based on random forest, was used to sort the importance
of variables for further variable screening. This resulted in the
identification of 38 variables that were deemed appropriate

FIGURE 1

(A) Model development process and (B) flowchart of the study.

for model fitting (as shown in Figure 2). Prior to fitting the
machine learning model, data distribution analysis was performed
on all continuous variables, and box plots were obtained (as
demonstrated in Supplementary Figure 5A). To address right-
skewed distribution, we utilized the Box-Cox method to calculate
the lambda value for each variable. For variables with a lambda
value close to -0.5, such as BMI, Pao2, Lactate, Creatinine, BUN,
and Anion gap, we performed a square root inverse conversion.
We performed log conversion for the lambda values of Glucose,
LMR, Pao2/Fio2 ratio, Urine output, WBC, Neutrophils, NLR,
ROX-HR, and Monocytes, which were close to 0. For Bicarbonate,
which had a lambda value close to 0.5, we performed square root
conversion. The lambda value of Respiration rate, Paco2, and
Potassium were close to -1, so we performed log conversion for
these variables as well. The effect after the transfer was shown
by a box plot (as demonstrated in Supplementary Figure 5B).
The transformed data were integrated with other untransformed
data to create a new dataset for building and internally validating
the model.
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TABLE 1 Demographic and clinical characteristics of 28-day survival and mortality group.

[ALL] Survival group Mortality group p-Value

N = 9,158 N = 7,218 N = 1,940

Characteristics (median [IQR] and n (%))

Age (years) 67.0 [57.0–78.0] 67.0 [56.0–77.0] 71.0 [59.0–82.0] <0.001

Gender <0.001

Female 3,916 (42.8%) 2,992 (41.5%) 924 (47.6%)

Male 5,242 (57.2%) 4,226 (58.5%) 1,016 (52.4%)

BMIa 29.2 [25.0–34.3] 29.7 [25.4–34.7] 27.6 [23.4–32.7] <0.001

Urine output (ml) 1,280 [815–1,875] 1,390 [931–1,975] 862 [439–1,415] <0.001

Severity score (median [IQR] and mean (SD))c

APSIII 52.0 [37.0–75.0] 47.0 [34.0–66.0] 79.0 [59.0–101] 0.000

SOFA 3.00 [2.00–5.00] 3.00 [2.00–4.00] 4.00 [2.00–5.00] <0.001

SAPSII 39.0 [31.0–50.0] 37.0 [29.0–46.0] 50.0 [40.0–61.0] <0.001

Vital signs (median [IQR] and mean (SD))

Respiratory rate (cpmd) 28.0 [24.0–32.0] 27.0 [24.0–31.4] 30.0 [25.0–34.0] <0.001

Heart rate (cpmd) 105 [92.0–120] 103 [91.0–118] 113 [97.0–128] <0.001

Systolic blood pressure (mmHg) 86.0 [78.0–94.0] 87.0 [79.0–95.0] 82.0 [73.0–92.0] <0.001

Diastolic blood pressure (mmHg) 44.0 [38.0–50.0] 44.0 [39.0–50.0] 43.0 [36.0–49.0] <0.001

Mean arterial pressure (mmHg) 57.0 [50.0–63.0] 57.0 [51.0–63.0] 54.0 [47.0–61.0] <0.001

Temperature (◦C) 37.4 [37.0–38.0] 37.4 [37.1–38.0] 37.3 [36.9–38.0] <0.001

SpO2 (%) 93.0 [90.0–95.0] 93.0 [91.0–95.0] 92.0 [87.0–94.0] <0.001

ROX indexb 7.11 [4.89–9.89] 7.18 [5.04–9.83] 6.81 [4.26–10.1] <0.001

ROX–HR indexb 6.82 [4.48–9.95] 6.98 [4.71–10.0] 6.12 [3.66–9.55] <0.001

Breathing assistance (median [IQR]), n (%)

Ventilation 0.001

No vetilation 3,832 (41.8%) 3,087 (42.8%) 745 (38.4%)

Ventilation 5,326 (58.2%) 4,131 (57.2%) 1,195 (61.6%)

Dialysis 0.434

No 8,753 (95.6%) 6,892 (95.5%) 1,861 (95.9%)

Yes 405 (4.42%) 326 (4.52%) 79 (4.07%)

Dialysis type 0.465

No 8,753 (95.6%) 6,892 (95.5%) 1,861 (95.9%)

CRRTe 248 (2.71%) 196 (2.72%) 52 (2.68%)

IHDe 157 (1.71%) 130 (1.80%) 27 (1.39%)

In-hospital mortality 0.000

Survival 7,467 (81.5%) 7,103 (98.4%) 364 (18.8%)

Mortality 1,691 (18.5%) 115 (1.59%) 1,576 (81.2%)

Recorded time of death (days) 24.0 [7.00–178] 202 [73.0–681] 7.00 [2.00–14.0] 0.000

Hospitalization time (days) 9.17 [5.55–16.5] 9.84 [6.05–17.8] 6.88 [3.07–12.6] <0.001

ICU time (days) 3.43 [1.92–7.11] 3.24 [1.86–6.92] 4.16 [2.20–7.94] <0.001

AKI stagef <0.001

1 2873 (31.4%) 2382 (33.0%) 491 (25.3%)

2 4765 (52.0%) 3789 (52.5%) 976 (50.3%)

3 1520 (16.6%) 1047 (14.5%) 473 (24.4%)

(Continued)
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TABLE 1 (Continued)

[ALL] Survival group Mortality group p-Value

N = 9,158 N = 7,218 N = 1,940

Comorbidities

Myocardial infarct 0.054

No 7,636 (83.4%) 6,047 (83.8%) 1,589 (81.9%)

Yes 1,522 (16.6%) 1,171 (16.2%) 351 (18.1%)

Congestive heart failure 0.011

No 6,792 (74.2%) 5,397 (74.8%) 1,395 (71.9%)

Yes 2,366 (25.8%) 1,821 (25.2%) 545 (28.1%)

Peripheral vascular disease 0.128

No 8,103 (88.5%) 6,367 (88.2%) 1,736 (89.5%)

Yes 1,055 (11.5%) 851 (11.8%) 204 (10.5%)

Cerebrovascular disease <0.001

No 7,958 (86.9%) 6,370 (88.3%) 1,588 (81.9%)

Yes 1,200 (13.1%) 848 (11.7%) 352 (18.1%)

Dementia <0.001

No 8,808 (96.2%) 6,994 (96.9%) 1,814 (93.5%)

Yes 350 (3.82%) 224 (3.10%) 126 (6.49%)

Chronic pulmonary disease 0.372

No 6,806 (74.3%) 5,380 (74.5%) 1,426 (73.5%)

Yes 2,352 (25.7%) 1,838 (25.5%) 514 (26.5%)

Rheumatic disease 1.000

No 8,841 (96.5%) 6,968 (96.5%) 1,873 (96.5%)

Yes 317 (3.46%) 250 (3.46%) 67 (3.45%)

Peptic ulcer disease 0.075

No 8,890 (97.1%) 7,019 (97.2%) 1,871 (96.4%)

Yes 268 (2.93%) 199 (2.76%) 69 (3.56%)

Mild liver disease <0.001

No 7,610 (83.1%) 6,201 (85.9%) 1,409 (72.6%)

Yes 1,548 (16.9%) 1,017 (14.1%) 531 (27.4%)

Diabetes mellitus without complications 0.015

No 6,934 (75.7%) 5,424 (75.1%) 1,510 (77.8%)

Yes 2,224 (24.3%) 1,794 (24.9%) 430 (22.2%)

Diabetes mellitus with complications 0.023

No 8,737 (95.4%) 6,867 (95.1%) 1,870 (96.4%)

Yes 421 (4.60%) 351 (4.86%) 70 (3.61%)

Paraplegia <0.001

No 8,755 (95.6%) 6,935 (96.1%) 1,820 (93.8%)

Yes 403 (4.40%) 283 (3.92%) 120 (6.19%)

Malignant cancer <0.001

No 7,917 (86.4%) 6,385 (88.5%) 1,532 (79.0%)

Yes 1,241 (13.6%) 833 (11.5%) 408 (21.0%)

Severe liver disease <0.001

No 8,314 (90.8%) 6,684 (92.6%) 1,630 (84.0%)

Yes 844 (9.22%) 534 (7.40%) 310 (16.0%)

(Continued)
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TABLE 1 (Continued)

[ALL] Survival group Mortality group p-Value

N = 9,158 N = 7,218 N = 1,940

Metastatic solid tumor <0.001

No 8,586 (93.8%) 6,933 (96.1%) 1,653 (85.2%)

Yes 572 (6.25%) 285 (3.95%) 287 (14.8%)

AIDS 0.487

No 9,117 (99.6%) 7,188 (99.6%) 1,929 (99.4%)

Yes 41 (0.45%) 30 (0.42%) 11 (0.57%)

Continuous variable data are presented as median (SD or interquartile ranges, IQR). Classified variable data are presented as n (%). Unless otherwise stated, the Mann–Whitney U test is used
for the continuous variable, the χ2 test, or the Fisher’s exact test for the categorical variable.
aBMI, body mass index.
bROX, ratio of SpO2/FIO2 to respiratory rate; ROX-HR, the ratio of ROX index over HR (beats/min), multiplied by a factor of 100.
cAPSIII, Acute Physiology Score III; SAPSII, Simplified Acute Physiology Score II; SOFA, Sequential Organ Failure Assessment.
dcpm, counts per minute.
eCRRT: continuous renal replacement therapy; IHD: Intermittent Hemodialysis.
fAKI, acute kidney injury.

Development of 28-day mortality risk
prediction model

Out of the total number of patients, 1,940 individuals passed
away within 28 days, resulting in a mortality rate of 21.2% in
the dataset. The balanced dataset was created using the SMOTE
algorithm and then divided into a training and testing set with
a ratio of 7:3. The AUC values for the four prediction models
in the testing set were as follows: XGBoost model had an AUC
value of 0.873 (with a range of 0.860-0.886), GBM model had
an AUC value of 0.865 (with a range of 0.851-0.878), RF model
had an AUC value of 0.849 (with a range of 0.834-0.863), and LR
model had an AUC value of 0.850 (with a range of 0.836-0.864).
The study found that all four machine learning models performed
similarly and were more accurate than the traditional scoring
systems ASPIII (0.713 95% CI 0.694-0.733) and SAPS II (0.681 95%
CI 0.661-0.701). The ROC curve analysis demonstrated that the
ensemble machine learning algorithm was significantly better than
outperforms the traditional scoring system in predicting the 28-day
mortality risk (as shown in Figure 3A). The K-S curves depicted
in Figures 3B–E indicate that XGBoost exhibits a slightly superior
differentiation ability compared to the other prediction models.
Additionally, the LIFT curve (Figure 4) demonstrates that XGBoost
outperforms the other models in the 40-50% position of the testing
set. This could be attributed to XGBoost’s algorithm, which has
demonstrated exceptional learning performance in tabular data,
and its robustness to noise, which is attributed to its regularization
technique. The ensemble machine learning algorithm, XGBoost,
was selected to build the 28-day mortality risk prediction model for
S-AKI.

XGBoost model optimization and
visualization

The XGBoost model was optimized and evaluated using the
“xgboost” package. The area under the precision-recall curve
(AUCpr) was found to be 0.873, which was similar to the area
under the ROC curve (Figure 5A). This suggests that the model

has comparable predictive ability for both death and survival. The
model’s accuracy, precision, recall, and F1-score were 0.773, 0.724,
0.896, and 0.801, respectively. The results indicate that the XGBoost
model performed well in predicting mortality and survival groups.
Additionally, the Recall metric outperformed Accuracy, which
minimizes the possibility of under diagnosing mortality cases.
The calibration curve analysis demonstrated that the model was
accurately calibrated for predicting 28-day mortality risk, with no
significant overestimation or underestimation (Figure 5B).

To determine the contribution of each variable to the XGBoost
model, SHAP values were utilized. The importance of each feature
was calculated using the Shapley value, which compared the model’s
prediction with and without the feature using the “shapviz” package
(Figure 5C). The logarithm of urine output during the first 24 h
of ICU admission was found to be the most important variable
in predicting the 28-day mortality risk in patients with S-AKI.
Among the important variables, pulse oxygen, temperature, age,
and pH et al. are included. Cerebrovascular disease is one of the
most significant comorbidities that affect the risk of death within
28 days. In Figures 5D–F, SHAP explanatory force plots were
used to analyze three cases in the test group (#266, #1066, and
#2066), Each variable’s Shapley value is represented by an arrow
that indicates an increase (red positive values) or decrease (yellow
negative values) in the prediction. The force plots also show the
main variables and their corresponding values. The variables that
have a significant influence on the prediction vary from case to case.

Secondary outcomes

Our analysis of essential patient information revealed that the
in-hospital mortality rate of S-AKI was 18.2%. Of these patients,
81.2% died within 28 days, with the primary time of death occurring
within this timeframe. Additionally, 364 cases (18.8%) resulted
in death within 28 days after discharge from the hospital. The
death group had a shorter hospitalization duration compared to the
survival group, by three days (6.88 [3.07–12.6] vs. 9.84 [6.05–17.8]).
However, the death group had a slightly longer duration of ICU stay
compared to (4.16 [2.20–7.94] vs. 3.24 [1.86–6.92]). It was observed
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TABLE 2 Laboratory results of all patients within 24 h after admission to ICU.

[ALL] Survival group Mortality group p-Value

N = 9158 N = 7218 N = 1940

Arterial blood gas analysis (median [IQR] and mean (SD))

pH 7.31 [7.24–7.36] 7.31 [7.26–7.36] 7.28 [7.17–7.36] <0.001

PaO2 (mmHg) 75.0 [46.0–103] 80.0 [52.0–108] 55.0 [39.0–84.0] <0.001

PaCO2 (mmHg) 47.0 [41.0–54.0] 47.0 [42.0–54.0] 47.0 [40.0–57.0] 0.384

PaO2/FiO2 ratio 168 [100–248] 175 [108–254] 134 [78.0–226] <0.001

Base excess (mmol/L) −3.00 [−7.00 to 0.00] −3.00 [−6.00 to 0.00] −5.00 [−10.00 to 0.00] <0.001

Lactate (mmol/L) 2.40 [1.70–3.80] 2.40 [1.60–3.50] 3.10 [1.80–5.90] <0.001

Anion gap (mmol/L) 16.0 [13.0–19.0] 15.0 [13.0–18.0] 18.0 [15.0–23.0] <0.001

Bicarbonate (mmol/L) 24.0 [22.0–26.0] 24.0 [22.0–26.0] 23.0 [20.0–26.0] <0.001

Complete blood cell count (median [IQR])

White cell count (× 109/L) 14.8 [10.8–19.8] 14.6 [10.8–19.3] 15.8 [10.9–21.8] <0.001

Neutrophil count (× 109/L) 8.87 [5.12–13.6] 8.57 [5.01–13.0] 10.3 [5.75–15.9] <0.001

Eosinophils count (× 109/L) 0.06 [0.01–0.15] 0.07 [0.01–0.16] 0.03 [0.00–0.11] <0.001

Lymphocyte count (× 109/L) 1.02 [0.58–1.65] 1.07 [0.62–1.71] 0.87 [0.47–1.42] <0.001

Monocytes count (× 109/L) 0.53 [0.31–0.85] 0.52 [0.31–0.83] 0.59 [0.34–0.97] <0.001

Platelets count (× 109/L) 155 [105–218] 155 [109–216] 154 [86.0–229] 0.018

NLR ratioa 7.88 [3.99–15.9] 7.33 [3.80–14.7] 10.5 [5.03–21.1] <0.001

PLR ratioa 145 [77.8–281] 140 [76.5–274] 167 [81.2–318] <0.001

LMR ratioa 1.90 [0.96–3.53] 2.00 [1.00–3.75] 1.44 [0.72–2.75] <0.001

Hemoglobin (g/L) 9.80 [8.30–11.3] 9.80 [8.40–11.3] 9.60 [7.97–11.4] <0.001

Blood chemistry results (median [IQR] and mean (SD))

Blood glucose (mg/dl) 101 [86.0–124] 100 [86.0–121] 107 [85.0–134] <0.001

Albumin (mg/dl) 3.20 [2.60–3.80] 3.30 [2.70–3.90] 3.00 [2.40–3.60] <0.001

Blood urea nitrogen (mmol/L) 21.0 [16.0–32.0] 20.0 [15.0–29.0] 30.0 [20.0–46.0] <0.001

Creatinine (mg/dl) 1.10 [0.80–1.60] 1.00 [0.80–1.40] 1.40 [1.00–2.20] <0.001

Blood chemistry results (median [IQR])

Calcium (mmol/L) 7.90 [7.40–8.40] 8.00 [7.40–8.40] 7.80 [7.10–8.40] <0.001

Chloride (mmol/L) 103 [99.0–106] 104 [100–107] 101 [97.0–105] <0.001

Sodium (mmol/L) 137 [134–140] 137 [135–139] 137 [133–140] <0.001

Potassium (mmol/L) 4.50 [4.10–5.00] 4.50 [4.10–4.90] 4.60 [4.10–5.30] <0.001

Continuous variable data are presented as median (SD or interquartile ranges, IQR). Classified variable data are presented as n (%). Unless otherwise stated, the Mann–Whitney U test is used
for the continuous variable, the χ2 test, or the Fisher’s exact test for the categorical variable.
aNLR, neutrophil to lymphocyte ratio; PLR, platelet to lymphocyte ratio; LMR, lymphocyte to monocyte ratio.

that the severity of S-AKI condition was directly proportional to the
length of ICU stay and increased the risk of early death.

The study found that the independent prediction performance
of the top nine continuous variables in the XGBoost model
for 28-day death risk was unclear. To detect non-linear or
linear relationships between these variables and 28-day mortality,
restricted cubic splines of COX regression were used. The
model was adjusted for age (67 years) and comorbidities such
as cerebrovascular disease, mild liver injury, and metastatic
solid tumors. The results are presented in Figure 6. The study
found that SpO2 and pH had a nearly linear relationship with
a higher risk of death associated lower values. Additionally,
variables such as 24-h urine volume (approximately 1500 ml),
temperature (approximately 37.3◦C), age (approximately 67 years),

glucose (approximately 100 mg/dl), and sodium (approximately
136 mmol/L) showed a U-shaped change, with the risk of death
being higher at the highest or lowest values relative to the bottom
of the curve. The initial levels of BUN (around 37 mg/dl) and WBC
(around 20 × 109/L) showed a steep increase, but later on, they
remained relatively stable. Moreover, there was no significant rise
in the mortality risk with the increase in these values.

Discussion

Acute kidney injury is a significant contributor to high
mortality rates in sepsis patients. Early recognition and
management are crucial in preventing the need for salvage
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FIGURE 2

Boruta-based feature selection results. DM-without-cc, diabetes mellitus without complications; DM-with- cc, diabetes mellitus with complications;
AMI, acute myocardial infarction; CHF, congestive heart failure; LMR, lymphocyte to monocyte ratio; CeVD, cerebrovascular disease; NLR, neutrophil
to lymphocyte ratio; SBP, systolic blood pressure; DBP, diastolic blood pressure; MBI, body mass index; ROX_HR, the ratio of ROX index over HR
(beats/min), multiplied by a factor of 100; PF_ratio, PaO2/FiO2 ratio; M_solid_tumor, Metastatic solid tumor; BUN, blood urea nitrogen.

FIGURE 3

(A) Using receiver operating characteristic (ROC) curve and area under the receiver operating characteristic curve (AUC) to compare the
discriminant ability of four models and traditional scoring. (B) K-S curve of 28-day mortality risk prediction model based on Logistic regression, test
K-S 0.53 and train K-S 0.6. (C) K-S curve of 28-day mortality risk prediction model based on the Random Forest, test K-S 0.54 and train K-S 0.77. (D)
K-S curve of 28-day mortality risk prediction model based on the GBM, test K-S 0.57 and train K-S 0.67. (E) K-S curve of 28-day mortality risk
prediction model based on the XGBoost, test K-S 0.58 and train K-S 0.87.
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FIGURE 4

(A) Lift curve of 28-day mortality risk prediction model based on Logistic regression. (B) Lift curve of 28- day mortality risk prediction model based
on the Random Forest. (C) Lift curve of 28-day mortality risk prediction model based on the GBM. (D) Lift curve of 28-day mortality risk prediction
model based on the XGBoost.

treatment and reducing mortality. However, traditional scoring
systems do not adequately meet clinical needs. This study proposes
using machine learning to predict the 28-day risk of death from
S-AKI in ICU inpatients, providing personalized predictions
to guide clinical stratification and grading management. The
risk of death in these patients has been a challenging aspect to
predict in the past.

Clinical symptoms and laboratory tests are frequently
employed in traditional scoring systems to predict critical patient
outcomes. Two representative methods are the ASP III and
SAPS II scores, both of which exhibit strong performance in
predicting in-hospital patient mortality (17–19). Previous research
has indicated that traditional scores were slightly less reliable
in predicting hospitalization due to Acute Kidney Injury (AKI)
or mortality within 60 days (6, 7). And it has not been used to
predict death within 28 days. In recent years, there has been a
growing interest in utilizing machine learning (ML) algorithms for
diagnostic and prognostic disease studies. These ML models have
shown to surpass traditional scoring methods in terms of predictive
accuracy (15, 16). In our study, we also observed that machine

learning models outperformed conventional scoring systems in
all 28-day mortality prediction for S-AKI patients. The XGBoost
algorithm-based 28-day mortality risk prediction model for S-AKI
achieved better prediction performance with an AUPR value of
0.873 and good calibration performance. Our XGBoost model
demonstrated a slightly better predictive performance compared to
another study that utilized the same database (MIMIC-IV), study
endpoint and ML algorithm. The area under the curve (AUC) was
0.850, while the other study achieved an AUC of 0.818 (14). Our
model’s superior performance of our model may be attributed
to the inclusion of co-morbidities in our predictor variables. It
is known that cases with co-morbidities have a higher mortality
rate in patients with sepsis. Compared with the traditional scoring
system, The use of machine learning prediction models can
potentially enhance clinicians’ decision-making and improve
disease prognosis.

The most critical step in training machine learning models
is data engineering, particularly data preprocessing. This process
plays a vital role in preventing the risk of overfitting and
classification boundary shifts, ultimately leading to improved
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FIGURE 5

(A) The precision-recall (PR) curve was used further to evaluate the classification ability of the XGBoost model; AUCPR (0.873) indicated the model
performed well in predicting case classification. (B) The calibration curve showed high coherence between the predicted and actual probability of
XGBoost model. (C) The features are ranked according to the sum of the SHAP values for all patients, and the SHAP values are used to show the
distribution of the effect of each feature on the XGBoost model outputs. (D) The sharp value force plot of case 266 was used to individually predict
the characteristic variables. (E) The sharp value force plot of case 1066 was used to individually predict the characteristic variables. (F) The sharp
value force plot of case 2066 was used to individually predict the characteristic variables.

predictive performance of the models. Despite the importance
of data preprocessing, it is often overlooked, and most machine
learning models still require thorough investigation in this
area (14–16). The S-AKI model we created to predict 28-day
mortality risk underwent thorough data processing. We utilized
a combination of univariate regression, correlation analysis, and
variable screening with Boruta of the random forest algorithm.
The Boruta algorithm is a powerful and robust variable screening
method that is sensitive to detecting causal variables while
minimizing the number of false positives, making it suitable
for both high-dimensional and low-dimensional datasets (20).
When working with unbalanced categorical datasets, machine
learning algorithms may not be reliable and their predictions
may be biased, leading to misleading accuracy. To address this
issue, we apply the SMOTE algorithm to discard the practice of
randomly oversampling replicate samples, which can prevent the
problem of random oversampling prone to overfitting. Studies
have shown that this approach can improve classifier performance
(21, 22). The synthetic data algorithm addresses the issue of data
imbalance by avoiding information loss in both undersampling and
oversampling methods.

Structured data dominates medical databases, and XGBoost
has emerged as a top-performing integrated machine learning
algorithm for prediction and classification based on this data
(15, 16, 23). Hou, et al. (24) utilized MIMIC III (V1.4) sepsis
patient data to develop an algorithm based on XGBoost for
predicting 30-day mortality in septic patients. Their algorithm
outperformed the logistic regression model and SAPS-II score
prediction model with an AUC of 0.857 compared to 0.819
and 0.797, respectively. Additionally, the XGBoost algorithm
demonstrated superior accuracy for sepsis diagnosis compared to
the SOFA score with an AUC of 0.89 versus 0.596 (25). Liu, J
and colleagues (26) utilized eICU data to develop a mortality
prediction model for ICU AKI patients. Their study found that the
XGBoost model outperformed LR, SVM, and RF machine learning
algorithms. Previous research has demonstrated the efficacy of
XGBoost as an ensemble machine learning algorithm in disease
diagnosis and prognosis studies, particularly structured data. In
this study, the performance of RF based on Bagging ensemble
machine learning algorithm and XGBoost and GBM based on
Boosting method were compared to traditional logistic regression
in predicting 28-day mortality in S-AKI. The results indicated that
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FIGURE 6

After adjusting for age and underlying disease, the COX regression-restricted cubic spline examined the nonlinear relationship between nine
continuous variables and 28-day mortality risk. (A) Urine output within the first 24 h; (B) Spo2; (C) temperature; (D) age; (E) Ph; (F) glucose; (G) BUN;
(H) sodium; (I) WBC.

the ensemble learning algorithms outperformed logistic regression.
Among the ensemble algorithms, XGBoost demonstrated the best
performance, as evidenced by the ROC, K-S, and LIFT curves.

The prediction model for 28-day mortality risk characteristics
was ranked using SHAP values, with the logarithm of the 1st 24-
h urine volume being identified as the most important variable.
According to a study conducted on 183 intensive care units in
Australia and New Zealand (27), a urine output threshold of
less than 0.5 ml/kg/h within 24 h of ICU admission was found
to be predictive of mortality in intensive care unit patients.
Furthermore, the study trained an XGBoost machine learning
model to predict in-hospital mortality, and discovered that low
urine output was strongly associated with mortality in patients
with sepsis. In patients with S-AKI receiving continuous renal
replacement therapy (CRRT), urine output within the first 24 h
of CRRT initiation was found to be a significant predictor of
death (HR 2.6 95% CI 1.6–4.3 p < 0.001)among the various
clinical variables related to mortality (28). Our study revealed
that the logarithmic value of urine volume within the first 24 h
is closely linked with the highest weight in the 28-day mortality
risk model. Additionally, utilizing COX regression-restricted cubic
splines and adjusting for age and underlying disease, we discovered
a non-linear relationship between 24-h urine volume and 28-day
mortality risk. The inflection point was observed at a 24-h urine
volume of approximately 1,800 ml. Below this threshold, the risk of
death decreased as urine volume increased, while above it, the risk
of death increased with increasing urine volume.

Previous research has established that SpO2 is a risk factor for
sepsis-related death (29). Similarly, our study discovered that SpO2

was linked to a higher likelihood of 28-day mortality in S-AKI cases.
Using COX regression-restricted cubic splines study, we observed
a near-linear negative correlation between SpO2, pH, and the risk
of 28-day mortality. The relationship between temperature, age,
glucose, BUN, sodium, and WBC and 28-day mortality risk was
found to be non-linear. Specifically, body temperature, age, blood
glucose, and sodium ions showed U-shaped changes, while BUN
and WBC exhibited a post-phase plateau.

The variables that determine death risk differ between cases
due to their non-linear relationship. In our study, SHAP force
plots provide a direct graphical illustration for ensemble learning
visualization interpretation. The color yellow represents a negative
association with 28-day mortality risk, while red represents a
positive association. The ability of machine learning predictions
to show individualization is further illustrated by the fact that the
variables that play a significant role in three different cases are not
perfectly correlated. In some cases, the same variable may have
opposite effects, such as the logarithmic value of 24-h urine volume,
which is negatively correlated in #266 and #2066 and positively
correlated in #1066. This may be due to a U-shaped relationship
between urine volume and the risk of 28-day death.

Limitations

While this study provides valuable insights, it is important to
acknowledge its limitations. It is a single-center retrospective data
modeling study that relies solely on the MIMIC-IV (2.0) database
and lacks external validation. Future studies will incorporate a
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multicenter dataset and prospective study data to optimize and
externally validate the model. Second, it is important to consider
that there may be other factors that can affect the 28-day mortality
risk in patients with S-AKI that were not measured or extracted,
such as imaging data and treatment strategy. To improve the
accuracy of predictive models, it may be beneficial to incorporate
different types of data and use multimodal algorithms. Third, the
data engineering process involves several steps, including data
interpolation, feature selection, variable transformation, and data
imbalance processing. However, these steps can sometimes lead
to model overfitting and misrepresentation of important features.
In our next study, we will focus on ensuring the completeness
of the data set. Additionally, different types of variables are
sequentially incorporated into the construction of the model
to observe the effects of different variables on the prediction
performance of the model. Finally, we utilize two integration
algorithms, bagging and Boosting, and may introduce stacking
integration algorithms in the future.

Conclusion

In this study, we have showcased the effectiveness of ensemble
machine learning algorithms in predicting the risk of mortality
within 28 days of patients with S-AKI. The SHAP approach has
been used to enhance the interpretability of these models, thereby
enabling clinicians to gain a better understanding of the underlying
reasons behind the results. This knowledge will aid clinicians in
making informed clinical decisions with regard to the stratification
and management of S-AKI patients.
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