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Purpose: To automatically quantify colorectal tumor microenvironment (TME) in 
hematoxylin and eosin stained whole slide images (WSIs), and to develop a TME 
signature for prognostic prediction in colorectal cancer (CRC).

Methods: A deep learning model based on VGG19 architecture and transfer 
learning strategy was trained to recognize nine different tissue types in whole 
slide images of patients with CRC. Seven of the nine tissue types were defined 
as TME components besides background and debris. Then 13 TME features were 
calculated based on the areas of TME components. A total of 562 patients with 
gene expression data, survival information and WSIs were collected from The 
Cancer Genome Atlas project for further analysis. A TME signature for prognostic 
prediction was developed and validated using Cox regression method. A 
prognostic prediction model combined the TME signature and clinical variables 
was also established. At last, gene-set enrichment analysis was performed to 
identify the significant TME signature associated pathways by querying Gene 
Ontology database and Kyoto Encyclopedia of Genes and Genomes database.

Results: The deep learning model achieved an accuracy of 94.2% for tissue type 
recognition. The developed TME signature was found significantly associated to 
progression-free survival. The clinical combined model achieved a concordance 
index of 0.714. Gene-set enrichment analysis revealed the TME signature associated 
genes were enriched in neuroactive ligand-receptor interaction pathway.

Conclusion: The TME signature was proved to be a prognostic factor and the 
associated biologic pathways would be beneficial to a better understanding of 
TME in CRC patients.
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1. Introduction

Colorectal cancer (CRC) is the third most common diagnosed cancer and the second leading 
cause of cancer death (1). Management and treatment of these malignant tumors largely depend 
on histopathologic diagnosis. Subjective evaluation of histologic slides by experienced pathologists 
is the gold standard for cancer diagnosis and staging. Molecular and genetic test plays a leading 
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TABLE 1 Metric of TME features in the present study.

TME feature Metric

ADI ratio areaadipose/areaforeground × 100%

LYM ratio arealymphocytes/areaforeground × 100%

MUC ratio areamucus/areaforeground × 100%

MUS ratio areamuscle/areaforeground × 100%

NORM ratio areanormal colon mucosa/areaforeground × 100%

STR ratio areastroma/areaforeground × 100%

TUM ratio areatumor/areaforeground × 100%

TAR areaadipose/(areaadipose + areatumor) × 100%

TLR arealymphocytes/(arealymphocytes + areatumor) × 100%

TMUCR areamucus/(areamucus + areatumor) × 100%

TMUSR areamuscle/(areamuscle + areatumor) × 100%

TNR areanormal colon mucosa/(areastroma + areatumor) × 100%

TSR areastroma/(areastroma + areatumor) × 100%

role in the field of quantitative biomarkers (2, 3). Although the tumor 
node metastasis (TNM) staging system is the basis for treatment 
decision of CRC patients, different outcomes observed within each 
stage calls for improved informative markers (4, 5).

Histologic biomarkers focus on the morphological aspects and 
composition of tumors, rather than their anatomical location and 
behavior. The substance of the tumor is comprised not only of 
neoplastic cells but also surrounding stroma which includes immune 
cells, fibroblasts, signaling molecules and extracellular matrix. These 
components collectively make up the tumor microenvironment 
(TME) (6, 7). Survival analyses have demonstrated that valuable 
aspects of the TME, such as variations in tumor stroma, the presence 
of tumor budding and host inflammatory response may outperform 
conventional TNM staging (8–10). Pathologists can recognize these 
prognostically valuable aspects of the TME, however, the description 
and quantification of TME is not a routine procedure for pathologists 
(11). Besides, pathologists visually assessed TME on hematoxylin and 
eosin (H&E)-stained sections under the microscope, inevitably 
causing much discrepancies among pathologists. For example, 
interobserver agreement of tumor-stroma ratio (TSR) assessment 
ranges from 0.239 to 0.886 (Cohen’s kappa) (12–14). Due to these 
facts, an automatic TME assessment framework would be valuable, 
which could lead to better risk stratification, prognosis prediction and 
treatment support.

The increased availability of digital whole slide images (WSIs) and 
the successful application of convolutional neural networks (CNNs) in 
medical imaging, presents an opportunity for fully automatic pathologic 
assessment of CRC. Kather et al. proposed to use a VGG-based classifier 
(15) to recognize different components in WSIs of CRC patients, and 
the intermediate activation of the classifier was proved to be related to 
survival (16). Zhao et al. further improved the model by use of larger 
training data and quantified TSR in WSIs (17). Jiao et al. reconsidered 
the evaluation of TME in colon adenocarcinoma. In addition to stroma 
component, other tissue types in the tumor mass, especially necrosis 
and lymphocyte components, are also considered (18). However, the 
biologic pathways associated with the TME features that stratify patients 
for prognosis are elusive, which becomes one of the barriers preventing 
computational histopathology into clinical translation.

Therefore, we not only aim to develop a WSI-based TME signature 
to predict prognosis in a public dataset but also to explore the 
biological basis of the prognostic TME signature by revealing key 
pathways associated with the TME signature that confer prognostic 
significance in CRC patients.

2. Materials and methods

2.1. Study design

The overall design of the present study included four steps: tissue 
segmentation, TME quantification, TME signature development and 
validation, and pathway/gene identification. First, we developed a 
deep learning model to identify different TME components on 
WSI. Second, we calculated some quantitative features to describe the 
characteristics of TME. Third, we performed survival analysis to assess 
the prognostic value of the TME features and developed a TME 
signature for prognosis prediction. Forth, we identified significantly 
associated genes for annotating individual prognostic TME signature.

2.2. Data acquisition

The WSIs, clinical data and genome data supported this study were 
downloaded from The Cancer Genome Atlas (TCGA) database,1 the 
colon adenocarcinoma project (TCGA-COAD) and the rectal 
adenocarcinoma project (TCGA-READ). The TCGA-COAD project 
and TCGA-READ projects are two multicenter cohorts, where 461 and 
172 patients involved, respectively. The WSIs were H&E stained 
diagnostic slides with “.svs” format and gene level expression were 
measured by RNA sequencing data of upper quartile normalized 
Fragments per Kilobase of transcript per million mapped reads 
(FPKM-UQ). The follow-up data were extracted from a published 
study, namely the pan-cancer clinical data resource of TCGA (TCGA-
CDR) (19). The progression-free survival (PFS) information and 
clinical variables including age, sex, T stage and N stage were extracted 
from TCGA-CDR for the following survival analysis.

2.3. Preprocessing

The WSIs are scanned at 20X (0.5 μm/pixel) or 40X (0.25 μm/
pixel) magnification, so that each image can even contain 
100,000 × 100,000 pixels. However, most of the regions on WSIs are 
blank area, which do not contribute to TME quantification. To 
accelerate the WSIs analysis, we used adaptive Otsu method (20) for 
rough foreground segmentation at a low resolution of 112 μm/pixel.

According to the genecode_v22_annotation_gene_probeMap 
document downloaded from the TCGA, we renamed the identifiers 
of probes to gene symbols, and averaged the gene expression data if 
multiple probes were mapped to the same gene symbol. Then, 
we excluded the genes that expressed in less than 20% of samples.

2.4. Tissue segmentation

In order to realize automatic quantitative analysis of TME, a robust 
model for TME components recognition is necessary. Kather et al. had 

1 https://portal.gdc.cancer.gov
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published their tissue type classification model of CRC for free (16). This 
model classified the WSIs into nine classes: adipose (ADI), background 
(BACK), debris (DEB), lymphocytes (LYM), mucus (MUC), muscle 
(MUS), normal colon mucosa (NORM), cancer-associated stroma 
(STR) and colorectal adenocarcinoma epithelium (TUM). This model 
was trained on the NCT-HE-100 K dataset and validated on the 
CRC-VAL-HE-7 K dataset2 and used the Macenko stain normalization 
algorithm (21) for image preprocessing using the MATLAB software. All 
images of the two datasets were obtained at 20X (0.5 μm/pixel) with a 
size of 224 pixels × 224 pixels. The model was built based on VGG-19 
architecture and used transfer learning strategy which was pretraining 
the model on Imagenet dataset for parameters initialization. This model 
achieved an accuracy of 94.3% in the patch-level classification task on 
the validation dataset. VGG-19 has been proved to have well tissue 

2 http://dx.doi.org/10.5281/zenodo.1214456

classification ability and perform better than Alexnet, Googlenet, 
Resnet50 and Squeezenet by Kather’s study (16).

Because of the commercial software restrictions of the MATLAB,3 
we retained this model using the open source software Python according 
to the training configurations of Kather et al. In order to apply the 
trained TME components recognition model on TCGA-COAD and 
TCGA-READ WSI dataset, we tiled the WSIs at 20X (0.5 μm/pixel) into 
unoverlapped patches with the size of 224 pixels × 224 pixels.

2.5. TME features

In the previous study of Zhao et al. (17), TSR is defined as a metric 
of areastroma/(areastroma + areatumor) × 100%. In the present study 

3 https://www.mathworks.com/
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FIGURE 1

The data used in the present study and the process of TME components recognition. (A) Venn diagram of the collected data from TCGA-CRC and the 
percentage of nine tissue types in two cohorts of Kather et al.’s study. (B) Training a VGG19-based tissue recognition model by transfer learning 
strategy. (C) An example of foreground segmentation and TME components segmentation.
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TABLE 2 Demographic information of this study.

Variable Value

Age, years

  Median (interquartile, IQR) 68 (58–75)

  Mean (Standard Deviation, SD) 66.2 (12.5)

Sex

  Female 259

  Male 303

T stage

  T1 17

  T2 98

  T3 388

  T4 59

N stage

  N0 318

  N1 136

  N2 108

Endpoints (uncensored/all)

  Progression-free survival 148/562

we extended this metric to other TME components besides the BACK 
and DEB. Furthermore, we also considered relative ratio of the eight 
TME components in the foreground content as TME features. Thus, 
we totally defined 13 TME features for further analyses, of which the 
metrics are listed in Table 1. The correlation between any two TME 
features was calculated evaluated by Pearson correlation coefficient.

2.6. TME signature development and 
validation

The samples were randomly allocated into a training set and a 
validation set at a ratio of 7:3. Univariate Cox proportional hazard 
regression analysis was performed to investigate the association 
between TME features and PFS in the training set. The significant TME 
features were then combined by a Cox proportional hazard regression 
model to generate a TME signature to predict the PFS. The sample were 
grouped into a high group and a low group by using the median TME 
signature. Kaplan–Meier survival analysis with logrank test was 
performed to validate the prognostic value of the TME signature. Then 
a combined model that combined the TME signature and clinical 
variables using Cox proportional hazard regression were developed to 
predict the PFS. The time-dependent receiver operating characteristic 
(ROC) curves were used to evaluated the combined model. The TME 
signature and combined model were developed in the training set and 
evaluated in the validation set. The performance of the TME signature 
and combined model was further evaluated by 10-fold cross validation.

2.7. Gene-set enrichment analysis

Wilcoxon rank-sum test was performed to identify the 
significantly associated genes with the TME signature. The significant 
genes with false discovery rate (FDR)-adjusted p < 0.05 and |log2(fold 
change)| value >0.5 were enriched to find significant pathways using 
R package “clusterProfiler” by querying Gene Ontology (GO) 
annotation database and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) database. FDR-adjusted p < 0.05 indicated significant 
enrichment. The significant enriched biologic functions were used to 
annotate the TME signature.

3. Results

3.1. Patients characteristics

A total of 615 patients with 624 diagnostic WSIs were downloaded 
from the TCGA-COAD and TCGA-READ (hereafter called TCGA-
CRC) project. A total of 616 patients with the gene expression data of 
the primary tumor were selected from the TCGA-CRC. A total of 590 
patients with clinical variables and survival information were 
extracted from TCGA-CDR study, of which 15 patients with a 
follow-up time less than 30 days were excluded for decreasing the 
negative effects on accuracy of constructing prognostic models. 
Finally, 562 patients with WSIs, gene expression, clinical variables and 
survival information were included for further analyses, as shown in 
Figure 1A. The demographic information of these included patients 
are listed in Table 2.

3.2. Tissue segmentation

In this study, we  used the Otsu method which only costs few 
seconds (<5 s) per WSI for the foreground segmentation to accelerate 
the TME components identification. We retained the TME components 
recognition model on color normalized NCT-HE-100 K dataset and 
validated it on color normalized CRC-VAL-HE-7 K dataset with an 
accuracy of 94.2%. The heatmap of prediction confusion matrix on 
CRC-VAL-HE-7 K dataset is shown in Figure 1B, and an example of 
TME components identified by the model is shown in Figure 1C. Three 
patients were found to have no tumor patches on their WSIs, so that 
the two patients were excluded in the further analyses.

3.3. TME signature development and 
validation

In the univariate Cox regression analyses, STR ratio in foreground 
content and the TSR were found to be significantly (p < 0.05) associated 
to PFS. The hazard ratio with the 95% confidence interval (CI) of these 
TME features in Cox regression analyses are summarized in 
Figure  2A. STR ratio and TSR were found to be  highly correlate, 
because their correlation coefficient achieved 0.860, as shown in 
Supplementary Figure S1. The concordance index (C-index) of the STR 
ratio and TSR were listed in Table 3. Compared with TSR, STR ratio 
achieved better predictive ability. The TME signature that combined the 
STR ratio and TSR was developed by using Cox regression. The weights 
and p values of the two features for TME signature development are 
listed in Table 4. The p value indicated STR ratio is more important 
than TSR for TME signature calculation. The C-index of the TME 
signature was 0.638 (95% CI: 0.574–0.701) and 0.625 (95% CI: 0.542–
0.708) in the training set and validation set, respectively. Kaplan–Meier 
survival curves of the TME signature with logrank test p-values were 
plotted in Figure 2B. In the multivariate Cox regression analysis, the 
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TME signature was still significantly associated with PFS when 
considering clinical variables, as shown in Figure 3A. The combined 
model achieved a C-index of 0.752 (95% CI: 0.702–0.802) and 0.714 
(95% CI: 0.642–0.786). Figure 3B showed the time-dependent ROC 
curves of the combined model for PFS from 1 to 3 years. The result of 
performance comparison indicated that the TME signature performed 
better than TSR, as shown in Table 3. Moreover, the predictive ability 
of signature can be further improved by adding clinical information. 
The mean C-index of the TME signature and combined model in the 
cross-validation was 0.613 and 0.711, respectively, as shown in Table 5. 
The result of cross-validation indicated the TME signature and the 
combined model both had well predictive ability.

3.4. Gene-set enrichment analysis

A total of 595 genes were found to differently expressed between 
high- and low-TME signature groups by using rank-sum test corrected 

A

B

FIGURE 2

Survival analyses. (A) Univariate Cox regression analyses for TME features. (B) Kaplan–Meier survival analyses for TME signature.

TABLE 3 C-index of different models.

Model Training set Validation set P

TME signature 0.638 0.625 -

STR ratio 0.637 0.604 0.136

TSR 0.618 0.576 0.041

Combined model 0.752 0.714 0.012

P-values were used for evaluating the performance difference between the TME signature 
and the other models in validation set.

TABLE 4 Weights of STR ratio and TSR for calculating TME signature.

Variable Weight P

STR ratio 2.667 0.028

TSR −0.023 0.979
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A

B

FIGURE 3

Survival analyses. (A) Multivariate Cox regression analyses for TME signature and clinical variables. (B) Time-dependent ROC curves of the combined 
model.

TABLE 5 C-index of TME signature and the combined model in 10-fold 
cross-validation.

Fold TME signature Combined model

1 0.547 0.630

2 0.575 0.692

3 0.604 0.762

4 0.678 0.751

5 0.613 0.703

6 0.625 0.691

7 0.532 0.610

8 0.723 0.815

9 0.677 0.769

10 0.559 0.685

Mean C-index 0.613 0.711

by FDR. Compared to the low group, 380 genes were up-regulated and 
215 genes were down-regulated, as shown in Figure 4A. Only 44.2% of 
the 595 genes were successfully mapped to ENTREZID in GO database. 
The GO analysis revealed that these TME signature associated genes were 
enriched in postsynaptic membrane related function and G protein-
coupled peptide receptor activity function as shown in Figure 4B. The 
KEGG analysis revealed that these genes were enriched in neuroactive 
ligand-receptor interaction pathway (Figure 4C). The genes involved in 
the significantly related GO terms and KEGG pathways were shown in 
Figure 4D. The Kaplan–Meier survival curves of the genes enriched in 
the significant GO terms and KEGG were plotted in Figure 4E.

4. Discussion

In this study, we  presented a workflow of automatic TME 
quantification on WSIs by using deep learning model, and developed 
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a significant TME signature for PFS prediction. We found that the 
TME features STR ratio and TSR were significant prognostic factors 
of PFS in CRC patients. The developed TME signature that combined 
the STR ratio and TSR still had well predictive ability, when 
considering clinical variables. The combined model could further 
improve the prediction. We further annotated the TME signature by 
gene-set enrichment analysis and found some significantly associated 
genes were enriched in postsynaptic membrane related function and 
G protein-coupled peptide receptor activity function. GABRA5 and 
CRHR1, the TME signature associated genes belong to postsynaptic 
membrane activity function gene-set and G protein-coupled peptide 
receptor activity function gene-set respectively, were identified as 
prognostic factors by Kaplan–Meier survival analysis.

It has been reported that TME has a great correlation with the 
occurrence, development and prognosis of CRC (22, 23). Stromal cells 
are the major the non-tumor component of TME, which play 
important roles in evolution of cancers. Recent literature about the 

TME has shed light on CRC tumorigenesis and the complex 
interactions between tumor cells and the surrounding stroma (24, 25). 
Tumor-associated stroma is composed primarily of tumor-associated 
fibroblasts and extracellular matrix, whose extensive characteristics 
have been identified relevant roles in promoting tumor growth and 
invasion (26), angiogenesis (27), and energy homeostasis (28). 
Therefore, the quantification of TME in CRC might help us formulate 
a more sensible management and treatment plan for CRC patients. 
Zhao et  al. has developed a deep learning-based TSR using their 
private data and demonstrated the TSR was significantly associated 
with OS in CRC patients (17). In our study, the Cox regression analysis 
showed the TSR was also a significant prognostic factor for PFS. The 
use of OS as an endpoint may undermine clinical studies, because 
noncancer causes of death do not necessarily reflect tumor biology, 
invasiveness, or response to treatment. Thus, in consideration of the 
relatively short follow-up time of TCGA-CRC cohort, we used PFS as 
an endpoint. Our study revealed that a high STR ratio in TME or high 

A

D

B

E

C

FIGURE 4

Bioinformatics analyses of TME signature associated biologic basics. (A) Volcano plot of gene expression between the high-TME signature group and 
the low-TME signature group. (B) The significantly enriched GO terms. (C) The significant enriched KEGG pathways. (D) Venn diagram of the gene 
symbols that involved in two significant GO terms and a KEGG pathway. (E) Two genes significantly associated to PFS.
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TSR is associated with the poor PFS. STR ratio has more prognostic 
power than TSR, a well-established signature. Combining STR ratio 
and TSR would generate a better performed signature. However, these 
results remain to be validated in other cohorts.

Based on the developed TME signature, we further explored the 
mechanism associated with the high- and low-TME signature groups. 
The TME signature associated genes were mainly enriched in Go 
terms called postsynaptic membrane and G protein-coupled peptide 
receptor activity. More interesting, both the GABRA5 and CRHR1 
genes that belong to two different GO terms, were not only 
significantly associated with PFS but also belong to the same pathway 
called neuroactive ligand-receptor interaction. Neuroactive ligand-
receptor interactions have been shown to be associated with other 
gastrointestinal cancer (29). Yao et  al. found that the neuroactive 
ligand-receptor interaction is significantly associated with the 
development of colorectal cancer according to the GO and KEGG 
enrichment analyses (30). Whether neuroactive ligand-receptor can 
directly regulate the formation of stroma and how to further affect 
tumor progression in colorectal cancer are worthy of further 
exploration. Develop appropriate regulatory drugs targeting relevant 
pathways may contribute to the treatment of CRC.

The present study has some limitations. First, our study only 
included the TCGA-CRC cohort, other independent cohorts are 
needed for validation of our findings. Second, the prediction accuracy 
of deep learning model for recognition of TME components should 
be improved, to ensure the calculated TME features are closer to the 
real situation. Some new models such as PDBL (31), CRCCN-Net (32) 
and Vision Transformer (33) are worthy of being using, since they 
have achieved accuracy of more than 96% in Kather’s dataset. Third, 
nearly half TME signature associated genes failed to be identified by 
GO and KEGG databases, which may affect the comprehensiveness of 
functional annotations for TME signature.

In conclusion, the present study validated the feasibility and 
validity of using deep learning model to quantify the TME, and 
developed a TME signature for survival prediction. The stroma ratio 
significantly related to prognosis in CRC was proved once again. The 
TME signature associated biological pathways were also preliminarily 
explored. We  believe that these findings will be  beneficial to the 
treatment and management of patients with CRC.
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