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Background: The pathophysiology of bone defects (BDs) is complex, and the 
treatment for bone defects, in particular massive bone defects, remains a major 
clinical challenge. Our study was conducted to explore the molecular events 
related to the progression of bone defects a common clinical condition.

Methods: First, microarray data of GSE20980 were obtained from the Gene 
Expression Omnibus (GEO) database, where 33 samples in total were used to 
analyze the molecular biological processes related to bone defects. Next, the 
original data were normalized and differentially expressed genes (DEGs) were 
identified. Additionally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analyses were conducted. Finally, a 
protein–protein interaction (PPI) network was constructed and the trends of the 
different genes were confirmed.

Results: Compared with the samples of non-critical size defects (NCSD), the 
samples of critical size defects (CSD) had 2057, 827, and 1,024 DEGs at 7, 14, and 
21 days post injury, respectively. At day 7, the DEGs were significantly enriched 
in metabolic pathways, at day 14 the DEGs were predominantly enriched 
in G-protein coupled signaling pathways and the Janus kinase (JAK)-signal 
transducer and activator of transcription (STAT) signaling pathway, and at day 21 
the DEGs were mainly enriched in circadian entrainment and synaptic-related 
functions. The PPI network showed similar results. Quantitative real-time PCR 
(qRT-PCR) and western blot (WB) were performed to validate the partial results 
of sequencing.

Conclusion: This study provides some clues about the molecular mechanism 
behind bone defects, which should contribute to scientific research and clinical 
treatment of this condition.
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Introduction

Bone defects often occur as a result of trauma, the resection of 
tumors, infections, osteoporosis, and other factors (1, 2). Millions of 
people worldwide suffer from bone defects every year, which can even 
cause severe disability (3). In the United States alone, there are more 
than 6.5 million patients with bone defects each year (4). Although 
there are many clinical methods to treat bone defects, such as 
autologous bone transplantation, no breakthrough has been made (5, 
6). For this reason, it is imperative to understand the possible 
molecular mechanisms underlying the progression of bone defects 
in detail.

Physiologically, once the bone is damaged by mechanical injury, 
an inflammatory reaction is activated, and the repair cascade is 
initiated (7). Although the immune response and inflammatory-
associated functions were found to play important roles (8), many of 
the key molecular changes that occur in a temporally specific manner 
remain unclear.

The transcriptome is known to reflect cellular pathophysiological 
information (9). In recent years, there have been few bioinformatic 
studies on bone defects. In this study, transcriptome data of GSE20980 
were used to explore the molecular processes related to the progression 
of bone defects. We evaluated three different time points (7, 14, and 
21 days post injury) for pathway and functional enrichment analyses. 
After that, a PPI network was constructed. We further validate the 
partial above results using quantitative real-time PCR (qRT-PCR) and 
western blot (WB). This study reveals the key molecular mechanisms 
behind the progression of bone defects and identifies potential 
therapeutic targets for the condition.

Materials and methods

Transcriptome data

The transcriptome data of GSE20980 based on the GPL1335 
platform (Affymetrix Rat Genome 230 2.0 Array) were obtained from 
the National Center for Biotechnology Information Gene Expression 
Omnibus database.1 According to the traditional definition, a critical 
size defect (CSD) is the minimum defect size that cannot be healed 
spontaneously, where 8 mm is commonly considered as the CSD of rat 
calvarial defects (10–12). In this experiment, circular defects of 8 mm 
(CSD) or 4 mm (none-CSD, NCSD) were created in the calvaria by a 
drill. At the indicated time points post injury, the region of 
regeneration was harvested, and the RNA was isolated from the tissue 
using TRIzol reagent. Next, labeling and hybridization to rat whole-
genome microarrays (Agilent) were performed.

Data preprocessing

The raw data of the series were normalized using Robust Multichip 
Average (RMA) method and log2 transformed. Principal component 
analysis (PCA) was performed to visualize data variance. When 

1 http://www.ncbi.nlm.nih.gov/geo

different probes located the same gene symbol, we used the average to 
represent the gene expression level. In total, 31,042 gene chips were 
taken into consideration during the data processing.

Identification and analysis of differentially 
expressed genes

We divided the data into six groups: CSD post-bone defects group 
vs. NCSD post-bone defects group at different times (7, 14, and 
21 days). The Student’s t-test was used to identify DEGs with an 
average fold-change of >2.0, and p < 0.05 was considered to indicate a 
statistically significant difference.

Pathway and functional enrichment 
analyses

Database for Annotation, Visualization, and Integrated Discovery 
(DAVID 6.8; http://david.abcc.ncifcrf.gov/) software was used to 
identify the enriched pathways and biological processes of the DEGs 
by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and 
Gene Ontology (GO) functional analyses (GO terms were identified 
under categories of biological processes), respectively (13–15). A value 
of p < 0.05 was set as the threshold. The scatter plot was plotted by 
http://www.bioinformatics.com.cn, an online tool for data analysis 
and visualization.

Protein–protein interaction network 
construction

The PPI network was constructed using the Search Tool for the 
Retrieval of Interacting Genes/Proteins (STRING; http://www.
string-db.org/). The biological processes of the genes and proteins 
were visualized through the Cytoscape (version 3.7.1) software 
platform, using 400 as the default confidence cutoff (16, 17).

Calvarial defect model

All animal experiments were approved by the Ethics Committee 
of Nanjing Medical University. 12 weeks old Sprague Dawley rats 
were used to performed calvarial defect models as previously 
described (12). In brief, under anesthetic conditions, defects (4 or 
8 mm in diameter) were created on the right parietal bone of the 
skull using a round burr attached to drill. The defects were washed 
with saline.

RNA isolation and qRT-PCR

Total RNA was extracted using the trizol reagent (Takara, Dalian, 
China), and the cDNA was amplified using the HiScript II QRT 
SuperMix for qPCR (R122-01, Vazyme, Nanjing, China). The qPCR 
was performed use a real-time 7500 PCR system (Applied Biosystems, 
Inc., United  States) using AceQ qPCR SYBR Green Master Mix 
(Q111-02, Vazyme, China). All primer sequences are listed in 
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Supplementary Table S1. The target genes were normalized to GAPDH 
expression, and the relative expression levels were performed using 
the 2-△△CT method.

Western blotting

Each bone callus was ground to fine particles with pestle and 
mortar in liquid nitrogen. Subsequently, the tissue was transferred to 
the EP tube for protein isolation. Equal amounts of proteins were 
separated via sodium dodecyl sulfate polyacrylamide gel 
electrophoresis and transferred to a polyvinylidene fluoride 
membrane. After blocked with 5% bovine serum albumin, the 
membrane was incubated overnight at 4°C with primary antibodies. 
The primary antibodies used were as follows: anti-phospho-JAK2 
(1:1,000), anti-JAK2 (1:1,000), anti-phospho-Stat3 (1:1,000), anti-Stat3 
(1:1,000), and anti-β-actin (1:1,000). Next, immunodetections were 
performed using the appropriate secondary antibodies (1:10,000), and 
the immunoreactive bands were visualized via the Tanon 4600SF 
System (Tanon, China).

Statistical analysis

In all cases, data are presented as the means ± SEM from at 
least three independent biological replicates. GraphPad Prism 
9.0.0 (GraphPad Software, La Jolla, CA, United States) and SPSS 
software version 26.0 (SPSS, Inc., Chicago, IL, United  States) 
were used to conduct statistical analyses. Unpaired two-tailed 
Student’s t-test was used for comparisons between two groups. 
Differences between groups were considered significant at a value 
of p < 0.05.

Results

Data preprocessing and differentially 
expressed gene screening

Box plots of the CSD and NCSD data at different time points 
(7, 14, and 21 days) before and after normalization are presented 
in Figure 1A. The results demonstrated that after normalization, 
the expression values of each sample were similar. Principal 
component analysis (PCA) captures the variance of the principal 
components, and our study shows that overall gene expression is 
different across the CSD and NCSD groups at the three time points 
(Figure 1B). The DEGs between the CSD groups and NCSD groups 
at the three time points were analyzed following data preprocessing 
and the PCA. As shown in Figure 1C, there were 303, 698, and 417 
upregulated DEGs at days 7, 14, and 21, respectively. Additionally, 
1,754, 129, and 607 downregulated DEGs were identified at the 
three time points, respectively. At day 14, the number of 
upregulated DEGs was more than the downregulated ones. In 
contrast, at days 7 and 21, there were much less upregulated DEGs. 
The volcano plots that were constructed to visualize these identified 
DEGs are shown in Figure 1C. The heat maps of color-coded gene 
expression values, indicating the variability in DEGs expression 

between the CSD and NCSD groups after the bone injury, are 
shown in Figures 2A–C.

KEGG pathway and GO enrichment 
analyses

In this study, we concentrated on the DEGs at 7, 14, and 21 days 
post injury. The most enriched KEGG pathways of the up- and 
downregulated DEGs at 7, 14, and 21 days are shown in Figures 3A–C, 
respectively. At day 7, the upregulated DEGs were primarily associated 
with synaptic-related functions, including the GABAergic synapse 
(p =  4.64 × 10−03), neuroactive ligand-receptor interaction 
(p =  2.52 × 10−02), and synaptic vesicle cycle (p =  3.92 × 10−02; 
Figure 3A). At day 14, the upregulated DEGs were highly associated 
with the Hippo signaling pathway (p =  3.44 × 10−03), neuroactive 
ligand-receptor interaction (p =  1.33 × 10−02), fat digestion, and 
absorption (p = 2.26 × 10−02; Figure 3B). At day 21 post injury, the 
upregulated DEGs were enriched in focal adhesion (p = 7.44 × 10−03), 
ECM-receptor interaction (p =  1.30 × 10−02), the TGF-β signaling 
pathway (p = 1.43 × 10−02), the RIG-I-like receptor signaling pathway 
(p = 2.18 × 10−02), and the PI3K-Akt signaling pathway (p = 2.46 × 10−02; 
Figure 3C).

We are more concerned about the downregulated DEGs. 
Additionally, at day 7, the downregulated DEGs were involved in 
metabolic pathways, including protein processing in endoplasmic 
reticulum (p =  3.20 × 10−04), amino sugar and nucleotide sugar 
metabolism (p = 1.96 × 10−03), metabolic pathways (p = 4.35 × 10−03), 
protein export (p =  9.31 × 10−03), and purine metabolism 
(p = 1.20 × 10−02; Figure 3A). At day 14, the downregulated DEGs 
were primarily enriched in pathways related to olfactory 
transduction (p = 2.03 × 10−04), intestinal immune network for IgA 
production (p =  2.53 × 10−02), long-term depression 
(p = 3.90 × 10−02), the Janus kinase-signal transducer and activator 
of transcription (JAK–STAT) signaling pathway (p = 4.03 × 10−02), 
and the oxytocin signaling pathway (p = 4.66 × 10−02; Figure 3B). 
Finally, at day 21 post injury, the downregulated DEGs were 
enriched in pathways related to synaptic-related functions and 
circadian entrainment, including the glutamatergic synapse 
(p = 9.93 × 10−05), circadian entrainment (p = 1.35 × 10−04), synaptic 
vesicle cycle (p = 2.27 × 10−04), GABAergic synapse (p = 4.30 × 10−04), 
and neuroactive ligand-receptor interaction (p =  3.32 × 10−02; 
Figure 3C).

The top  5 GO terms (biological processes) of the up- and 
downregulated DEGs are all summarized in Table  1. The results 
showed that at 7 days post injury, the upregulated DEGs were mostly 
enriched in the single-multicellular organism process (p = 3.41 × 10−13), 
system process (p = 4.07 × 10−13), and multicellular organismal process 
(p = 4.97 × 10−13). At other two time points, the upregulated DEGs were 
enriched in some development and cellular processes, which 
contained the multicellular organismal process (p =  5.18 × 10−12), 
single-multicellular organism process (p =  1.10 × 10−11), single-
organism cellular process (p =  1.28 × 10−11), anatomical structure 
development (p =  1.10 × 10−09), and system development 
(p =  2.20 × 10−09) terms at 14 days, and multicellular organismal 
process (p =  1.79 × 10−16), single-multicellular organism process 
(p = 2.78 × 10−15), response to chemical (p = 2.45 × 10−12), reproduction 
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(p =  6.58 × 10−08), and system process (p =  9.46 × 10−08) terms at 
21 days.

At 7 days post injury, the downregulated DEGs were mostly 
enriched in the metabolic process, such as cellular metabolic process 
(p =  8.87 × 10−20), organic substance metabolic process 
(p =  2.42 × 10−18), metabolic process (p =  1.20 × 10−17), and mRNA 
metabolic process (p = 3.02 × 10−17) terms. At 14 days post injury, they 
were remarkably associated with the system process (p = 3.52 × 10−10), 
G-protein coupled receptor signaling pathway (p = 1.95 × 10−09), and 
neurological system process (p =  4.97 × 10−09) terms. Finally, 
downregulated DEGs were enriched in neurological and synaptic-
related functions at 21 days post injury, which were anterograde trans-
synaptic signaling (p =  1.02 × 10−09), trans-synaptic signaling 

(p =  1.06 × 10−09), synaptic signaling (p =  1.49 × 10−09), cell–cell 
signaling (p =  1.51 × 10−08), and chemical synaptic transmission 
(p = 2.60 × 10−08).

PPI network construction and functional 
module analysis

The PPI networks of DEGs were constructed via STRING and 
visualized by Cytoscape software. The results revealed that the 
downregulated DEGs were enriched in the metabolic pathways and 
cellular metabolic processes at 7 days post injury (Figure 4A); in the 
JAK–STAT signaling pathway and G-protein coupled receptor 

FIGURE 1

(A) Data normalization of differentially expressed genes (DEGs). Box plots of gene expression in the critical size defect (CSD) and non-critical size 
defect (NCSD) at the new bone site (left panel) before and (right panel) after normalization. (B) Principal component analysis and (C) Volcano plots at 
1–3  weeks of the CSD vs. NCSD groups.
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signaling pathway at 14 days post injury (Figure  4B); and in the 
glutamatergic synapse, GABA receptor binding, circadian 
entrainment, and trans-synaptic signaling pathways at 21 days post 
injury (Figure 4C).

qRT-PCR and WB analysis

We established rat models of NCSD and CSD to verify the top 
genes at the transcriptome level and most enriched pathways at the 
protein level. The quantification of the mRNA expression levels of 
genes (Hoxa2, Ccr8, and Abca13) were reduced at 7 days post injury 
(Figure 5A), genes (Il2, Kif5c, and Cib3) were reduced at 14 days post 
injury (Figure  5B), and genes (Atp2b2, Mef2a, and Nap1l5) were 
reduced at 21 days post injury (Figure 5C). To verify the most enriched 
pathways, we  detected the protein expression levels of JAK2, 
phospho-JAK2, STAT3, and phospho-STAT3 in callus of two groups 
at 14 days post injury (Figure 5D). As expected, compared with the 
NCSD groups, phosphorylation levels of JAK2 and STAT3 were 
significantly decreased in the CSD groups (Figures 5E–H).

Discussion

Currently, it remains a challenge to repair a variety of bone defects 
caused by various reasons. Therefore, it is essential to understand the 
molecular process of bone defect progression (18). Because 
experimental calvarial defects in rats allow for the consistent 
evaluation of bone regeneration, this model has been widely accepted 
for the study of bone defect repair (19). It is worth mentioning that the 
calvarial bone formation proceeds via intramembranous ossification 
without intermediate cartilage formation (20, 21). GSE20980 consists 

of abundant transcriptome data from the regeneration region of CSD 
and NCSD group at 7, 14, and 21 days post injury. DEGs were 
identified by analyzing gene expression at these different time points, 
and KEGG pathway and GO enrichment analyses were subsequently 
conducted. PPI network was constructed to further analyze the 
molecular mechanism behind the progression of bone defects. In 
addition, qRT-PCR and WB were used to validated partial key results. 
This study may provide a basis for our further understanding of this 
clinical condition.

In this present study, there were 2,057, 827, and 1,024 DEGs at 7, 
14, and 21 days post injury, respectively, at the site of new bone 
formation. These results indicated that we could focus on different 
changes in molecular events at these three time points. The majority 
of alterations in molecular events occurred at 7 days post injury. There 
were 1,754 downregulated genes at this time point. The KEGG 
analysis, GO enrichment analysis, and PPI analyses consistently 
showed that the downregulated DEGs were primarily associated with 
metabolic pathways and cellular metabolic process at 7 days after the 
bone injury. Previous research has found that inflammation plays an 
important role in fracture healing, and that interfering with any 
inflammation-related pathways or proteins will either promote or 
inhibit fracture healing (22, 23). A previous study has found that at 
7 days after injury, macrophages undergoing metabolic 
reprogramming toward aerobic glycolysis inhibits fracture healing by 
influencing inflammation (24). Mesenchymal stem cell metabolism 
and osteoblast metabolism also have important roles in the fracture 
repair process (25). Our results are therefore a reminder to prioritize 
consider the metabolic pathways and cellular metabolic process in the 
first week post injury.

In this study, we  found that the G protein-coupled signaling 
pathway and JAK–STAT signaling pathway played key roles at 14 days 
after the bone injury. The largest family of cell surface molecules 

FIGURE 2

Heat maps of the genes at 1 (A), 2 (B), and 3 (C) weeks after bone defect in the CSD vs. NCSD groups. Horizontal axis represents each sample, and the 
vertical axis represents each gene. Blue and red colors represent low and high expression values, respectively.
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involved in signaling consists of G-protein coupled receptors 
(GPCRs), which play key physiological roles, and their dysfunction 
leads to several diseases, such as osteoporosis, osteoarthritis, and 
ischemic stroke seizures (26, 27). GPCRs are membrane receptors that 

can trigger intracellular signals (28, 29). Many GPCRs [e.g., 
parathyroid hormone 1 receptor (PTH1R) and calcium-sensing 
receptor (CaSR)] can promote osteoblast differentiation, and 
osteoclasts also express many GPCRs [e.g., calcitonin receptor (CTR) 

FIGURE 3

Scatter plot of enriched KEGG pathways for DEGs at 7 (A), 14 (B), and 21 (C) days after bone defect. The color and size of the dots represent the range 
of −log10 (p value) and the number of DEGs mapped to the indicated pathways, respectively. KEGG, Kyoto Encyclopedia of Genes and Genomes. 
DEGs, differentially expressed genes.
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was able to inhibit bone formation in normal bone metabolism, and 
ovarian cancer G-protein coupled receptor 1 (ORG1) has also been 
found to be promoted on osteoclast differentiation] (30–33). Together, 
they affect bone formation and development. In mammals, the JAK–
STAT signaling pathway is critical for many cytokines and growth 
factors. This signaling pathway plays an important role in bone 
development and homeostasis, especially the STAT3, and osteoblasts 
and osteoclasts also express multiple JAKs and STATs (34, 35). Genetic 
variations in STAT3 can decrease bone mass and raise the possibility 
of trauma fractures in humans (34). Previous research has shown that 

interleukin-6 (IL-6) can promote osteoblast differentiation by 
activating the JAK–STAT signaling pathway (36). Thus, research focus 
on the processes of GPCRs and the JAK–STAT signaling pathway at 
14 days post injury may contribute to the development of new bone 
defect treatment methods. In our study, the protein expression of 
phospho-JAK2 and phospho-STAT3 were found to be downregulated 
in CSD group at 14 days post injury. These findings may provide a 
potentially effective treatment strategy for orthopedic related diseases.

Notably, numerous downregulated DEGs were enriched in 
neurological and synaptic-related functions at 21 days post injury. 

TABLE 1 GO terms enriched by differentially expressed genes at three time-points following bone defect.

A, CSD vs. NCSD (day 7)

Category GO ID Biological process p value Rank

Upregulated

GO:0044707 Single-multicellular organism process 3.41e-13 1

GO:0003008 System process 4.07e-13 2

GO:0032501 Multicellular organismal process 4.97e-13 3

GO:0050877 Neurological system process 2.83e-12 4

GO:0098916 Anterograde trans-synaptic signaling 2.14e-11 5

Downregulated

GO:0044237 Cellular metabolic process 8.87e-20 1

GO:0006396 RNA processing 3.00e-19 2

GO:0071704 Organic substance metabolic process 2.42e-18 3

GO:0008152 Metabolic process 1.20e-17 4

GO:0016071 mRNA metabolic process 3.02e-17 5

B, CSD vs. NCSD (day 14)

Category GO ID Biological process p value Rank

Upregulated

GO:0032501 Multicellular organismal process 5.18E-12 1

GO:0044707 Single-multicellular organism process 1.10E-11 2

GO:0044763 Single-organism cellular process 1.28E-11 3

GO:0048856 Anatomical structure development 1.10E-09 4

GO:0048731 System development 2.20E-09 5

Downregulated

GO:0003008 System process 3.52E-10 1

GO:0007186 G-protein coupled receptor signaling pathway 1.95E-09 2

GO:0050877 Neurological system process 4.97E-09 3

GO:0050906 Detection of stimulus involved in sensory perception 1.47E-08 4

GO:0007600 Sensory perception 4.15E-08 5

C, CSD vs. NCSD (day 21)

Category GO ID Biological process p value Rank

Upregulated

GO:0032501 Multicellular organismal process 1.79E-16 1

GO:0044707 Single-multicellular organism process 2.78E-15 2

GO:0042221 Response to chemical 2.45E-12 3

GO:0000003 Reproduction 6.58E-08 4

GO:0003008 System process 9.46E-08 5

Downregulated

GO:0098916 Anterograde trans-synaptic signaling 1.02E-09 1

GO:0099537 Trans-synaptic signaling 1.06E-09 2

GO:0099536 Synaptic signaling 1.49E-09 3

GO:0007267 Cell–cell signaling 1.51E-08 4

GO:0007268 Chemical synaptic transmission 2.60E-08 5

GO, gene ontology.
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Previous studies have shown that neurological damage (e.g., traumatic 
brain injury and spinal cord injury) can accelerate fracture healing 
(37, 38), and the nervous system can regulate bone homeostasis (23, 
39). However, few studies have focused on synaptic alteration in bone 
repair regulation and the underlying mechanisms remain unclear. 
Such synaptic alterations warrant further investigation.

In recent years, a growing number of studies have focused on the 
effects of circadian rhythms on bone homeostasis (40–43). 
Coincidentally, in our study, we  found that the regulation of the 
circadian rhythm may be related to bone healing at 21 days post injury. 
Previous studies have shown that an impaired circadian rhythm will 
lead to skeletal health disorders (40). For example, knocking out clock 
genes in bone cells can influence bone homeostasis (44, 45). Therefore, 

circadian entrainment should be further investigated as a potential 
research direction for bone healing purposes.

A key limitation of our study was that we had no raw data at 
4 weeks, 5 weeks, or more subsequent time points post injury, limiting 
the information obtained regarding the molecular progress. 
Furthermore, there is still controversy over the definition of CSD, as 
the classical theory holds that this defect cannot be completely healed 
throughout the animal’s natural life. Another definition is that this 
time period is the entire experimental process. This involves the 
choice of the diameter of the defect. Additionally, we  had only 
performed a vertical comparison by time-point grouping, and we did 
not find some transcriptomes that have an impact throughout each 
time point.

FIGURE 4

PPI networks based on DEGs at 7 (A), 14 (B), and 21 (C) days after bone defect. Rectangular nodes indicate a biological process or a KEGG pathway, 
colored with gradient colors from yellow (smaller value of p) to blue (larger value of p). Circular nodes indicate genes/proteins. Star-shaped nodes 
indicate transcription factor. Light green-to-dark green colors indicate low-to-high log2 (fold change). Interactions are shown as solid lines between 
genes/proteins, and edges of KEGG pathways/Go terms are presented as dashed lines. DEGs, differentially expressed genes; PPI, protein–protein 
interaction; KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology.
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Notwithstanding, the present study revealed that three sets of 
molecular processes [i.e., the metabolic pathways (at 7 days post 
injury); the G-protein coupled signaling pathway and JAK–STAT 
signaling pathway (at 14 days post injury); and circadian entrainment 
and synaptic-related functions (at 21 days post injury)] served 
important roles in the progression of bone defects. These related 
genes may provide new insights into the treatment of orthopedic 
diseases, like bone defects, non-union, and fractures, or even to 
address systemic conditions, such as skeletal disorders and 
osteoporosis. However, the roles of these molecular processes in the 
progression of bone defects still need to be  confirmed by 
further studies.
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