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Application of novel AI-based
algorithms to biobank data:
uncovering of new features and
linear relationships

Lee Sherlock1,2, Brendan R. Martin1, Sinah Behsangar1 and

K. H. Mok2*

1Meta-Flux Ltd., Dublin, Ireland, 2Trinity Biomedical Sciences Institute (TBSI), School of Biochemistry and

Immunology, Trinity College Dublin, The University of Dublin, Dublin, Ireland

We independently analyzed two large public domain datasets that contain
1H-NMR spectral data from lung cancer and sex studies. The biobanks were

sourced from the Karlsruhe Metabolomics and Nutrition (KarMeN) study and

Bayesian Automated Metabolite Analyzer for NMR data (BATMAN) study. Our

approach of applying novel artificial intelligence (AI)-based algorithms to NMR is

an attempt to globalize metabolomics and demonstrate its clinical applications.

The intention of this study was to analyze the resulting spectra in the biobanks

via AI application to demonstrate its clinical applications. This technique enables

metabolite mapping in areas of localized enrichment as a measure of true activity

while also allowing for the accurate categorization of phenotypes.
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1. Introduction

The field of metabolomics is the most recent addition to the “-Omics” discipline. The

core objective of this emerging field is to record all metabolites within a biological sample.

Metabolites are understood to be by-products of cellular metabolism with a weight of ∼2

kDa or less (1, 2). Water-soluble metabolites have the ability to communicate with the

environment and the microbiome due to the mobility around the open biological system

(3). Consequently, metabolomics is essential for “systems biology” due to its particular scope

analogous to fields such as genomics and proteomics (4). “Hence, genomics and proteomics

identify what could happen, metabolomics identifies what is currently happening in a

system” (5). The metabolomics framework is capable of examining endogenous metabolites

and signal molecules that are by-products or participate in gene regulation, protein function,

and enzymatic activity. Based on these, we identify ‘true activity’ as a representation of

what is currently happening in a biological system (5). Additionally, metabolomics is often

a consequence of “exposomics”, which is a series of factors that include diet, lifestyle,

pollutants, medication, and the microbiome itself (Figure 1A) (7). It is particularly valuable

as it is capable of capturing the thousands of small molecule interactions within a given

organism (8). Therefore, a significant portion of research has been invested in the potential

of tracking the downregulation and upregulation patterns of metabolites or biomarkers in

order to interpret fluctuations in biological function (9, 10).
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Broadly speaking, there are two metabolomics

methodologies: The first is targeted metabolomics, which

establishes associations between defined metabolites and

known phenotypic states (1). This approach remains to

be desired as it requires a deep understanding of that

pre-defined state and access to bioinformatic databases to

cross-validate. Alternatively, untargeted metabolomics is

the widening of the search for metabolites without prior

knowledge of the state in question. This unbiased and

semi-quantitative approach measures thousands of small

molecules simultaneously with the core objective being the

development of statistical and analytical methods that allow

the tracking of entire metabolic pathways and fluctuation

patterns (11–13).

A potential workhorse instrumentation for untargeted

metabolomics integration is nuclear magnetic resonance (NMR)

due to its holistic detection capability combined with high

sensitivity (though not as high as mass spectrometry) for low

molecular weight biomarkers. It is typical to use NMR and

mass spectrometry (MS) in tandem with multivariate analysis

(14). NMR spectroscopy is a technique that exploits atomic

nuclei with non-zero magnetic moments to act as tiny probes

for the detection of the local structure, dynamics, reaction

state, and chemical environment within molecules. NMR

spectra are unique, well-resolved, analytically tractable, and

often highly predictable for small molecules. NMR analysis

is, therefore, used for confirming the identity of a substance.

Different functional groups are easily distinguishable, and

identical functional groups with differing neighbors still give

distinguishable signals. Following NMR’s discovery in the

1940s, a plethora of new applications have emerged, and the

technique has undergone major technological developments.

NMR has now become an essential tool in the fields of chemistry,

physics, biology, and medicine. Potential applications of this

technology exist in multiple areas including structural biology,

metabolomics, food science, toxicology, natural products

research, pharmaceutical reaction and process monitoring,

and organic chemistry (15–17). As NMR is inherently

quantitative, its ability to determine metabolite concentrations

in a reproducible manner allows it to serve as an additional

variable of analysis for multiple phenotypes from a variety

of biofluids.

In the case of NMR, the standardized workflow generates

thousands of signals which include true signals from metabolites,

adducts, and fragments, as well as noise signals from contaminants

and artifacts (11, 12). Due to the sheer quantity of signals

generated from a single NMR workflow, it is essential to

develop tools that are capable of noise reduction, aiding in

the analysis of “true signals,” allowing for more impactful

outputs from downstream analysis. At present, there are issues

regarding the scalability of technologies that are required

to mainstream global metabolomics. Currently, there are

software tools developed such as MVAPack, NMRProcFlow,

and WorkFlow4Metabolomics. However, there are problems

regarding the high-throughput applications of such software

tools allowing for the development of artificial intelligence

(AI) integration.

There is an abundance of applications that have demonstrated

that AI is not a one size fits all; therefore, one must borrow

and hybridize concepts from genome-wide association studies

(GWASs) and Mummichog in an attempt to map all possible

metabolite matches to a pathway via mass spectroscopy, solely

focusing on regions of localized enrichment as they are assumed

to be a reflection of “true activity” (18). Other methods include

the Bayesian AutomatedMetabolite Analyzer for NMR (BATMAN)

data approach, which performs spectral deconvolution using prior

information on the spectral signatures of metabolites (19). When

handling large metabolomic datasets, it is common to attempt

to find meaning through multivariate analysis (MVA) methods

such as principal component analysis (PCA) and partial least

squares projection to latent structures (PLSs), all of which are

attempts to segregate features that contribute to variation that

are separated for further analysis, not too dissimilar from the

mummichog approach (20). The recent integrations of AI into

this space have seen the use of the least absolute shrinkage and

selection operator (LASSO), PCA, self-organization maps (SOMs),

and partial least square-discriminant analysis (PLS-DA) (8). AI

is capable of identifying phenotypic variation via dimensional

reduction, which indicates the biological pathway that differs

among phenotypes and demonstrates the value and power these

approaches have as they lend themselves to precision health (21).

Our approach involves harnessing global metabolomics in

addition to multivariate analysis in tandem with NMR to

investigate metabolites and their correlation with sex and lung

cancer. In this study, we use the data provided by two large biobank

databases. All data relating to sex were curated and analyzed by

Rist et al. (22) and Bub et al. (23), while the lung cancer data were

curated and analyzed by Padayachee et al. (19). The objective was to

examine open-source datasets and apply our analytical techniques

to observe variations and establish relationships in regions of

localized enrichment. Regions of enrichment are then separated

and probed for further correlations. Further probing defines the

change in functional parameters induced via disease or aging. Upon

examining the blood and urine, it became apparent that it was

possible to identify patterns and classify participants in accordance

to sex and lung cancer, with >90% accuracy.

2. Materials and methods

2.1. Data collection

For this investigation, we obtained open-source datasets from

the health study by Rist et al. (22) and the lung cancer study by

Padayachee et al. (19). In this study, we focused solely on the

previously analyzed 1H-NMR spectra of blood plasma and urine

samples obtained from lung cancer patients (ncases = 69, ncontrol =

74) (19) and healthy men and women (n = 301) (23). Procedural

steps differed per study; these include fasting periods, preparation,

and storage of NMR sampling.

The KarMeN study (22, 23) recruited healthy men and women

(+18 years old). In addition to blood and urine sampling (tested

by NMR, GC-MS, and LC-MS), a variety of anthropomorphic

measurements were taken but not utilized during our analysis. The
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FIGURE 1

(A) Biological “omics” cascade and the factors that govern them. Targeted metabolomics focuses on the measurements of endogenous small

molecules as a by-product of a metabolic pathway, while global metabolomics focuses on the fluctuation patterns and attributes said pattern to a

pathway. Fluctuations in the “omics” cascade (blue layer) can be due to the influence of exogenous non-genetic factors (red) and can lead to

alterations in phenotypes. Global metabolomics analysis can aid in the enhanced understanding of biomarkers/pathways and their correlation with

etiology and diagnosis (6). (B) Workflow diagram highlighting the important milestones of the NMR and AI processes.
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sole features used for this study were the 1H NMR blood and urine

analyses performed following a post-fasting period of 6 h, which

meant that we were availing of only approximately 35% of the entire

dataset provided by the study (22).

Padayachee et al. (19) collected previously analyzed data from

lung cancer patients (ncase = 69) from the Limburg Positron

Emission Tomography Center (Hasselt, Belgium), while the control

data (ncontrol = 74) were from Ziekenhuis Oost-Limburg (Genk,

Belgium). Additional parameters of this study included: a 6-h

fastening period, a glucose level of ≥ 200 mg/dl, and morning

medication intake.

The strict inclusion/exclusion parameters and the handling

of samples in both studies gave us confidence in the integrity

and excellence of both datasets, thus enabling us to perform our

own analysis. The inputs we availed of were solely that of 1H-

NMR datasets.

2.2. Data processing

In one-dimensional 1H-NMR spectroscopy, the signals are

represented as the frequency domain resulting from the Fourier

transform of a time-domain signal. These are given in units of parts

per million (ppm), which is pre-determined at 0.0 ppm based on

the chemical shift reference. Data processing was performed prior

to any analysis to ensure the integrity and reliability of the results.

For the Padayachee et al. (19) data, several pre-processing

steps were conducted on the 400-MHz spectra using the

Varian/Agilent software. These steps involved zero-filling

and multiplication by an exponential apodization function of

0.7Hz before Fourier transformation. Additionally, the spectra

underwent manual phasing, automatic baseline correction

using polynomials or splines, and referencing to trimethylsilyl-

2,2,3,3-tetradeuteropropionic acid (TSP) at 0.015 ppm. The final

pre-processing step involved normalizing the spectra by the

total area under the curve, without accounting for the water and

TSP signals.

Regarding the Rist et al. (22) data, both plasma and urine

samples were subjected to untargeted NMR analysis using 1D
1H NMR spectroscopy. Plasma samples were measured at 310K

on an AVANCE II 600 MHz NMR spectrometer equipped with

a 1H-BBI probehead and a BACS sample changer, while urine

samples were analyzed at 300K on a Bruker 600 MHz spectrometer

equipped with either an AVANCE III with a 1H,13C,15N-TCI

inversely detected cryoprobe or an AVANCE II with a 1H-BBI room

temperature probe. The plasma spectra were referenced to the

ethylenediaminetetraacetic (EDTA) acid signal at 2.5809 ppm and

bucketed graphically, ensuring that each bucket contained only one

signal or group of signals and no peaks were split between buckets.

The urine spectra were resampled for a uniform frequency axis

and aligned using “correlation optimized warping.” Subsequently,

bucketing was performed using an in-house developed software

based on Python, aiming to assign signals or groups of signals to

individual buckets without splitting peaks between them. Finally,

the resulting bucket tables were used for statistical analyses and

machine learning algorithms.

Furthermore, the resulting pre-processing steps from the

studies by Rist et al. (22) and Padayachee et al. (19) were subject

to further investigation. The investigation of the above outputs was

performed using Chenomx NMR Suite 8.1 (Chenomx, Edmonton,

Canada) and Human Metabolome Database (HMDB) for the

identification of metabolites. In addition, there were a variety

of unknowns that could not be identified by harnessing either

methodology. Therefore, the results section and corresponding

graphs contain these unknown variables that can be identified as

“Unknown – PPM”.

The data obtained from the study by Padayachee et al. (19)

required further processing steps in an attempt to reduce the

background noise and increase the overall resolution of the

data. This was conducted by binning the data into further sub-

intervals of 0.01 ppm. Conversely, the same approach could not be

conducted on the data obtained from the study by Rist et al. (22)

as the binning was conducted in-house and correlated with pre-

defined metabolites. The difference in binning processes and MHz

may be factors that allowed for variation in the results.

As per common practice in NMR, we removed water and

its corresponding ppm as this often accounts for the majority

of peak intensity and can mask minor variations in the NMR

spectra. Due to the difference in obtained data, standardization

was required, whereby the negative values within the dataset

were set to zero and mean-centered scaling was applied to the

Rist et al. (22) data. Feature values were transformed to follow

a uniform or normal distribution for the Padayachee et al. (19)

data. This helped to stabilize the variance and minimize the effects

of outliers, resulting in improved performance of the predictive

model. Scaling is important as it facilitates a fair comparison

between different features.

Finally, the dataset was divided into two sets: a test set

comprising 33% of the data and a training set with 66% of the data.

This partitioning ensures an unbiased evaluation of the algorithm’s

performance. To determine the significance of different features

in the dataset, the widely adopted statistical test known as the

ANOVA F-test was employed for feature selection. In order to

comprehensively evaluate the algorithm, a 10-fold cross-validation

technique was applied. This method is commonly employed in

machine learning to assess the algorithm’s performance across

multiple subsets of the dataset. By dividing the data into 10 equal

parts, the algorithm was trained and evaluated 10 times, each time

using a different combination of nine parts for training and one part

for testing. This approach provides a more robust assessment of the

algorithm’s generalization capability and overall performance.

3. Results

The data were generated by obtaining open-source datasets

from the Rist et al. (22) and Padayachee et al. (19) lung cancer

studies. In this study, we focused solely on the previously

analyzed 1H-NMR spectra of blood plasma and urine samples

obtained from lung cancer patients (ncases = 69, ncontrol = 74)

(19) and healthy men and women (n = 301) (23). The data

were structured and analyzed using our own in-house artificial

intelligence (AI) and machine learning (ML) combined with classic

statistical approaches to isolate features of interest and hone in
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on localized regions of enrichment for further analysis and to

correlate said features with individual metabolites and extrapolate

for metabolites that are predictive of phenotypes of interest. The

analysis in this section was performed via global metabolomics,

which demonstrates simultaneous analyses of multiple features

to categorize a phenotype of interest. The figures below show

heatmaps, minimum spanning trees, boxplots, volcano plots, and

PLS to demonstrate the phenotypic categorization, which lends

itself to clinical capabilities.

We tested the integrity of our outputs by comparing them to

the published analyses of the original datasets (19, 22). The mean

specificity - which describes the amount of correctly predicted

positives or “regions of enrichment” - we obtained was 0.97

for the KarMeN study (22) and 0.93 when distinguishing lung

cancer of Padayachee et al. (19). Additionally, the precision of the

model, which describes the portion of true positives among actual

positives, was measured to be 0.96 in KarMeN and 0.93 in the

Padayachee et al. study. The above statistics can be represented

on a scale of 0–1, where 0 represents poor performance and 1

perfect performance.

3.1. Lung cancer case study

Our analysis of the data provided from the Bayesian Automated

Metabolite Analyzer lung cancer study (19) yielded an overall 0.92

accuracy, with a mean specificity of 0.90 and a mean sensitivity of

0.93. The healthy precision value was 0.93, with a recall of 0.91

and an f1-score of 0.92. For the disease precision, it was 0.90,

with a recall of 0.93 and an f1-score of 0.91. The area under the

receiver operating characteristic curve (AUC-ROC) is calculated

by plotting the true positive rate against false positive, where 1

represents perfect and 0.5 worst. The Padayachee et al. (19) data

had an AUC-ROC of 0.92 (Figures 2–6).

Figure 2A is a heatmap of leading features in lung cancer

cohorts. The leading 20 metabolites contained in this heatmap are

essential for characterizing phenotypic states. Of these 20, we have

found asparagine, creatine, glycerol, threonine, glucose, citrate, and

lactate. Moreover, we have identified tartaric acid, which was not

on the list of key metabolites in the Padayachee et al. (19) study.

Interestingly, tartaric acid is known as a lung cancer biomarker and

can be found in HMDB (24).

Our in silico analysis provided the following: Figures 3A

and B are graphical outputs to visualize metabolomic relationships

distilled down from a total of approximately 2million relationships.

The distillation of these relationships is further represented

in Figures 4A and 5A which highlight the variability in the

top-ranking metabolites. In summary, we have funneled down the

key metabolites involved in lung cancer.

3.2. KarMeN health analysis among sexes

Our analysis of the data provided from the Karlsruhe

Metabolomics and Nutrition study (22, 23) predicted sex solely

using 1H-NMR data derived from plasma, yielding an overall

accuracy of 0.95, with a mean specificity of 0.97 and a mean

sensitivity of 0.92. The male precision value was 0.95, with a recall

of 0.97 and an f1-score of 0.96. For the female precision, it was 0.96,

with a recall of 0.93 and an f1-score of 0.94. The AUC-ROC was

computed to be 0.95 (Figures 2–6).

Figure 2B is a heatmap of leading features in the determination

of sex in healthy cohorts. The leading 20 metabolites contained

in this heatmap are essential for characterizing phenotypic states.

Of these 20, we have found creatinine, creatine, glycerol, glycine,

sarcosine, isoleucine, and valine. Moreover, we have identified 2-

hydroxy-2-methylbutyric (HMB) acid, which was not in the list of

key metabolites in the Rist et al. (22) study.

Figures 6A and B are graphical outputs to visualize

metabolomic relationships distilled down from a total of

approximately 2 million relationships. The distillation of these

relationships is further represented in Figures 4B, 5B, which

highlight the variability in the top-ranking metabolites. In

summary, we have funneled down the key metabolites involved in

distinguishing sex in healthy people.

4. Discussion

The primary objective of this study was to analyze the human

metabolome in the plasma by way of globalized metabolomics

profiling by harnessing 1H-NMR, to determine the factors that

significantly impact the metabolic profile of a healthy cohort

compared to a lung cancer cohort, and to distinguish the

variables among the sexes. Therefore, we performed our study and

established a strict in silico experimental standardization, which

we applied to data structuring, data treatment, and post-analysis

treatments. When collecting open-source data, we ensured that all

sample collections were standardized in terms of fasting, collection

time points, and general pre-analysis handling. We also searched

for healthy datasets with strict exclusion and inclusion criteria that

excluded groups that suffered from acute or chronic diseases or

were on medication, as we wanted a dataset that represented “true

health,” thereby decreasing variation. In contrast, the medication

and acute/chronic disease exclusion criteria cannot be applied to

the lung cancer cohort as they must undergo medical treatment in

tandem with the study. Furthermore, this fundamental difference

may be one variable that explains the variability when testing

the integrity of the algorithm. Through additional analysis, we

found that our process is capable of generating high-integrity

categorization with minimal variation. The difference among

predictive capabilities per dataset could be due to the number of

samples; n= 301 (22) and n= 143 (19). More specifically, Rist et al.

(22) binned 138 sex features as pre-determined metabolites, while

1,134 features were binned as 0.01 ppm increments in the data of

Padayachee et al. (19).

Furthermore, some AI algorithms may require a relatively

small amount of data to achieve satisfactory results, while others,

particularly deep learning algorithms, often benefit from large-scale

datasets. The size of the dataset required is directly proportional

to the type of AI used and its field of application. Even a large

dataset may not be useful if it is noisy, incomplete, or biased.

A primary issue is the problem of complex, highly specialized,

and specific fields focusing on molecular interactions, protein

structures, or drug discovery that typically require domain expertise
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FIGURE 2

Heatmap of leading features in (A) lung cancer cohorts and in (B) health and sexes. This heatmap is a representation of the top features and the

correlations relative to other features. The feature was determined by a singular NMR unit (bin or bucket), measured in units of chemical shift (ppm).

The location of the ppm was determined by ANOVA F-values. The features found through NMR analysis of plasma can be used to categorize the (A)

lung cancer metabolome and (B) among sexes and determine the states of health.
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FIGURE 3

Graphical outputs visualizing the linear relationship between ppm. (A) Minimum spanning tree (Mst) generated by the Fruchterman–Reingold

algorithm used to visualize all ppm in the healthy category with correlations above a 90% threshold. Nodes closer together in the center have a

stronger correlation and nodes far apart around the perimeter have little to no correlation. (B) Mst used to visualize all ppm in the diseased category

with correlations above a 90% threshold.

FIGURE 4

(A) Boxplots demonstrating the significance of changes between healthy controls and lung cancer groups and between male–female cohorts. The

boxplot demonstrates the absolute di�erence between the means of each feature. These features were further analyzed and identified to be the

following metabolites; 2-aminoisobutyric acid, dimethylmalonic acid, tartaric acid, and glycine. These identified metabolites were among the lead

features used to categorize the phenotypes of interest. Green represents the healthy controlled cohort, while red represents the lung cancer cohort.

The binned NMR spectral data from the Padayachee et al. (19) study were used to generate these graphs. (B) Boxplot demonstrates the absolute

di�erence of the means of each feature. These features were further analyzed and identified to be the following metabolites; creatinine 1, creatine 1,

2-hydroxy-2-methylbutyric (HMB) acid, valine 1, valine 2, isoleucine, and glucose 20. These identified metabolites were among the lead features

used to categorize the phenotypes of interest, while other points of interest include U 0.88 ppm and U 1.08 ppm. Blue represents the male cohort,

while purple represents the female cohort. The binned Plasma NMR spectral data from the Bub et al. study were used to generate these graphs.
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FIGURE 5

Kernel density plot used to visualize the distribution of lung cancer and the distribution of male–female cohorts. The above scatter plots demonstrate

a clear separation among the cohorts. (A) For the lung cancer cohorts, the features of interest include dimethylmalonic, tartaric acid, glycine, and

acetone. (B) For the distribution of sexes, the features of interest include creatinine 1, creatine 1, 2-hydroxy-2-methylbutyric (HMB) acid, and valine 1.

FIGURE 6

Graphical outputs visualizing the linear relationship between ppm. (A) Minimum spanning tree (Mst) generated by the Fruchterman–Reingold

algorithm used to visualize all ppm in the male (blue) category with correlations above a 90% threshold. Nodes closer together in the center have a

stronger correlation and nodes far apart around the perimeter have little to no correlation. (B) Mst used to visualize all ppm in the female (purple)

category with correlations above a 90% threshold.
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and specialized knowledge. As a result, the problem space is more

constrained, and the available data may be more targeted and

focused. In such cases, a smaller sample size can still provide

meaningful insights and accurate predictions.

The impact of our analytical approach can be found in Figure 4.

Many of our leading 20 metabolites have significant overlap with

the pre-existing analysis (19, 22). Along with these, we have

uncovered previously unidentified metabolites, such as tartaric acid

and 2-hydroxy-2-methylbutyric acid (HMB), in lung cancer and

sex identification, respectively (22, 24). We wish to emphasize that

Rist et al. utilized clinical chemistry, liquid chromatography, and

mass spectrometry along with NMR spectroscopy to identify the

top metabolites. However, our analysis only required one-third of

the original dataset, and we only utilized the NMR dataset. Despite

this, our analysis has uncovered not only similar metabolites but

also those which are unique.

We recognize that there are requirements for additional

analysis and broadening of the inclusion criteria. Participants that

are obese and/or smoking must be included and recorded for

an accurate representation of the healthy population, as studies

demonstrate that nicotine does have neuroprotective qualities (25);

therefore, we can assume their metabolic profile would be variable.

We also need to recognize the influence of “exposomics” and how it

can greatly influence the “omics” cascade, especially those that are

variable per region, such as carcinogens and diet (Figure 1A) (6).

Owing to the fact that NMR metabolomics provides a

quantitative and holistic view of all of the metabolites contained,

there is no reason that this technology cannot be applied to other

diseases. In this article, we have successfully harnessed AI and

metabolomic techniques to broaden the search parameters that

aid in a comprehensive understanding of disease and wellbeing.

The advancements made here can offer a snapshot of the entire

biological system, which allows us to ascertain an accurate

understanding of the phenotype in question, paving the way for

true precision medicine.

5. Conclusion

From our analyses of NMR spectra from two separate

biobanks, we have established that our approach has direct clinical

applications. Our approach of harnessing AI and NMR to globalize

metabolomics enables us to identify metabolites, to highlight

them as regions of localized enrichment as a measure of true

activity, while enabling us to accurately categorize phenotypes

of interest.
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