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Background and objectives: Chronic kidney disease (CKD) is a global health

concern. This study aims to identify key factors associated with renal function

changes using the proposed machine learning and important variable selection

(ML&IVS) scheme on longitudinal laboratory data. The goal is to predict changes

in the estimated glomerular filtration rate (eGFR) in a cohort of patients with CKD

stages 3–5.

Design: A retrospective cohort study.

Setting and participants: A total of 710 outpatients who presented with stable

nondialysis-dependent CKD stages 3–5 at the Shin-Kong Wu Ho-Su Memorial

Hospital Medical Center from 2016 to 2021.

Methods: This study analyzed trimonthly laboratory data including 47 indicators.

The proposed scheme used stochastic gradient boosting, multivariate adaptive

regression splines, random forest, eXtreme gradient boosting, and light gradient

boosting machine algorithms to evaluate the important factors for predicting the

results of the fourth eGFR examination, especially in patients with CKD stage 3

and those with CKD stages 4–5, with or without diabetes mellitus (DM).

Main outcome measurement: Subsequent eGFR level after three consecutive

laboratory data assessments.

Results: Our ML&IVS scheme demonstrated superior predictive capabilities and

identified significant factors contributing to renal function changes in various CKD

groups. The latest levels of eGFR, blood urea nitrogen (BUN), proteinuria, sodium,

and systolic blood pressure as well as mean levels of eGFR, BUN, proteinuria,

and triglyceride were the top 10 significantly important factors for predicting the

subsequent eGFR level in patients with CKD stages 3–5. In individuals with DM,

the latest levels of BUN and proteinuria, mean levels of phosphate and proteinuria,

and variations in diastolic blood pressure levels emerged as important factors for

predicting the decline of renal function. In individuals without DM, all phosphate
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patterns and latest albumin levels were found to be key factors in the advanced

CKD group. Moreover, proteinuria was identified as an important factor in the

CKD stage 3 group without DM and CKD stages 4–5 group with DM.

Conclusion: The proposed scheme highlighted factors associated with renal

function changes in different CKD conditions, offering valuable insights to

physicians for raising awareness about renal function changes.

KEYWORDS

chronic kidney disease, diabetes, machine learning, estimated glomerular filtration,
feature selection

1. Introduction

Chronic kidney disease (CKD), characterized by decreased
glomerular filtration rate, is a global health concern with a
high prevalence rate (10–15%); moreover, this disease is highly
associated with morbidity and mortality, leading to financial and
medical burdens (1–3). The gradual loss of kidney function in
patients with CKD may lead to end-stage kidney disease (ESKD)
that requires kidney replacement therapy. According to the latest
annual report of the United States Renal Data System, the average
annual increase in the ESKD prevalence worldwide from 2003 to
2016 ranged from 0.1 to 109 per million population (4), thus placing
a greater burden on the health insurance system of many countries.
The ESKD prevalence in Taiwan is high (4), with a substantial
increase observed between 2010 and 2018 (5).

Timely intervention for delaying the progression of CKD to
ESKD may not only improve the quality of life of patients but
also reduce the associated morbidity and mortality (6, 7). As the
exacerbation of renal function in patients with CKD is usually
silent, it is clinically important to develop an accurate prediction
model for the risk of CKD progression. Such a model is expected
to facilitate physicians in making personalized treatment decisions,
thereby improving the overall prognosis. Various statistical models
have been developed to predict the risk of ESKD based on variables
such as age, sex, blood pressure, comorbidities, laboratory data,
and most commonly, the estimated glomerular filtration rate
(eGFR) and proteinuria level (8). Among them, the most popular
statistical model is the four-variable kidney failure risk equation
(KFRE) based on age, sex, eGFR, and urine albumin-to-creatine
ratio (9). Further, an eight-variable equation based on KFRE
(which further included serum albumin, bicarbonate, calcium,
and phosphate levels) was proposed to provide a more accurate
prediction (10). The traditional statistical methods are often based
on predefined hypotheses and assumptions. Researchers formulate
hypotheses and test them using statistical methods. Moreover,
these methods often focus on drawing inferences and conclusions
about a population based on a sample. These methods aim to
provide insights into causal relationships and generalizability (11).
However, the traditional statistical methods have several limitations
in effectively dealing with the challenges posed by big data and
complex data structures.

Machine learning (ML) methods excel in analyzing
unstructured data and complex patterns, whereas traditional

statistical methods often require human intervention and
expertise in model selection, hypothesis formulation, and result
interpretation (11). In the big data era, several applications of
ML, which is a subset of artificial intelligence (AI), have emerged
in health informatics (12), allowing computers to perform a
specific task without direct instruction (13). In contrast to theory-
driven formula that requires a predefined hypothesis based on prior
knowledge, ML models typically follow a data-driven approach that
allows the model to learn from experience alone (14). Therefore,
compared with the traditional statistical methods, ML models
may demonstrate better performance in predicting a determined
outcome, as they have no strict assumptions when modeling
(15–21). The utilization of ML algorithms in CKD is a promising
research topic that aims at assisting healthcare professionals in
diagnosing and managing patients with CKD via computer-aided
decision support systems for the early identification of critical
events such as ESKD or eGFR doubling (22–25).

To date, only a few studies have used ML methods in CKD
populations for identifying metabolomic signatures of pediatric
CKD etiology (26), developing a lifestyle scoring system for CKD
prevention (27), using retinal images and clinical metadata to
predict eGFR and CKD stage (28), and predicting incident ESKD
in patients with diabetes mellitus (DM) and CKD (29). However,
previous ML prediction models have primarily integrated baseline
laboratory data and clinical information, and many studies have
focused on predicting ESKD rather than eGFR changes (25).
Furthermore, studies on CKD-related risk factor screening or
analysis have predominantly relied on a single model without
considering hybrid approaches, especially when employing ML
methods (26, 27, 29, 30). According to a previous study, the
mean annual eGFR decline in healthy individuals was estimated
to be 0.97 ± 0.02 mL/min/1.73 m2 (31). However, even for
individuals with the same underlying comorbidities or extent of
kidney function impairment, the eGFR decline could be highly
variable. Early identification and management of patients with
CKD based on longitudinal biochemical data are essential.

Therefore, this study aimed to identify significant factors that
influence the prediction of eGFR changes using the ML and
important variable selection (ML&IVS) scheme in a CKD cohort
with longitudinal laboratory data. In the context of longitudinal
data analysis, it is crucial to prioritize the examination of
the rate and variation of biochemical data rather than solely
relying on baseline data. This study employed five effective
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ML algorithms, namely, stochastic gradient boosting (SGB),
multivariate adaptive regression splines (MARS), random forest
(RF), eXtreme gradient boosting (XGBoost), and light gradient
boosting machine (LightGBM). Using these algorithms, we
developed an integrated multistage ML-based predictive scheme
for all four subgroups according to eGFR and presence of DM
to predict eGFR changes and subsequently evaluate and integrate
relatively important risk factors.

2. Materials and methods

2.1. Dataset

This retrospective study included 710 patients with nondialysis-
dependent CKD who were recruited from outpatient nephrology
clinics of the Shin-Kong Wu Ho-Su Memorial Hospital Medical
Center for a prospective cohort study from 2016 to 2021. The
inclusion criteria were as follows: patients aged ≥20 years,
those who sustained (≥3 months) a decrease in eGFR of
≤60 mL/min/1.73 m2 based on the four-variable modification
of diet in renal disease study equation (32), and those who
were regularly followed up in our CKD multidisciplinary care
program (33). Patients who did not visit the nephrological
outpatient department for ≥4 months and had incomplete data
were excluded. In our CKD multidisciplinary care program,
patients were regularly followed up in the nephrological outpatient
department every 3 months.

This study was conducted according to the guidelines of the
Declaration of Helsinki and was approved by the Institutional
Review Board of the Shin-Kong Wu Ho-Su Memorial Hospital,
Taipei, Taiwan (IRB no. 20200901R). Informed consent was waived
because our study was based on a medical chart review. Patient
information was anonymized and de-identified before analysis.

2.2. Definition of longitudinal variables

This study aimed to predict eGFR changes and the
corresponding relationship between risk factors in the fourth
examination of each patient; thus, the results of the first three
examinations of each patient were utilized as independent
variables. As the results of the first three examinations were
collected from each patient, the independent variables used in this
study could be regarded as longitudinal predictor variables.

The definitions of the longitudinal variables used in this study
are presented in Table 1. As shown, Vi,t represents the tth time
examination result of ith variable [e.g., V1,2 is the systolic blood
pressure (SBP) result of the second examination]. A total of 17
variables were utilized in this study. Moreover, as all patients had
previous records of their first three examinations, the variables used
in this study could be further defined as Equation (1).

Vi,t, ∀i, t ∈ N (1)

where 1 ≤ i ≤ 17; 1 ≤ t ≤ 3.
Then, this study utilized three approaches for generating

more predictor variables that can be used to construct the ML

TABLE 1 Definition of longitudinal variables.

Variables Description

V1,t SBP SBP in the tth examination

V2,t DBP DBP in the tth examination

V3,t Height Height in the tth examination

V4,t Weight Weight in the tth examination

V5,t HB HB in the tth examination

V6,t BUN BUN in the tth examination

V7,t UA UA in the tth examination

V8,t Na Na in the tth examination

V9,t K K in the tth examination

V10,t iCa iCa in the tth examination

V11,t P P in the tth examination

V12,t Albumin Albumin in the tth examination

V13,t TG TG in the tth examination

V14,t LDL LDL in the tth examination

V15,t AC Sugar AC sugar in the tth examination

V16,t UP UP in the tth examination

V17,t eGFR eGFR value in the tth examination

Y eGFR in the fourth
examination

eGFR value in the fourth examination

AC, before meals; BUN, blood urea nitrogen; DBP, diastolic blood pressure; eGFR,
estimated glomerular filtration rate; Hb, hemoglobin; iCa, ionized calcium; LDL, low-density
lipoprotein; P, phosphate; SBP, systolic blood pressure; TG, triglycerides; UA, uric acid;
UP, urine protein.

predictive models. These three approaches, namely, “closest,”
“mean,” and “standard deviation,” could provide various data from
the independent variables. The “closest” approach generated the
predictor variable using the result of the latest examination, which
is the third examination result (Vi,3) in this study. The predictor
variable generated using the “closest” approach (ViC) was defined
as Equation (2). For example, V1C is the SBP result of the third
examination (V1,3) and can be written as SBP(C).

The “mean” approach generated the predictor variable by
calculating the mean of the results of the first three examinations
(Vi,1, Vi,2, Vi,3). The predictor variable generated using the “mean”
approach (ViM) was defined as Equation (3). For demonstration,
V1M was constructed by calculating the mean of the results of the
first (V1,1), second (V1,2), and third (V1,3) SBP examinations. V1M
can also be written as SBP(M).

Similar to the concept of the “mean” approach, the “standard
deviation” approach generated the predictor variable (ViS) by
calculating the standard deviation of the results of the first three
examinations (Vi,1, Vi,2, Vi,3), as shown in Equation (4). For
example, V1S is the standard deviation of the results of the first
three SBP examinations (V1,1, V1,2, V1,3) and can be written as
SBP(S).

ViC = Vi,3 (2)

ViM = Mean(Vi,1, Vi,2, Vi,3) (3)

ViS = Std(Vi,1, Vi,2, Vi,3) (4)
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The above mentioned 3 approaches were utilized for all 17
independent variables to generate the overall predictor variables
used in this study. In addition, as height and weight do not change
drastically between examinations, this study only used the “closest”
approach for these variables. Thus, 47 predictor variables were
generated and utilized for constructing the ML predictive models.
The descriptive statistical data of 47 predictor variables and the
target variable (eGFR of the fourth examination) are presented
in Table 2.

2.3. Proposed scheme

This study proposed an integrated multistage predictive
scheme known as ML&IVS based on five ML methods, including
SGB, MARS, RF, XGBoost, and LightGBM, for predicting eGFR
changes and subsequently identifying important risk factors.
The five ML algorithms have been successfully used in various
medical/healthcare applications (16, 19, 21, 23, 24, 34–37). The
overall process of ML&IVS scheme is shown in Figure 1.

In this process, first, 4-year health examination data of patients
with CKD were collected; the dataset is described in Section “2.1.
Dataset.” Second, 47 longitudinal risk variables were defined, and
the patients were categorized into five subgroups: Group 1 (patients
with CKD stage 3 and DM), Group 2 (patients with CKD stage
3 without DM), Group 3 (patients with CKD stages 4–5 and
DM), Group 4 (patients with CKD stages 4 and 5 without DM),
and Group 5 (overall patients). The definitions of variables are
presented in Section “2.2. Definition of longitudinal variables.”

Third, RF, SGB, MARS, XGBoost, and LightGBM were used
to construct predictive models for all five groups. As multiple
linear regression (MLR) is a commonly used statistical method
in medical/healthcare applications, it was used in this study
as a bench method. RF is an ensemble learning decision tree
algorithm that combines bootstrap resampling and bagging (38).
The RF principle entails random generation of many different and
unpruned classification and regression tree (CART) decision trees,
in which the decrease in Gini impurity is regarded as the splitting
criterion, and all generated trees are combined into a forest. Then,
all trees in the forest are averaged or voted to generate output
probabilities and construct the final robust model. SGB is a tree-
based gradient boosting learning algorithm that combines both
bagging and boosting techniques to minimize the loss function and
thereby solve the overfitting problem of the traditional decision
trees (39, 40). SGB comprises many stochastic weak learners of
decision trees that are sequentially generated through multiple
iterations, in which each tree focuses on correcting or explaining
the errors of the tree generated in the previous iteration. In other
words, the residual of the previous iteration tree is used as the input
for the newly generated tree. This iterative process is repeated until
a convergence condition or stopping criterion is reached for the
maximum number of iterations. Finally, the cumulative results of
several trees are used to construct the final robust model. MARS is a
nonlinear spline regression method and nonparametric form of the
regression analysis algorithm (41). MARS uses multiple piecewise
linear segments (splines) with different gradients. It considers
each sample as a knot and divides it into several sections for the
successive linear regression analysis of data within each section. For

TABLE 2 Descriptive statistical data of 47 predictor variables and the target variable.

Predictor variables Abb. Name ViC
(Mean ± SD)

ViM
(Mean ± SD)

ViS
(Mean ± SD)

V1 SBP (mmHg) 133.46± 16.1 134.93± 14.25 10.43± 7.65

V2 DBP (mmHg) 71.26± 9.98 71.88± 8.64 7.18± 5.36

V3 Height (cm) 159.99± 8.99 – –

V4 Weight (kg) 67.63± 13.29 – –

V5 Hb (g/dL) 11.88± 2.02 11.91± 1.93 0.58± 0.47

V6 BUN (mg/dL) 36.12± 17.9 36.01± 15.41 6.18± 5.62

V7 UA (mg/dL) 5.91± 1.86 6.18± 1.46 1.23± 1.07

V8 Na (MEq/L) 140± 3.13 139.83± 2.63 1.66± 1.38

V9 K (MEq/L) 4.51± 0.54 4.52± 0.47 0.3± 0.21

V10 iCa (mg/dL) 4.67± 0.27 4.67± 0.22 0.15± 0.11

V11 P (mg/dL) 3.78± 0.72 3.79± 0.61 0.36± 0.26

V12 Albumin (g/dL) 4.08± 0.4 4.07± 0.38 0.16± 0.12

V13 TG (mg/dL) 156.87± 105.69 162.04± 101.39 42.34± 66.47

V14 LDL (mg/dL) 85.99± 30.04 88.1± 24.2 15.7± 14.71

V15 AC sugar (mg/dL) 113.34± 37.74 114.63± 32.29 16.92± 22.7

V16 UPCR (mg/mg) 1,192.38± 1,936.41 1,236.66± 1,980.14 415.84± 732.27

V17 eGFR (mL/min/1.73 m2) 31.93± 12.94 31.85± 11.65 3.49± 3.05

Target variable (Y) N Mean ± SD

eGFR in the fourth examination 710 31.59± 13.29

ViC, closest value; ViM, mean value; ViS, standard deviation; AC, before meals; BUN, blood urea nitrogen; DBP: diastolic blood pressure; eGFR, estimated glomerular filtration rate; Hb,
hemoglobin; iCa, ionized calcium; LDL, low-density lipoprotein; P, phosphate; SBP, systolic blood pressure; TG, triglycerides; UA, uric acid; UPCR, urine protein-to-creatinine ratio.
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FIGURE 1

Proposed machine learning predictive and important variable selection scheme (ML&IVS).

determining knots, a forward algorithm is used to select all possible
basic functions and their corresponding knots, and a backward
algorithm is used to eliminate all basic functions to generate the
best combinations of existing knots.

XGBoost is a gradient boosting technology based on an
SGB-optimized extension (42). It trains many weak models
sequentially to ensemble them using the gradient boosting
method of outputs, which can achieve a promising prediction

performance. In XGBoost, Taylor binomial expansion is used to
approximate the objective function and arbitrary differentiable loss
functions, thereby accelerating the convergence process of model
construction. Then, XGBoost employs a regularized boosting
technique to penalize the complexity of the model and correct
overfitting, thus increasing the accuracy of the model. LightGBM
is a decision tree-based distributed gradient boosting framework
that uses the decision tree technique with improved histograms.
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To improve the accuracy of tree models, LightGBM uses gradient-
based one-sided sampling and a unique feature bundling algorithm
to fit a loss function with negative gradients and learn the residual
approximation of decision trees in iterations (43).

Fourth, after constructing effective ML models for all five
groups, the relative importance values of each risk factor can be
obtained via ML algorithms. In this study, the most important
risk factor had an importance value of 100, whereas the least
important risk factor had an importance value of 0. Values can
be repeated, i.e., two or more variables can have similar variable
importance. Because different ML algorithms have different
calculus architectures and selection features, the five ML algorithms
in this study may generate different variable importance values for
a single risk factor. Within the same group, a single, robust, and
complete variable importance value can be generated for each risk
factor to facilitate subsequent comparison of variable rankings and
identification of important risk factors. A single pooled value of
variable importance was generated based on the average value of
variable importance derived from the five ML models.

Fifth, the important variables among groups were compared,
and their differences were discussed. Sixth, the conclusions of this
study were presented based on the abovementioned findings.

For constructing each model, nested cross-validation (Nest-
CV) was utilized. Nest-CV is a variation of the CV family. Under
the structure of Nest-CV, two loops are required (inner and
outer loops). The inner loop is used for hyperparameter tuning
(which is equal to k-fold CV), whereas the outer loop is used
for model evaluation, with the optimal hyperparameter set in the
inner loop. Nest-CV is commonly utilized, and several studies
have demonstrated that Nest-CV can overcome the problem of
overfitting effectively (44–47).

During model construction under Nest-CV structure, the outer
loop first randomly splits the dataset into several folds (10 folds
in this study). Then, for each iteration, one fold of the data from
the outer loop is used for testing, whereas the remaining folds are
used for training. Next, the training data from the inner loop are
used for hyperparameter tuning with 10-fold CV. In the 10-fold
CV approach, the training dataset was further randomly divided
into 10 folds, wherein 9 folds were used to construct the model
with a different set of hyperparameters, and 1 fold was used for
validation. All 10 folds were used for validation at least once, and
all possible combinations of the hyperparameters were investigated
using a grid search. The hyperparameter set during validation with
the lowest root mean square error (RMSE) was regarded as the
most optimized set. After determining the set and training the
model using the set, the test data from the outer loop were used
for evaluation, which involves the completion of one iteration.
Entire Nest-CV was completed when each fold of the data from the
outer loop was used for testing at least once. After constructing the
ML models, the variable importance values can be extracted from
these models. As 10-fold Nest-CV is utilized, the extracted variable
importance ranking from each ML model will have 10 scores for
each variable. Therefore, to obtain the final corresponding variable
importance values, the approach of averaging the importance
scores for each variable was employed.

As the target variable of this study (changes in eGFR) for
model construction is a numerical variable, the metrics used
for model performance comparison included symmetric mean
absolute percentage error (SMAPE), mean absolute percentage

error (MAPE), relative absolute error (RAE), root relative squared
error (RRSE), and RMSE (Table 3). In addition, “R” software
version 3.6.2 and “RStudio” version 1.1.453 were used for model
construction. The related “R” packages utilized for constructing RF,
SGB, MARS, XGBoost, and LightGBM included “randomForest”
package version 4.7-1.1 (48), “gbm” package version 2.1.8 (49),
“earth” package version 5.3.1 (50), “XGBoost” package version
1.5.0.2 (51), and “lightgbm” package version 3.3.2, respectively (52).
The “caret” package version 6.0-92 (53) was used in all algorithms
to estimate the optimal hyperparameters for constructing the best
prediction model.

3. Empirical study

The dataset was divided into five subgroups, i.e., Group 1
(patients with CKD stage 3 and DM), Group 2 (patients with CKD
stage 3 without DM), Group 3 (patients with CKD stages 4–5
and DM), Group 4 (patients with CKD stages 4 and 5 without
DM), and Group 5 (overall patients). All groups followed the same
modeling process for predicting eGFR in the fourth examination.
The performance of the methods used in all five groups is presented
in Table 4.

As shown in Table 4, the error of the metrics and their
corresponding standard deviation (SD) are presented; percentage
values after n in the first column indicate the corresponding
proportion of the group. In Group 1, ML methods showed better
performance than the MLR method. Among these ML methods,
SGB showed the best performance with the following values:
SMAPE, 0.097; MAPE, 0.098; RAE, 0.672; and RMSE, 4.922. RF had
similar RRSE as SGB but lower SD than SGB.

Similarly, in Group 2, ML methods outperformed the MLR
method. Furthermore, SGB showed the best performance in this
subgroup with the following values: SMAPE, 0.102; MAPE, 0.104;
RAE, 0.682; RRSE, 0.713; and RMSE, 5.259. In Group 3, RF showed
the best performance with the following values: SMAPE, 0.135;
MAPE, 0.147; RAE, 0.383; RRSE, 0.432; and RMSE, 3.009.

In Group 4, RF showed the best performance with the following
values: SMAPE, 0.159; MAPE, 0.178; RAE, 0.406; RRSE, 0.464;
and RMSE, 3.333. Finally, in Group 5, the CKD stage 3–5 dataset
was considered the full dataset without subgrouping. ML methods
showed better performance than the MLR method. Among them,

TABLE 3 Equations of performance metrics.

Metrics Description Calculation

SMAPE Symmetric mean absolute
percentage error

SMAPE =
1
n

n∑
i=1

|yi − ŷi|

(|yi| + |ŷi|)/2
× 100

MAPE Mean absolute percentage
error

MAPE =
1
n

n∑
i=1

∣∣∣∣ yi − ŷi

yi

∣∣∣∣× 100

RAE Relative absolute error
RAE =

√∑n
i=1 (yi − ŷi)

2∑n
i=1 (yi)

2

RRSE Root relative squared error
RRSE =

√√√√∑n
i=1 (yi − ŷi)

2∑n
i=1 (yi − ŷi)

2

RMSE Root mean squared error
RMSE =

√√√√ 1
n

n∑
i=1

(yi − ŷi)
2

where ŷi and yi represent predicted and actual values, respectively; n, number of instances.
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TABLE 4 Performance of the MLR and five ML methods in all five groups.

Subgroup, total N = 710 Methods SMAPE MAPE RAE RRSE RMSE

Group 1 (patients with CKD stage 3
and DM)
n= 200 (28.17%)

MLR 0.116 (0.01) 0.118 (0.01) 0.799 (0.08) 0.821 (0.09) 5.886 (0.71)

RF 0.098 (0.01) 0.099 (0.01) 0.680 (0.06) 0.688 (0.05) 4.926 (0.37)

SGB 0.097 (0.01) 0.098 (0.01) 0.672 (0.07) 0.688 (0.06) 4.922 (0.35)

MARS 0.099 (0.01) 0.100 (0.01) 0.687 (0.09) 0.715 (0.07) 5.121 (0.38)

XGBoost 0.099 (0.01) 0.100 (0.01) 0.691 (0.07) 0.708 (0.05) 5.066 (0.33)

LightGBM 0.099 (0.01) 0.100 (0.01) 0.687 (0.06) 0.702 (0.05) 5.028 (0.39)

Group 2 (patients with CKD stage 3
without DM)
n= 200 (28.17%)

MLR 0.126 (0.02) 0.126 (0.02) 0.816 (0.13) 0.831 (0.11) 6.132 (0.52)

RF 0.103 (0.01) 0.105 (0.01) 0.686 (0.08) 0.717 (0.08) 5.294 (0.35)

SGB 0.102 (0.01) 0.104 (0.01) 0.682 (0.09) 0.713 (0.09) 5.259 (0.45)

MARS 0.109 (0.01) 0.112 (0.01) 0.724 (0.10) 0.768 (0.09) 5.676 (0.40)

XGBoost 0.106 (0.01) 0.107 (0.01) 0.707 (0.09) 0.741 (0.09) 5.478 (0.44)

LightGBM 0.110 (0.01) 0.112 (0.01) 0.730 (0.07) 0.740 (0.08) 5.463 (0.28)

Group 3 (patients with CKD stages
4–5 and DM)
n= 185 (26.06%)

MLR 0.217 (0.03) 0.238 (0.05) 0.625 (0.05) 0.694 (0.03) 4.838 (0.35)

RF 0.135 (0.03) 0.147 (0.04) 0.383 (0.07) 0.432 (0.08) 3.009 (0.62)

SGB 0.141 (0.03) 0.155 (0.04) 0.397 (0.06) 0.438 (0.08) 3.056 (0.60)

MARS 0.145 (0.02) 0.152 (0.03) 0.433 (0.09) 0.507 (0.11) 3.519 (0.70)

XGBoost 0.147 (0.02) 0.161 (0.03) 0.411 (0.05) 0.457 (0.07) 3.191 (0.55)

LightGBM 0.146 (0.03) 0.163 (0.04) 0.407 (0.06) 0.448 (0.08) 3.124 (0.62)

Group 4 (patients with CKD stages
4–5 without DM)
n= 125 (17.61%)

MLR 0.280 (0.04) 0.296 (0.05) 0.634 (0.10) 0.707 (0.09) 5.068 (0.43)

RF 0.159 (0.02) 0.178 (0.03) 0.406 (0.05) 0.464 (0.07) 3.333 (0.51)

SGB 0.173 (0.03) 0.200 (0.03) 0.427 (0.07) 0.484 (0.08) 3.472 (0.57)

MARS 0.197 (0.04) 0.200 (0.03) 0.482 (0.08) 0.557 (0.08) 3.997 (0.57)

XGBoost 0.171 (0.03) 0.193 (0.04) 0.435 (0.07) 0.483 (0.07) 3.483 (0.59)

LightGBM 0.175 (0.03) 0.206 (0.05) 0.436 (0.07) 0.486 (0.08) 3.495 (0.59)

Group 5 (overall patients)
n= 710 (100%)

MLR 0.149 (0.01) 0.156 (0.01) 0.369 (0.04) 0.414 (0.04) 5.507 (0.28)

RF 0.138 (0.01) 0.150 (0.01) 0.354 (0.04) 0.403 (0.04) 5.354 (0.33)

SGB 0.145 (0.01) 0.160 (0.01) 0.362 (0.04) 0.406 (0.04) 5.397 (0.29)

MARS 0.139 (0.01) 0.147 (0.01) 0.350 (0.04) 0.397 (0.03) 5.281 (0.27)

XGBoost 0.144 (0.01) 0.157 (0.01) 0.361 (0.04) 0.405 (0.03) 5.394 (0.26)

LightGBM 0.143 (0.01) 0.157 (0.01) 0.366 (0.04) 0.411 (0.04) 5.463 (0.28)

Bold values indicates the best performance in the subgroup.

MARS showed the best performance with the following values:
MAPE, 0.147; RAE, 0.350; RRSE, 0.397; and RMSE, 5.281.

Overall, the performance of the five ML methods used in
each subgroup had low SD, indicating that the ML usage in
this study was reasonable and robust. Furthermore, different ML
methods have different mechanisms for generating data regarding
various risk factors, and each method visualizes data with a
distinct perspective. In other words, ML methods can generate
valuable information for supporting decision making with various
perspectives; thus, the information generated from all ML methods
can be considered. To accurately rank the risk factors using ML
methods in different subgroups, this study revealed the top 10 risk
factors in each subgroup (Figure 2).

As shown in Figure 2, in Group 1, risk factors were ranked
by the five ML methods using the importance scores. Then, we
calculated the average importance score of each risk factor to

determine the top 10 important risk factors. Thus, in Group 1,
the rank 1 risk factor was V17C, rank 2 was V17M, and rank 3
was V17S. Similarly, in Groups 2–5, the top 10 important risk
factors were calculated. Further, to easily compare the important
risk factors between subgroups, the results from Figure 2 were
further displayed in Table 5 and the distribution plots of the top 10
important features of each subgroups are shown in Supplementary
Figures 1–5.

Table 5 presents the differences in the top 10 important risk
factors among all 5 groups. eGFR(C) and eGFR (M) were the first
(rank 1) and second (rank 2) important risk factors, respectively,
in all groups. Interestingly, BUN(C) was the third important risk
factor in all groups, except for Group 1. In general, the ranking
of risk factors in each subgroup was different. For example,
UA(C) only appeared in Group 1 and K(S) only appeared in
Group 2.
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FIGURE 2

Variable importance score generated from the five algorithms for each risk factor in the five groups.

TABLE 5 Ranking of the top 10 important variables of the five groups.

Subgroup Group 1 (patients
with CKD stage 3

and DM)

Group 2 (patients
with CKD stage 3

without DM)

Group 3 (patients
with CKD stages

4–5 and DM)

Group 4 (patients
with CKD stages
4–5 without DM)

Group 5
(overall

patients)

Rank Variable Variable Variable Variable Variable

1 eGFR(C) eGFR(M) eGFR(C) eGFR(C) eGFR(M)

2 eGFR(M) eGFR(C) eGFR(M) eGFR(M) eGFR(C)

3 eGFR(S) BUN(C) BUN(C) BUN(C) BUN(C)

4 UA(C) BUN(M) BUN(M) BUN(M) BUN(M)

5 Na(S) UPCR(C) Albumin(M) P(M) UPCR(C)

6 Na(M) UA(M) UPCR(M) Hb(S) Na(C)

7 Albumin(M) eGFR(S) UPCR(C) BUN(S) UPCR(M)

8 Albumin(C) Hb(S) P(M) P(C) UPCR(S)

9 iCa(M) K(S) DBP(S) P(S) SBP(C)

10 SBP(C) UPCR(M) SBP(C) Albumin(C) TG(M)

eGFR(C): V17C; eGFR(M): V17M; eGFR(S): V17S; BUN(C): V6C; BUN(M): V6M; BUN(S): V6S; UA(C): V7C; UA(M): V7M; Na(C): V8C; Na(M): V8M; Na(S): V8S; UP(C): V16C; UP(M): V16M;
UP(S): V16S; Albumin(C): V12C; Albumin(M): V12M; P(C): V11C; P(M): V11M; P(S): V11S; HB(S): V5S; iCa(M): V10M; K(S): V9S; SBP(C): V1C; SBP(S): V1S; DBP(S): V2S;TG(M): V13 .

4. Discussion

This study utilized longitudinal electronic health records to
identify the risk factors associated with the prediction of eGFR
changes in different CKD groups. This analysis considered the
current values, mean values, and variation of biochemical data.
Our proposed ML&IVS scheme yielded valuable results that
can aid clinicians in effectively managing CKD progression and
providing preventive measures in the CKD multidisciplinary
care program. In addition to identifying important factors
in CKD progression, our ML scheme, with some necessary
modifications, can be seamlessly integrated into an electronic
system, enabling the early identification of CKD progression.
To the best of our knowledge, this study represents the first
attempt to utilize ML methods to predict short-term eGFR changes
in patients with CKD. The innovative application of ML in

this context holds great potential for advancing the field and
improving patient care.

ML has demonstrated promising performance in the
nephrological field, including kidney function prediction via
ultrasonography (54), acute kidney injury prediction in critical
care (55, 56), specific pattern identification on renal pathology
slides (57, 58), optimal dialysis prescription (59, 60), calculation
of further eGFRs (61), mortality risk prediction in patients
undergoing dialysis (62), and ESKD prediction based on clinical
data (63–65). In this study, five ML methods were adopted to
obtain the 10 most important factors for predicting eGFR changes
in different CKD groups. The latest eGFR and mean eGFR were the
two most important factors among all subgroups. Moreover, the
SD of eGFR was important in all subgroups. Under the assumption
of the stochastic process, the latest value is always important
to predict the next value. The mean value represents long-term
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trends, whereas the SD indicates the severity of fluctuation
in the short term.

In this study, we employed the widely used Pearson
correlation method to identify the top 10 factors with the
highest correlation coefficients within each group (Supplementary
Table 1). However, these high correlation coefficients appeared
to exhibit less variability between groups. This raised concerns
about their ability to provide meaningful distinction between the
groups. Nevertheless, promising results were obtained through
our proposed ML&IVS scheme. We revealed that the crucial
factors identified via ML&IVS scheme displayed greater differences
between groups than those identified solely through the Pearson
correlation method. This finding indicated the effectiveness of
our scheme in providing more informative and discriminative
features that can potentially improve the understanding and
characterization of different groups in this study.

Numerous studies have attempted to identify the risk factors
associated with clinical CKD progression (66), and most of them
have adopted traditional statistical methods under a theory-driven
assumption. In this study, we used ML methods to determine
important laboratory factors for short-term eGFR prediction. In
all patients with CKD stages 3–5, the latest and mean phosphate
levels, SBP variation, latest albumin levels, hemoglobin variation,
and mean uric acid levels were important factors in addition to
the indicators of current kidney function (eGFR and BUN). Such
findings were consistent with those of previous studies reporting
that serum phosphate (67), blood pressure (68), lower serum
albumin (69), hemoglobin (70), and uric acid (71) levels were
associated with CKD progression.

DM is the leading cause of CKD, and approximately 20–
30% of patients with type 2 DM have moderate-to-severe CKD
(eGFR of <60 mL/min/1.73 m2). Such kidney damage is associated
with the accumulation of uremic toxins, inflammatory factors, and
oxidative stress (72). Therefore, patients with DM have different
risk profiles of CKD progression compared with those without
DM (73); moreover, proteinuria is usually observed in patients
with DM (74) and is well-known to be robustly associated with
CKD progression (75). However, in our study, proteinuria was an
important factor only in patients with moderate CKD without DM
and those with advanced CKD with DM. Such discrepancy may
be due to our prediction of short-term eGFR changes. The serum
albumin level might be an alternative to proteinuria severity for
predicting CKD stage 3 with DM.

The role of uric acid in CKD progression remains controversial.
Our results revealed that serum uric acid is an important factor
for predicting CKD stage 3 with/without DM. High uric acid
levels may cause glomerular injury, tubulointerstitial fibrosis,
atherosclerosis, and vascular injuries (76). Some observational
studies have revealed that serum uric acid level is associated
with renal function impairment (77–79). Moreover, a recent
study reported that even uric acid levels under therapeutic
criteria may increase the risk of CKD stage transition (74).
However, three randomized controlled trials have reported that
lowering uric acid levels is not beneficial in preserving renal
function (80–82). This discrepancy is attributed to hyperuricemia
resulting from renal function impairment. Therefore, asymptotic
hyperuricemia does not require medical treatment but needs
lifestyle modification.

Phosphorus is an important mineral for maintaining cell
structure and energy. It is mainly found intracellularly (70%).
Approximately 29% of phosphorus resides in the bones and <1%
circulates in the serum (83). In CKD, kidneys cannot excrete
phosphorus, resulting in hyperphosphatemia and consequent renal
osteodystrophy (84), which was more significant in advanced
CKD. A meta-analysis reported an independent association
between serum phosphorus level and kidney failure in patients
with nondialysis-dependent CKD (67), revealing that higher
phosphorus levels might lead to a steeper decline in renal
function. Moreover, fibroblast growth factor 23 (FGF23) was
secreted by osteocytes in bones, and its levels increased at an
early stage (starting at an eGFR of <90 mL/min/1.73 m2).
FGF23 participates in serum phosphate hemostasis by decreasing
phosphorus absorption from the alimentary tract (85). Therefore,
hyperphosphatemia may increase FGF23 levels, leading to anemia,
cardiovascular disease, and eventually death (86, 87), resulting in a
poor renal progression.

This study has some limitations. The dataset used in this
study was from a single medical center, which may limit the
generalizability of our findings. Therefore, federated learning,
which refers to collaborative ML without centralized training data,
is necessary to include more data from multiple centers in future
studies (88). In addition, the prescribed medications were not
collected. Some medicines may have affected the renal function
progression. Finally, this cohort consisted of approximately 700
patients, which might have affected the model performance. Next,
this study has some advantages. This study used longitudinal data
to predict eGFR changes, which can provide a causal inference.
The proposed ML&IVS scheme, which integrated the results of
risk factor identification and information from five well-known
ML methods, could provide more robust and useful information
to support our results.

5. Conclusion

When longitudinal data are used to predict eGFR changes in
patients with CKD with or without DM, the proposed ML&IVS
scheme can effectively integrate the most significant risk factors
from each model, resulting in more robust and comprehensive
identification of important risk factors for predicting eGFR
changes. It is crucial to increase awareness regarding eGFR changes,
particularly in government health-promotion initiatives within the
multidisciplinary CKD care program. This study provides valuable
insights for initiating further discussions and follow-up research
in this field. These findings contribute to our understanding
of the factors influencing eGFR changes and can guide future
investigations on the early identification and management of
CKD progression.
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