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Background: Cervical cancer continues to threaten women’s health worldwide.

Identifying critical oncogenic molecules is important to drug development and

prognosis prediction for patients with cervical cancer. Recent studies have

demonstrated that epiregulin (EREG) is upregulated in various cancer types, which

contributes to cancer progression by triggering the EGFR signaling pathway.

However, the role of EREG is still unclear.

Methods: In this study, we first conducted a comprehensive biological analysis

to investigate the expression of EREG in cervical cancer. Then, we investigated

the correlations between EREG expression level and clinicopathological features.

In addition, we validated the e�ects of EREG expression on the proliferation and

apoptosis of cervical cancer cells.

Results: Based on the public database, we found that the expression of EREG

was higher in advanced cervical cancer samples. Survival analysis showed that

EREG was a risk factor for the prognosis of cervical cancer. In vitro experiments

demonstrated that EREG knockdown undermined proliferation and promoted

apoptosis in cancer cells.

Conclusion: EREG plays a vital role in the progression of cervical cancer, which

contributes to hyperactive cell proliferation and decreased cell apoptosis. It might

be a valuable target for prognosis prediction and drug development for cervical

cancer in the future.
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1. Background

Cervical cancer remains a conundrum for gynecology clinicians and poses a serious

threat to women’s health worldwide (1). It is estimated that cervical cancer leads to 342,000

deaths, accounting for 7.7% of all deaths from malignancies in women (2). Due to human

papillomavirus (HPV) vaccination and the use of cervical cancer screening, the incidence of

cervical cancer in developed countries has been decreasing year by year. However, in low-

income and developing countries, the incidence and mortality rates of cervical cancer are

still high. The number of cervical cancer deaths in these regions accounts for more than 90%

Frontiers inMedicine 01 frontiersin.org

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2023.1161835
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2023.1161835&domain=pdf&date_stamp=2023-03-20
mailto:2195045@zju.edu.cn
https://doi.org/10.3389/fmed.2023.1161835
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmed.2023.1161835/full
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Li et al. 10.3389/fmed.2023.1161835

of global cervical cancer deaths (3). Although the overall survival

of early stage cervical cancer is satisfactory after standardized

treatment, the outcome of patients with locally advanced or

metastatic cervical cancer is still poor (4). At the present stage,

chemotherapy and radiotherapy cannot meet the unmet clinical

needs (5, 6). Meanwhile, the development of novel targeted

agents such as tyrosine kinase inhibitors (TKI), poly (ADP-ribose)

polymerase inhibitors (PARPi), and immune checkpoint inhibitors

has altered the standard treatment paradigm for cancer (7–10).

Identifying key genes or signaling pathways in cervical cancer is

important for risk stratification and drug development.

Hyperactivated epidermal growth factor receptor (EGFR)

signaling has been reported in multiple cancer types, including

but not limited to non-small cell lung cancer (NSCLC), breast

cancer, bladder cancer, and colorectal cancer (11, 12). In addition,

EGFR signaling is a key component driving the initiation and

progression of cervical cancer. The coexistence of HPV infection

and active EGFR signaling has been reported in multiple studies

(13). The E5 protein of HPV could bind to the subunit of the

protein pump ATPase, reduce EGFR degradation, and increase

EGFR expression, eventually promoting the activation of the EGFR

signaling pathway (14, 15). Moreover, the E6 protein of HPV

also increases the expression of EGFR (16). Additionally, the

alteration in the E6/E7 protein of HPV interferes with cervical

cancer cell proliferation by decreasing EGFR stability at the

posttranscriptional level (17). It has been identified that EGFR has

seven ligands: EGF, EREG, amphiregulin (AREG), heparin-binding

EGF-like growth factor (HB-EGF), epigen (EPGN), betacellulin

(BTC), and transforming growth factor-α (TGF-α) (18). After

binding with ligands, EGFR triggers the phosphorylation of

downstream pathways, such as MAPK, PI3K-AKT, JAK-STAT, and

PLCγ1-PKC pathways, mainly supporting cancer cell survival and

proliferation (19).

As the ligand of EGFR, EREG is commonly upregulated

in cancer types, such as non-small cell lung cancer, breast

cancer, gastric cancer, head and neck cancer, ovarian cancer,

colorectal cancer, brain cancer, and bladder cancer (20). The

EREG–EGFR axis participates in tumor progression by regulating

several biological functions, including cell survival, proliferation,

migration, and angiogenesis (21). In NSCLC, increased EREG

is robustly associated with aggressive tumor phenotypes and

poor outcomes (22, 23). Similarly, in gastric cancer and

colorectal cancer, upregulated EREG also predicts the shorter

survival of patients (24, 25). Generally, EREG is an unfavorable

factor for the outcomes of patients with tumors. However,

there are still rare studies investigating the role of EREG in

cervical cancer.

Abbreviations: EREG, epiregulin; HPV, human papillomavirus; TKI, tyrosine

kinase inhibitor; PARPi, poly (ADP-ribose) polymerase inhibitor; EGFR,

epidermal growth factor receptor; AREG, amphiregulin; HBEGF, heparin-

binding EGF-like growth factor; EPGN, epigen; BTC, betacellulin; TGF-α,

transforming growth factor-α; TCGA, The Cancer Genome Atlas; GTEx,

Genotype Tissue-Expression; GO, The Gene Ontology; KEGG, Kyoto

Encyclopedia of Genes and Genomes; DMEM, Dulbecco’s Modified Eagle

Medium; FBS, fetal bovine serum;CCK8, Counting Kit-8;OD value, the optical

density value.

In this study, we calculated the correlations between EREG

expression and clinical-pathological characteristics and prognosis

of patients with cervical cancer. Moreover, we measured the

effects of EREG knockdown on the proliferation and apoptosis of

cervical cancer cells. Collectively, we showed that EREG might be

a promising prediction biomarker and treatment target for cervical

cancer in the future.

2. Materials and methods

2.1. Data available source

All expression profiles and clinicopathological parameters were

obtained from The Cancer Genome Atlas (TCGA) and TCGA

TARGET GTEx, a combined cohort of TCGA, TARGET, and

Genotype Tissue-Expression (GTEx) databases, and downloaded

from the UCSC website (https://xenabrowser.net/). The web

addresses of online websites and online analysis tools are presented

in the context.

2.2. Expression level analysis

The expression level of EREG in 44 different types of cancer was

collected. The survival data were extracted from a previous follow-

up study (26). Samples with a follow-up duration of <30 days were

excluded. Cancer types with <10 cases were omitted. Log2 (x +

0.001) transformation was performed for each expression value.

Coxph function of R package survival (version 3.2-7) was used

to establish a Cox proportional hazards regression model, and a

forest map was conducted. The correlation between expression and

clinicopathological parameters was calculated and analyzed using

the online tool Kaplan-Meier Plotter (http://kmplot.com/analysis/)

and the GraphPad Prism software (version 8.0).

2.3. Functional enrichment analysis and
correlation analysis

The RNA-seq data were derived from the

TCGA.CESC.SampleMap HiSeqV2 dataset and downloaded

from http://xena.ucsc.edu/. Genes with a correlation coefficient R

> 0.3 were identified as EREG-related members. The online tool

Database for Annotation, Visualization, and Integrated Discovery

(DAVID) (https://david.ncifcrf.gov/) was used for enrichment

analysis. The Gene Ontology (GO) and the Kyoto Encyclopedia of

Genes and Genomes (KEGG) were adopted in enrichment analysis.

2.4. Protein interaction analysis

A protein interaction network analysis was employed to

investigate EREG-associated proteins. The online tool STRINGwas

used in protein interaction network analysis (https://cn.string-db.

org/).
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2.5. RNA methylation analysis

A uniformly normalized Pan-Cancer online dataset TCGA-

TARGET-GTEx derived from the UCSC (https://xenabrowser.

net/) database was downloaded. Subsequently, we extracted the

EREG and 44 marker genes of three types of RNA modifications.

The primary solid tumor, primary tumor, primary blood-derived

cancer bone marrow, and primary blood-derived cancer peripheral

blood samples were collected and analyzed, while normal samples

were excluded from the analysis. Then, further log2 (x + 0.001)

transformation was performed for the expression matrix. Finally,

Pearson correlations for RNA methylation modification marker

genes and EREG were calculated.

2.6. Immune-associated analysis

The correlation between EREG expression and

immunoregulatory genes was investigated using the SangerBox

online platform (http://sangerbox.com/tool.html). Ultimately, the

Pearson correlations between EREG and five immune pathway

marker genes were calculated. In addition, the TIMER online

platform (http://timer.comp-genomics.org/) was adopted to

explore the relationship between EREG and immune cells in

cervical cancer.

2.7. Cell culture

SiHa (cervical squamous cancer cell line) and Caski (omentum-

metastasized cervical cancer cell line) were purchased from the

American Type Culture Collection (ATCC, Manassas, VA, USA)

and maintained at the Second Affiliated Hospital, School of

Medicine, Zhejiang University Laboratory (Hangzhou, China).

SiHa cells were cultured with Dulbecco’s Modified Eagle Medium

(DMEM), and Caski were cultured in RPMI 1640 containing a

concentration of 10% fetal bovine serum (FBS). All of the cells were

cultured in the incubator with 5% CO2 at a temperature of 37◦C.

2.8. RNA interference

The small interference RNA (siRNA) was structured

by Guangzhou RiboBio. The interference RNA sequences

were as follows: siEREG#1 (CCACCAACCTTTAAGCAAA),

siEREG#2 (GCATCTATCTGGTGGACAT), and

siEREG#3 (GGCTCAAGTGTCAATAACA).

2.9. Quantitative analysis with RT-PCR

The sample was disrupted and solubilized using Trizol

(Takara Bio.). Then trichloromethane was used to extract the

RNA. The aqueous phase containing total RNA was further

purified by isopropanol and ethanol. The resulting product

was resolved by 0.1% DEPC, and residual DNA was wiped

off with a gDNA wiper (a component of HiScript III RT

SuperMix). SamplemRNAwas reverse-transcribed into cDNAwith

HiScript III RT SuperMix for qPCR (Vazyme, Nanjing, China).

Then, cDNA was quantitatively analyzed by RT-PCR using an

iTaqTM Universal SYBR Green Supermix (Bio-Rad, #1725125)

and a 7,500 real-time PCR instrument (Applied Biosystems).

The primer sequences used are as follows: GAPDH Forward

Primer, 5′-TGTGGGCATCAATGGATTTGG-3′; Reverse Primer,

5′-ACACCATGTATTCCGGGTCAAT-3′; EREG Forward Primer,

5′-GTGATTCCATCATGTATCCCAGG-3′; and EREG Reverse

Primer, 5′-GCCATTCATGTCAGAGCTACACT-3′.

2.10. Cell counting kit-8 and clone
formation assay

The 96-well plate was seeded with 2,500 cervical cancer cells

per well. Using the Cell Counting Kit-8, the optical density value

(OD value) at 450 nm wavelength, reflecting the vitality of the cells,

was discovered after being treated for 48 h (DOJINDO). Utilizing

GraphPad Prism 8, data analysis for the cell viability experiments

was carried out (San Diego, CA). Data were fitted using the

four-parameter logistic equation to derive the log (concentration)-

response curves (for IC50 values). In a 12-well plate, 1,000 cells,

after transfected with siRNA for 24 h, were put into each well. The

clonal cell aggregation was given medication or a new medium

after being grown for 48 h. siRNA was transfected into the cell

aggregation at 7 days again for guaranteeing the effect of RNA

interference. The cultured plate was then collected after 7 days,

and the clones were dyed with crystal violet. The stained clonal

cell aggregation was processed and analyzed using ImageJ software.

Statistical differences were analyzed using Student’s t-test, and a

P-value of <0.05 was considered significant.

2.11. Cell apoptosis assay

The cells were collected after being treated for 24 h. The

AnnexinV-FITC/PI Apoptosis Detection Kit (BD556547) was

subsequently used to dye the cells, and a flow cytometry device

(Beckman) was used to measure the cell apoptosis rate. In

each sample, three accessory wells were present. The apoptosis

rate differences across groups were compared pairwise by an

unpaired t-test, and a P-value of <0.05 was regarded as statistically

significant. The flow cytometry data were analyzed using the FlowJo

V software.

2.12. Statistical analysis

Data in this study were all statistically processed and analyzed

using GraphPad 8.0 software, and all data were presented as “mean

± standard deviation” (x ± SD) with at least three independent

repeated experiments. The independent sample t-test method was

used to compare the control group and experimental group.

The chi-square test was used to compare the ratio’s statistical
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significance. A P-value of <0.05 was considered statistically

significant. The Pearson correlation analysis was used to analyze

the correlation between the two genes.

3. Results

3.1. The clinical significance of EREG in
cervical cancer

The standardized datasets and prognostic outcomes (overall

survival) were collected. An increased level of EREG was a

risk prognostic factor in the following types of cancer: glioma,

adrenocortical carcinoma, kidney renal clear cell carcinoma,

cervical cancer, pancreatic adenocarcinoma, Pan-kidney cohort,

lung adenocarcinoma, bladder urothelial carcinoma, glioblastoma

multiforme, acute lymphoblastic leukemia, lung squamous

cell carcinoma, and liver hepatocellular carcinoma (Figure 1A;

Supplementary Table 1). Using the Kaplan-Meier Plotter curve

[Kaplan-Meier Plotter (kmplot.com)], we investigated the

relationship between survival data (overall survival and relapse-

free survival) and the EREG expression condition of cervical cancer

(Figure 1B). The findings revealed that EREG overexpression was

associated with a poor prognosis in patients with cervical cancer.

Furthermore, we investigated the relationship between the EREG

expression condition of patients with cervical cancer and clinical

significance, including stage status and T status. The clinical stage

analysis showed that EREG expression was increased in Stages 3–4

and T3–4 tumors rather than in the early stage (Figures 2A, B).

It also showed that increased EREG expression resulted in worse

clinical outcomes in cervical cancer.

3.2. Functional analysis and correlation
analysis of EREG in cervical cancer

Enrichment analyses of the KEGG and GO pathways were

performed using the DAVID online platform. The findings

suggested that EREG may play a role in a number of cancer-

related molecular pathways, including those involving the EGFR

biological process, the extracellularmatrix structure, the interaction

between cytokines and their receptors, and the PI3K-AKT,

JAK-STAT, MAPK, and NK-B intracellular biological processes

(Figures 3, 4A–C). Besides, protein interaction network analysis

showed that the EREG could interact with or combine with the

RAS family (H-Ras and K-Ras) and the ERBB family (ERBB2,

ERBB3, and ERBB4), as well as its receptor EGFR (Figure 4D). In

addition, genetic alteration analysis was carried out to investigate

the underlying mutation-derived biological process alternatives.

The findings revealed that cervical cancer tissue with a higher

EREG level had higher mutative frequencies of HECTD4, NBAS,

THSD7A, BRCA2, CENPE, VWF, STK11, NBEAL2, STAB1,

DMXL1, GOLGA4, GANAB, and KIAA1549. Meanwhile, the

cervical cancer tissue with a lower level of EREG just harbored

higher mutative frequencies of KNTC1 and RTL1 (Figure 5A).

Furthermore, the RNA modification analysis revealed that EREG

expression was significantly correlated with the RNA methylation

modification reader genes, including m1A reader (YTHDF1,

YTHDF2, YTHDF3, and YTHDC1), m5C reader (ALYREF),

and m6A reader (YTHDF1, YTHDF2, YTHDF3, YTHDC1,

YTHDC2, and HNRNPA2B1) (Figure 5B). The aforementioned

results delineate a potential biological process that, through RNA

methylation regulation, EREG triggered various signaling factors

dysregulation. The aforementioned factors collectively caused

adverse prognostic events in cervical cancer.

3.3. Immune-associated analysis of EREG in
cervical cancer

Epiregulin was positively correlated with most chemokines,

such as CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL8, and

CCL20, inmost types of cancer, including cervical cancer. However,

it was negatively correlated with some kinds of chemotactic

cytokines, such as CXCL14, CCL14, CXCL17, and CX3CL1. The

prognostic analysis showed that the overall survival of CXCL1,

CXCL2, CXCL3, CLCL6, CXCL8, and CCL20 were all risk factors

in cervical cancer, with the hazard ratios of 2.29 (p= 0.00072), 2.41

(p = 0.00016), 2.41 (p = 0.00021), 2.29 (p = 0.00034), 1.61 (p =

0.045), 2.97 (p = 1.2e-5), and 2.02 (p = 0.0071), respectively. In

contrast, CXCL14, CCL14, CXCL17, and CX3CL1 were favorable

factors, whose hazard ratios were 0.41 (p = 0.00017), 0.67 (p =

0.12), 0.61 (p = 0.0397), and 0.46 (p = 0.00095). A lot of studies

have illustrated that the expression of chemokines in cervical

cancer could result in different tumoral biological effects that

strikingly affect the outcomes of patients (27–31). The results of

the analysis showed that the expression of EREG was commonly

positive relative to the adverse chemokine clusters. Besides, EREG

was related to immunostimulator pathway genes rather than

immunosuppressor genes (Figure 6A; Supplementary Figure 1).

Furthermore, the TIMER analysis showed the relationship

between EREG and immune cells. HPV-positive head and neck

squamous cancer, which was considered to share the same

etiology and pathology as cervical cancer, was also presented

to explore the potential immune-associated mechanisms. The

TIMER analysis suggested that the expression of EREG seemed

negative relative to the infiltration level of most types of

immune cells, including B lymphocytes, CD8+ T cells, CD4+

T cells, macrophages, neutrophil cells, and dendritic cells,

both in cervical cancer and head and neck squamous cancer

(Figures 6B, C). The results indicated that EREG might diminish

the immune cell infiltration in the tumor microenvironment.

Additionally, head and neck squamous cancer also shared the same

immune regulation characteristics with cervical cancer (Figure 6A;

Supplementary Figure 1), which indicated that the HPV infection

might interact with EREG and together lead to cancer immune

regulation dysfunction. The contradiction between the immune

regulation gene analysis and immune cell infiltration analysis of

EREG in cervical cancer reflected the dual character of immune

regulation. However, more investigation into how EREG plays

a role in the tumor immune microenvironment is needed, both

in vivo and in vitro.
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FIGURE 1

Prognosis analysis of EREG in Pan-Cancer and patients with cervical cancer. (A) The forest map delineated the relationship between EREG expression

and overall survival in 44 types of cancer. The cancer codes and corresponding full terms are listed in Supplementary Table 1. (B) The overall survival

and relapse-free survival of EREG in patients with cervical squamous cell carcinoma and endocervical adenocarcinoma were presented by

Kaplan–Meier Plotter (http://kmplot.com/analysis/).
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FIGURE 2

Clinical feature analysis of EREG in Pan-Cancer and patients with cervical cancer. (A) The relationship between EREG expression and clinical features

(clinical stage and T stage) in Pan-Cancer. (B) The relationship between EREG expression and clinical features in cervical cancer. “*” represented

p < 0.05, indicated statistically significant.
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FIGURE 3

KEGG pathway enrichment analysis of EREG-correlated genes. The bubble diagram shows the enriched KEGG pathway terms for the genes

correlated with EREG in the TCGA CESC dataset. The size of the bubble represents the number of associated genes included in the term. The shade

of the color represents the FDR (false discovery rates).

3.4. Knockdown of EREG undermined the
proliferation of cervical cancer

siRNA was used to downregulate the expression of EREG

in SiHa and CaSki, and the most effective siEREG#1 was

selected for further experiments (Figure 7A). EGFR, which

is robustly associated with EREG, is a crucial biological

factor in cell proliferation. Therefore, it is apparent to

detect the proliferation of cervical cancer with different

EREG expression statuses. The proliferation assay using

CCK8 showed that the knockdown of EREG could impede

cervical cancer cell proliferation (Figure 7B). Additionally,

the clone formation assay confirmed the phenomenon

(Figures 7E, G, H).
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FIGURE 4

GO enrichment of EREG-correlated genes and protein interaction analysis of EREG. The bubble diagrams show the GO_BP (biological process) (A),

GO_CC (cellular component) (B), and GO_MF (molecular function) pathway terms (C) of the genes correlated with EREG in the TCGA CESC dataset,

respectively. The size of the bubble represents the number of associated genes included in the term. The shade of the color represents the FDR (false

discovery rates). (D) Protein interaction network sketch map in STRING [STRING: functional protein association networks (string-db.org)]. The center

of the map was EREG, and the periphery sphere represents the proteins predicted to interact with EREG.

3.5. Knockdown of EREG-induced
apoptosis in cervical cancer

Using the pathway enrichment analysis and protein interaction
of EREG (Figures 3, 4), multiple signaling factors were identified.
Therein, EREG/Ras was a potential protein interaction (Figure 4D).
It was reported that the downregulation of the EREG/Ras

pathway could induce cell cycle arrest and finally trigger apoptosis

in hepatoma cells (32). Therefore, the apoptosis analysis was

undertaken to detect the apoptosis rate of cervical cancer cells

with different EREG expression levels. The results verified the

putative EREG pathway and indicated the cervical cancer cells

would trend to apoptosis when the EREG declined (Figures 8A, B,

E, F, I, J).
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FIGURE 5

Genetic alteration analysis and RNA methylation analysis of EREG in cervical cancer. (A) The waterfall plot represents the genetic mutation

discrepancies in a di�erent expression of EREG in cervical cancer. The annotations in parentheses behind the gene symbol represent the p-value of

the mutation discrepancy. (B) The map represents the relationship between EREG expression and the distribution of crucial RNA methylation

modification genes. “*” represented p < 0.05, which indicated statistical significance.
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FIGURE 6

Immune-associated analysis of EREG in Pan-Cancer, cervical cancer, and HPV positive head and neck squamous cell cancer. (A) The map represents

the relationship between EREG expression and the expression of immune regulatory genes. The types of genes were divided into chemokine,

receptor, immunoinhibitory, and immunostimulator. (B) The correlation between immunocyte infiltration and expression of EREG in Pan-Cancer. (C)

The correlation between immunocyte infiltration and expression of EREG in cervical cancer and HPV-positive head and neck squamous cell cancer.

“*” represents p < 0.05, “**” represents p < 0.01, “***” represents p < 0.001, and “****” represents p < 0.0001.

3.6. Knockdown of EREG-sensitized
cervical cancer to cisplatin

Since EREG downregulation could trigger cervical cancer

apoptosis, it is logical that declining EREG could be a promising

therapy for cervical cancer. However, the single gene’s interference

usually makes no difference because of the compensation of

other signaling pathways (33). As is well known, cisplatin is the

canonical chemotherapy for cervical cancer. Therefore, to further

explore the effect variation of cisplatin on cervical cancer cells
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FIGURE 7

The alterations in biological behavior when EREG was knocked down in cervical cancer. (A) Real-time PCR was used to detect mRNA levels in SiHa

and CaSki cells transfected with siEREG at 48h. (B) The CCK8 cell viability curve was used to detect the proliferation of cervical cancer cells with

di�erent EREG expression levels. The CCK8 cell viability curve was used to detect the relative cell viability of SiHa (C) and CaSki cells (D) transfected

with siEREG at di�erent cisplatin concentration gradients after 48h. (E) The clone formation of SiHa and CaSki transfected with siEREG. (F) The clone

formation of SiHa and CaSki transfected with siEREG was followed by cisplatin treatment for 48h. Histogram meant the relative clone particle

numbers of SiHa (G) and CaSki (H) with or without cisplatin treatment. “*” represents p < 0.05, “**” represents p < 0.01, “***” represents p < 0.001,

and “****” represents p < 0.0001.
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FIGURE 8

The changes in apoptosis when EREG was knocked down in cervical cancer cells with or without cisplatin treatment. Flow cytometry showed the

apoptosis rate of SiHa cells after siRNA transfection, followed by treatment with 10µM cisplatin (C, D) or not (A, B) for 48h. Flow cytometry exhibited

the apoptosis rate of CaSki cells after siRNA transfection, followed by treatment with 5µM cisplatin (G, H) or not (E, F) for 48h. The histogram showed

the apoptosis rate of SiHa (I) and CaSki (J) with di�erent treatments. “*” represents p < 0.05, “**” represents p < 0.01, and “***” represents p < 0.001.

Frontiers inMedicine 12 frontiersin.org

https://doi.org/10.3389/fmed.2023.1161835
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Li et al. 10.3389/fmed.2023.1161835

TABLE 1 The four-parameter logistic equation of GraphPad Prism was

used to determine the IC50 of cisplatin for each type of cervical cancer

cell, taking into account their divergent EREG expression.

Cisplatin concentration of IC50 (95%
confidence interval) (µM)

SiHa-NC 12.9 (10.57–17.10)

SiHa-siEREG 6.395 (5.255–8.168)

CaSki-NC 5.011 (4.406–5.754)

CaSki-siEREG 3.123 (2.770–3.523)

as the expression of EREG is downregulated, the CCK8 cell

viability assay was conducted (Figures 7C, D). Both SiHa and

CaSki with downregulated EREG displayed more vulnerability to

cisplatin than the negative control ones through IC50 value analysis

(Table 1). Meanwhile, the number of clone formation particles in

cervical cancer cells with EREG knocked down was robustly less

than the negative control ones following the cisplatin treatment

(Figures 7F–H). Furthermore, the apoptosis rate of cervical cancer

cells with EREG downregulated was significantly higher than the

negative control ones in the treatment with cisplatin (Figures 8C,

D, G, H–J). The results suggested that the knockdown of EREG

could induce the sensibilization of cervical cancer on cisplatin and

indicated a promising synergistic therapeutic regimen of cisplatin

and EREG inhibitors.

4. Discussion

As a well-established protumorigenic signaling pathway, EGFR

is frequently mutated in various types of cancer. EGFR drives

tumorigenesis by enhancing pro-survival, antiapoptotic responses,

proliferation, migration, invasion, angiogenesis, and vascular

mimicry (34–36). Moreover, hyperactivated EGFR signaling leads

to the upregulation of stemness markers, including Oct4, Nanog,

CD44, and CXCR4. Upon binding with its ligands, such as EREG,

the conformation of the tyrosine kinase domain of EGFR is

altered, triggering autophosphorylation and intracellular signaling

cascades. Besides acting as a cell surface receptor, EGFR could

locate in the nucleus and function as a co-transcriptional activator

or nuclear kinase (nuclear EGFR, also termed nEGFR). It has

been validated that nEGFR promotes the expression of multiple

oncogenes, such as Cyclin D1, AurkA, c-Myc, and BCRP/ABCG2

(19). Additionally, nEGFR contributes to the resistance to

chemotherapy, radiotherapy, and EGFR-targeting therapy (37–40).

Nowadays, EGFR tyrosine kinase inhibitors, such as gefitinib and

erlotinib, have been widely used in the clinic (41).

Epiregulin is the ligand of EGFR, eliciting a variety of

biological functions mainly through EGFR-mediated tyrosine

kinase activity. In the tumor microenvironment, autocrine and

paracrine EREG activates the downstream pathways of EGFR to

promote tumorigenesis (20). In a COX2-overexpressed bladder

cancer model, EREG is identified as the most highly expressed EGF,

supporting tumor cell proliferation (42). EREG promotes motility

capability by activating MAPK and PI3K-AKT pathways in salivary

adenoid cystic carcinoma cells (43). In head and neck squamous cell

carcinoma, EREG enhancesmalignant transformation by activating

the MAPK pathway and inducing C-Myc expression (44). Notably,

fibroblast-derived EREG could support the growth of the colitis-

associated neoplasm by activating the MAPK pathway in intestinal

epithelial cells (45). In parallel, EREG/RAS dual knockdown leads

to cycle arrest and retards liver cancer growth by regulatingMAPK,

PI3K-AKT, and Rb pathways (32). Although EREG expression

has no significant relationship to clinicopathological features in

gastric cancer, a high EREG level is an independent predictor of

poor clinical outcomes for patients receiving curative surgery (46).

However, there are rare studies estimating the role of EREG in

cervical cancer.

In the present study, we found that high EREG expression was

associated with the poor survival of patients with cervical cancer.

In addition, EREG expression was increased in Stages T3–4 and 3–

4 tumors. Enrichment analysis demonstrated that EREG was highly

associated with cytokine–cytokine receptor interaction, PI3K-AKT

signaling, TNF signaling, JAK-STAT signaling, MAPK signaling,

and NK-κB signaling. Notably, EREG was also related to HPV

infection. As mentioned earlier, HPV infection could trigger the

EGFR pathway by upregulating EGFR expression. EREG, as well,

plays an important role in tumoral immune regulation. It was found

to be increased in myeloid cells across the progression of cancer

(47). In this study, EREG was also found to take part in the negative

immune regulation, mainly via chemokine processes and probably

impeding immune cell infiltration, through which EREG eventually

resulted in the adverse clinical event. Besides, in vitro experiments

indicated that EREG knockdown limited cell proliferation and

promoted cell apoptosis. Moreover, EREG knockdown relieved the

resistance to cisplatin in cervical cancer cells. In conclusion, our

data showed that EREG functioned as a driving factor in cervical

cancer progression and contributed to chemotherapy resistance.

However, the mechanistic investigation of how EREG contributed

to the phenotype was limited, while EREG was considered to act

through nEGFR and downstream pathways. A further mechanistic

investigation was needed. In conclusion, it is logical that targeting

EREG could be a potential strategy for cervical cancer treatment.

5. Conclusion

Collectively, high EREG expression predicts poor prognostic

outcomes for patients with cervical cancer. EREG knockdown

impairs proliferation and promotes apoptosis of cervical cancer

cells. EREG would be a promising target for risk classification and

drug development for patients with cervical cancer.
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The map shows the relationship between EREG and immune regulatory

genes. The clearer map presented the relationship between EREG

expression and the expression of immune regulatory genes. The types of
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immunostimulator. In addition, the o�cial gene symbols of each type were

listed right on the map.
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