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Objective: Coronavirus disease 2019 (COVID-19) is an infectious disease caused 
by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). The clinical 
and epidemiological analysis reported the association between SARS-CoV-2 
and neurological diseases. Among neurological diseases, Alzheimer’s disease 
(AD) has developed as a crucial comorbidity of SARS-CoV-2. This study aimed 
to understand the common transcriptional signatures between SARS-CoV-2 and 
AD.

Materials and methods: System biology approaches were used to compare the 
datasets of AD and COVID-19 to identify the genetic association. For this, we have 
integrated three human whole transcriptomic datasets for COVID-19 and five 
microarray datasets for AD. We have identified differentially expressed genes for 
all the datasets and constructed a protein–protein interaction (PPI) network. Hub 
genes were identified from the PPI network, and hub genes-associated regulatory 
molecules (transcription factors and miRNAs) were identified for further validation.

Results: A total of 9,500 differentially expressed genes (DEGs) were identified 
for AD and 7,000 DEGs for COVID-19. Gene ontology analysis resulted in 37 
molecular functions, 79 cellular components, and 129 biological processes 
were found to be  commonly enriched in AD and COVID-19. We  identified 26 
hub genes which includes AKT1, ALB, BDNF, CD4, CDH1, DLG4, EGF, EGFR, 
FN1, GAPDH, INS, ITGB1, ACTB, SRC, TP53, CDC42, RUNX2, HSPA8, PSMD2, 
GFAP, VAMP2, MAPK8, CAV1, GNB1, RBX1, and ITGA2B. Specific miRNA targets 
associated with Alzheimer’s disease and COVID-19 were identified through 
miRNA target prediction. In addition, we  found hub genes-transcription factor 
and hub genes-drugs interaction. We also performed pathway analysis for the 
hub genes and found that several cell signaling pathways are enriched, such as 
PI3K-AKT, Neurotrophin, Rap1, Ras, and JAK–STAT.

Conclusion: Our results suggest that the identified hub genes could be diagnostic 
biomarkers and potential therapeutic drug targets for COVID-19 patients with AD 
comorbidity.
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1. Introduction

SARS-CoV-2 (Severe Acute Respiratory Syndrome-Corona 
Virus Disease 2019) become a major health issue and highest 
prevalence rate (1). According to the world health organization 
(WHO) report worldwide, the COVID-19 outbreak affected over 
600 million people and 6.8 million of them died, as of 6 march 
2023 a total of 1.3B vaccine doses have been administrated.1 
SARS-CoV-2 genome consists of 29,811 nucleotides of enveloped 
positive-stranded ssRNA; as a result, SARS-CoV-2 appears to bind 
exclusively to angiotensin-converting enzyme 2 (ACE2) (2). This 
causes severe acute respiratory distress. ACE2 expression levels 
are highest in the small intestine, testis, heart, kidneys, and 
thyroid and the lowest in the brain, bone marrow, spleen, blood, 
blood vessels, and muscle (3). COVID-19 vaccines were developed 
and deployed rapidly, successfully controlled the pandemic, and 
reduced the risk of associated death and severe illness (4–6). 
COVID-19 poses a greater risk of death for patients with 
pre-existing neurological conditions (7). Virus RNA transcripts 
and viral proteins were also found in brain tissues of COVID-19 
patients during an autopsy (8, 9). Neurological symptoms have 
been reported in COVID-19 cases more notably in recovered 
patients from COVID-19 challenged memory loss and cognitive 
disability (10). Clinical studies have proven the possibility of 
COVID-19 pathogenesis in the brain, and, some studies pointed 
out that COVID-19 might accelerate the neurodegeneration of 
Alzheimer’s Disease (AD) and Parkinson’s Disease (5, 11–15). As 
a result of COVID-19, cognitive impairment may be caused by the 
following mechanisms like Direct COVID-19 infection in CNS, 
Systematic hyperinflammatory response to COVID-19, Peripheral 
organ dysfunction, Severe coagulopathy, Cerebrovascular 
ischemia due to endothelial dysfunction, and Mechanical 
ventilation due to severe disease conditions (16, 17).

Alzheimer’s Disease is a neurodegenerative disorder more 
than 50 m people are affected worldwide and this count is 
expected 150 m in 2050 (18). The major reason for AD is a 
breakdown of amyloid precursor protein (APP) in the brain 
which generates beta-amyloid (Aβ) in extracellular neural space 
(19–21). Several enzymes reported for the breakdown of APP 
importantly three secretase enzymes such as alpha-secretase, 
beta-secretase, and gamma-secretase play crucial roles in the 
cleavage process (22–24). Another possible mechanism of AD is 
an intracellular hyperphosphorylated tau protein (25). The tau 
protein plays a vital role in the stabilization and assembly of 
microtubules, as well as in regulating plasticity and synaptic 
function. Tau protein hyper phosphorylates under certain 
physiological conditions, resulting in the destabilization of 
associated microtubules, synaptic damage, and other 
complications (26, 27). A higher permeability of BBB might 
permit viruses and bacteria to enter the brain (28). Several 
pathogens are implicated in the development of AD, including 
viruses, bacteria, fungi, and parasites (29). COVID-19 crosses the 
BBB and induces an inflammatory response within microvascular 

1 https://covid19.who.int/

endothelial cells leading to BBB dysfunction (16, 30). In previous 
studies, integrated bioinformatics and system biology approaches 
also investigated the impact of SARS-CoV-2 on neurological 
disease progression (31–33). Systems biology provides a 
comprehensive interpretation of high-throughput platforms 
including genomics, proteomics, and metabolomics for analysis, 
display, compatibility, and accessibility. Comorbidity analysis for 
diverse diseases has become possible with the availability of high-
throughput data and system biology bioinformatics approaches 
also provides a better way to unravel the biological complexity of 
these multifactorial diseases influenced by multiple pathogenic 
determinants (34, 35). To investigate the molecular factors that 
influence the development of SARS-CoV-2 and neurological 
comorbidities, we investigated multiple gene expression datasets 
from AD and SARS-CoV-2 which includes microarray data and 
transcriptome data from various human brain tissue and blood 
samples. We proposed a network-based systems biology approach 
to explore the relationship between AD and SARS-CoV-2.

2. Materials and methods

2.1. Data collection

We have used gene expression datasets such as transcriptome 
datasets and microarray datasets to find the differentially expressed 
genes. This collection of datasets was extracted from gene expression 
omnibus (GEO) at the National Center for Biotechnology 
Information2 (36, 37).

For our analysis, we used the following inclusion criteria:

 1. Dataset which contains samples from the disease group and the 
control group in original experimental studies.

 2. Expression profiling by array used for AD with GEO2R 
tool support.

 3. Expression profiling by high throughput sequencing with raw 
counts data used for COVID-19.

 4. Only homo-sapiens datasets were included.
 5. A dataset containing at least eight samples included.

The keywords used for AD include “Alzheimer’s Disease” and 
further the results were filtered by the term “homo-sapiens,” and 
we selected the study type “expression profiling by array” which 
resulted in five datasets for AD. Among the five datasets, three of 
them were associated with peripheral blood mononuclear cells 
(PBMCs), and two of them were brain tissue-based. For 
COVID-19 we used the keywords “SARS-CoV-2” to narrow down 
the results and further filtered them by “homo-sapiens,” and 
“expression profiling by high-throughput sequencing.” 
We retrieved three datasets related to COVID-19, including two 
PBMC datasets and one brain tissue dataset. Both control 
(non-diseased) and diseased samples are included in all the 
datasets Table 1.

2 https://www.ncbi.nlm.nih.gov/

https://doi.org/10.3389/fmed.2023.1151046
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://covid19.who.int/
https://www.ncbi.nlm.nih.gov/


Premkumar and Sajitha Lulu 10.3389/fmed.2023.1151046

Frontiers in Medicine 03 frontiersin.org

2.2. Preprocessing and identification of 
differentially expressed genes

To classify genes with significantly different expression levels 
between samples, differential gene expression analysis is necessary. 
GEO2R was used to identify DEGs from microarray data, the 
selected microarray datasets have two groups control and disease 
(37, 38). The (Linear Models for Microarray Data) limma 
Bioconductor package is also available in GEO2R online tool for 
finding the differentially expressed genes (39). As part of the 
normalization process, outliers were removed using the log2 
transform, and the Benjamin Hackenberg methods are used by 
default to correct p value (40). To perform DEGs analysis, 
we selected false discovery rate (FDR) p values adjusted for multiple 
testing. We downloaded the full table with the following columns 
for further analysis value of p, adjusted value of p, log fold change, 
gene symbol, and title (41). Following DEGs, we plotted a volcano 
plot using the pheatmap package in R, genes with p value <0.05, and 
log FC | > 1 was considered (42).

For transcriptomics datasets, we  have used a DESeq2 
Bioconductor package (version 3.16) in RStudio version 2022. The 
transcriptome profile of COVID-19 tissues and blood samples was 
compared with control tissues and blood samples. DESeq2 is a 
statistical model designed to identify differentially expressed genes 
between two or more conditions, it is often used in the analysis of 
RNA-Seq data, to identify the genes which change in expression 
between different biological samples or conditions (43, 44). The 
DESeq2 model uses a negative binomial distribution to model the 
count data obtained from RNA-Seq experiments and variance for 
each gene across all samples. The model accounts for technical 
variability such as differences in sequencing depth, and for 
biological variabilities such as differences in cell size or the presence 
of outliers (44).

Once the mean and variance for each gene are estimated, the 
DESeq2 model uses a hypothesis testing framework to determine 

which genes are significantly differentially expressed between the 
conditions of interest. The resulting p value and log fold changes are 
then used to rank the genes based on their level of differential 
expression (45, 46).

2.3. Identification of common gene 
ontology terms and identification of 
overlapped genes among COVID-19 and 
Alzheimer’s disease

Followed by preprocessing and DEGs identification of 
COVID-19 and AD datasets, we classified them into four different 
groups AD-PBMC, AD-Tissue, COVID-19-PBMC, and COVID-19 
-Tissue (47). To identify the overlapped gene among these four 
groups, a Venn diagram was created using an online Venn diagram 
tool Interactive Venn.3 Then the identified common genes were 
taken for constructing a (Module 1) PPI network for further 
analysis. Web-based database for annotation visualization and 
integrated discovery (DAVID)4 tool was used to perform a gene 
ontology analysis for DEGs for Alzheimer’s disease and COVID-19 
independently (48). We have taken only those genes with common 
GO terms among AD and COVID-19 for further analysis and 
constructed a PPI network (Module 2).

2.4. Protein–protein interaction analysis 
and hub genes prediction

The biological functions and possible associations are mainly 
carried out by the PPI and we constructed two PPI networks. The 

3 http://www.interactivenn.net/

4 https://david.ncifcrf.gov/

TABLE 1 Microarray datasets obtained from the GEO database with the search key terms “Alzheimer’s Disease” and “SARS-CoV-2” with a filter 
restricting to “Homo Sapiens.”

S. No Accession ID Platform Sample count (case/
control)

Analysis methods

1 GSE4226 GPL1211, NIA MGC, Mammalian 

Genome Collection

AD;14/14 GEO2R

2 GSE4229 GPL1211, NIA MGC, Mammalian 

Genome Collection

AD;12/28 GEO2R

3 GSE18309 GPL570, Affymetrix Human Genome 

U133 Plus 2.0 Array

AD;6/3 GEO2R

4 GSE97760 GPL16699, Agilent-039494 Sure Print G3 

Human GE v2 8x60K Microarray

AD;9/10 GEO2R

5 GSE36980 GPL6244, Affymetrix Human Gene 1.0 

ST Array

AD;33/47 GEO2R

6 GSE152418 GPL24676, Illumina NovaSeq 6,000 COVID;17/17 DESeq2

7 GSE166190 GPL20301, Illumina HiSeq 4,000 COVID;11/11 DESeq2

8 GSE174745 GPL24676, Illumina NovaSeq 6,000 COVID;6/3 DESeq2

Expression type microarray and RNA-Seq to Alzheimer’s Disease and SARS-CoV-2, respectively.
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first protein interaction network (Module 1) was constructed 
using the common differentially expressed genes between the four 
groups and on other hand, the PPI network (module 2) was 
constructed using the genes with common GO terms. The protein 
interactions were constructed using STRING version 11.55 online 
tool then the PPI network was analyzed and visualized through 
Cytoscape software6 (49). The protein interaction networks are 
large networks and every node is connected with an edge, the 
highly interconnected genes (edges) in the PPI network consider 
hub genes. After constructing the two PPI networks we used the 
CytoHubba plugin version 0.1 in Cytoscape to identify the highly 
connected genes (50). Four topological features or ranking 
methods such as maximal clique centrality (MCC), Degree, 
Closeness, and Betweenness were employed to identify the hub 
genes. We have collected the top 20 genes from every method, and 
the gene present in at least three ranking methods were considered 
hub genes (51).

2.5. Analysis of transcription factor and 
microRNAs of hub genes

The interaction between hub genes-transcription factors (TFs) 
and hub genes-microRNAs (miRNA) has been conducted. 
Transcription factors play a crucial role, it binds with specific 
genes and regulates the rate of transcription of genetic 
information. Bioinformatically and/or in vitro assessment is 
possible of some of the mechanistic functions of candidate 
miRNAs prior to conducting preclinical animal tests (52). 
Cytoscape iRegulon plugin version 1.3 was used to predict the 
potential interactions between hub genes and TFs. In iRegulon, 
the enriched motifs were ranked depending on the direct targets 
using the position weight matrix (53). Therefore, AD and 
COVID-19 associated hub genes miRNA targets were predicted 
by using miRDB (MicroRNA Target Prediction Database).7 The 
miRNA targets predictive score (rank) >80 was considered a 
reliable score (54). The identified miRNAs were further plotted 
using Cytoscape software. For a better understanding of the role 
of miRNAs in disease mechanisms, we identified the hub miRNAs 
using four ranking methods (Degree, betweenness, closeness, and 
stress) of the CytoHubba plugin in Cytoscape (55, 56).

2.6. Drug-gene interaction analysis of hub 
genes

The drug-gene interaction was identified using Drug Gene 
Interaction Database (DGIdb) (57). DGIdb interface provides a search 
for genes against a database of drug-gene interactions and druggable 
targets. FDA approval status was confirmed through the drug bank 
database for shortlisted drugs in the interaction (Figure 1).

5 https://string-db.org/

6 https://cytoscape.org/

7 https://mirdb.org/

2.7. Gene ontology and pathway analysis of 
hub genes

Cluster Profiler (Version 4.1.0) Bioconductor package in R was 
used for creating Gene ontology of the hub genes (58). The top 
gene-ontology of molecular function (MF), cellular component 
(CC), and biological process (BP) were plotted using a bubble plot, 
and biochemical pathways associated with hub genes were identified 
using the KEGG database (Kyoto encyclopedia genes and 
genomes) (59).

3. Statistical analysis

3.1. DEGs

DEGs were identified for each data set by using adjusted p-values 
based on the moderated t-statistic (adj P) <0.05 along with an 
absolute value of logFC (log foldchange) of >1. The logFC ≥1 was 
considered as upregulated genes and logFC ≤ −1 was considered as 
downregulated genes.

3.2. Gene set enrichment analysis

The enrichment analysis of the gene ontology terms was 
confirmed using the “cluster Profiler” package, the analysis was 
performed separately for each comparison with applied 
hypergeometric statistical test, through the below equation,
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p-values were adjusted for multiple comparisons, and q-values 
were also calculated for FDR control as well. p-values <0.05 were 
considered to be significantly enriched terms (58).

3.3. Gene ontology and pathway analysis

In DAVID, Fisher’s Exact test is adopted to measure the gene 
enrichment in annotation terms. Fisher’s Exact p-values are 
computed by summing probabilities P over defined sets of tables 
(Prob = ∑Ap). The modified Fisher exact p-value (EASE 
score) ≤ 0.05 and FDR < 0.05 are considered strongly enriched 
(60, 61).

3.4. Protein interaction network 
constructions

Protein interactions are assessed and integrated using the STRING 
database which includes direct (physical) and indirect (functional) 
associations. PPI networks can be  constructed by calculating the 
distance ‘D’ between pairs of proteins (u,v),
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STRING tool provides four thresholds as a default including low 
(0.15), medium (0.40), high (0.70), and highest (0.90) and, we created 
a network using a medium threshold value (61).

4. Results

4.1. Analysis of microarray and 
transcriptome datasets

We retrieved five microarray datasets for AD and three 
transcriptome datasets for COVID-19 which includes disease and 
healthy samples. The AD microarray datasets were GSE4226, 
GSE4229, GSE18309, GSE97760, and GSE36980 analyzed through 

GEO2R. The transcriptome-based COVID-19 datasets GSE152418, 
GSE166190, and GSE174745 were analyzed through the DESeq2 
Bioconductor package in R software. The datasets were analyzed 
individually and identified the DEGs (Supplementary Tables S1, S2). 
The overall upregulated and downregulated DEGs were tabulated in 
Table 2. Followed by DEGs the datasets were classified to four different 
groups such as AD-PBMC, AD-Tissue, COVID-PBMC, and COVID-
Tissue in order to identify a common gene. Figure 2 demonstrates the 
volcano plots of the AD and SARS-CoV-2 datasets, where the red dot 
represents a gene that has been upregulated, and the blue dot 
represents a gene that has been downregulated.

4.2. Identification of common genes

The overlapped genes among the four groups are depicted in the 
Venn diagram Figure  3 for better understanding. Only 9 (HST6, 
POLR3G, SLC6A20, ITGA2B, HOMER3, GMPR, AGBL1, CRABP2, 

FIGURE 1

A schematic diagram of the workflow adopted in the study depicting the major steps of preprocessing of microarray and RNA-Seq data followed by 
identification of differentially expressed genes using R packages and gene ontology and hub gene analysis. Further, the hub genes were exposed to 
pathway analysis, miRNAs, and transcription factor prediction.

https://doi.org/10.3389/fmed.2023.1151046
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Premkumar and Sajitha Lulu 10.3389/fmed.2023.1151046

Frontiers in Medicine 06 frontiersin.org

OLFML2B) genes have been found to be shared between AD-PBMC, 
AD-Tissue, COVID-19-PBMC, and COVID-19-Tissue. We identified 
the genes which were present in at least 3 groups and tabulated them 
(Table 3) for further analysis and construct a (Module 1) PPI network.

4.3. Identification of common gene 
ontology terms among COVID-19 and 
Alzheimer’s disease datasets

DAVID analysis was performed to understand the biological 
significance of AD and COVID-19 DEGs. We found 164 MF, 175 CC, 
and 581 BP were enriched in Alzheimer’s disease and 146 MF, 196 CC, 

and 545 BP were enriched in COVID-19 datasets and 37 MF, 79CC 
and 129 BP were found to be commonly enriched between Alzheimer’s 
disease and the COVID-19 dataset. For this study, we have considered 
only the common GO terms for further analysis and (module 2) 
protein interaction network construction. Supplementary Table S4 
gives the details of the commonly enriched GO terms.

4.4. Protein interaction network 
construction and analysis

The STRING database was used to construct the protein 
interaction network then visualized via Cytoscape software. The edges 

TABLE 2 Differentially expressed genes of Alzheimer’s disease and COVID-19 datasets with details of upregulated and downregulated genes and total 
counts after deletion of duplication.

Sample groups Datasets Up regulated Down regulated Total DEGs Duplication 
removed

GSE4226 2,560 656 18,550 7,944

AD- PBMC GSE4229 16 318

GSE18309 983 886

GSE97760 4,733 8,398

AD-Tissue GSE36980 1,612 1,121 2,733 1,611

COVID-19-PBMC GSE152418 1,115 2,545 8,840 5,165

GSE166190 206 4,974

COVID-19 Tissue GSE174745 1867 534 2,401 1864

FIGURE 2

The multiple volcano plot showing differentially expressed genes of COVID-19 and AD (upregulated genes in red and downregulated genes in blue).
The x-axis depicts the log fold change in gene expression between different samples and the y-axis depicts FDR-adjusted p values.

https://doi.org/10.3389/fmed.2023.1151046
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represent the interactions between the genes, and the nodes represent 
the genes. Figure 4 illustrates the (Module 1) PPI network of common 
genes with 823 edges and 373 nodes. Figure 5 illustrates the (Module 
2) PPI network of GO sources with 2,674 nodes and 50,719 edges 
established according to the results.

4.5. Hub genes identification

Using the CytoHubba plugin of Cytoscape, we identified the 
highly interacting hub genes for the progression of AD and SARS-
CoV-2. Four different algorithms, namely MCC, Degree, 
Betweenness, and Closeness were utilized to extract the hub genes 
from module 1 and module 2. We obtained the top 20 genes from 
both modules based on these four ranking methods and tabulated 
them in module 1 (Table 4) and module 2 in (Table 5). The gene 
present in at least 3 ranking methods are considered as hub genes. 
As a result, Figure 4 displays the list of hub genes (ACTB, CDC42, 
RUNX2, HSPA8, PSMD2, GFAP, VAMP2, MAPK8, CAV1, GNB1, 
RBX1, ITGA2B) obtained from common genes (module 1) PPI 
network. A group of 17 (AKT1, ALB, BDNF, CAV1, CD4, CDC42, 

CDH1, DLG4, EGF, EGFR, FN1, GAPDH, INS, ITGB1, ACTB, SRC, 
TP53) overlapping genes was obtained through gene ontology 
(module 2) PPI network (Figures 5A,B). We identified that CAV1, 
CDC42, and ACTB genes are common among the two sets of hub 
genes. The expression of Caveolin-1 (Cav-1) has been associated 
with aging in both senescent cells and aged tissues in vitro and in 
vivo. In murine embryonic fibroblasts, Cav-1 knockout accelerates 
premature senescence, while loss of Cav-1 accelerates 
neurodegeneration and aging. In most cell types, ACTB (Actin-
Beta) is abundantly and stably expressed and is commonly used to 
normalize gene expression as an internal control (62). ACTB variant 
rs852423 has been found to be  associated with increased 
susceptibility to AD (63). The identified module 1 and module 2 
hub genes and their major roles are tabulated in 
Supplementary File 2.

4.6. MicroRNAs network of hub genes

The regulatory networks such as miRNAs and TFs of the hub 
genes were identified. MicroRNAs (miRNA) and transcription factors 
(TFs) are involved in the development and progression of COVID-19 
and its comorbid conditions. Based on the analysis of the hub genes-
miRNA and hub genes-Transcription factors, we have obtained a clear 
network of interactions. The results revealed that the miRNAs regulate 
26 hub genes, which could be a possible target of the comorbidity. All 
the hub genes have targeted a total of 839 miRNAs of which 27 
miRNAs were targeted in more than three hub genes (Figure 6A; 
Supplementary Table S5).

Also, we  have identified the hub miRNAs using four ranking 
methods (Degree, betweenness, closeness, and stress) of the 
CytoHubba plugin in Cytoscape. We extracted the top 40 nodes from 
each ranking method and the overlapped miRNAs were identified 
using a Venn diagram (Figure  6B; Supplementary Table S6). The 
miRNAs present at least three ranking methods considered as 
hub-miRNAs and we found five hub-miRNAs including hsa-miR-
6,867-5p, hsa-miR-548c-3p, hsa-miR-6,828-3p, hsa-miR-545-5p, and 
hsa-miR-5,011-5p.

4.7. Transcription factor network of hub 
genes

iRegulon predicted 85 TFs for the hub genes and importantly four 
TFs HAND2, GATA1, GATA2, and GATA6 interacted with 23 hub 
genes (Figure 7; Supplementary Table S7). The heart-and neural crest 
derivatives expressed protein-2 (HAND2) play a crucial role in neural 
crest development (64). The synergistic activation between HAND2 
and GATA4 TFs is causally linked to congenital heart diseases (CHD). 
Severe CDH may contribute to delayed brain development, 
thromboembolism, and pulmonary hypertension. The transcription 
factors might play a major role in different cell types. GATA family 
TFs are zinc finger DNA binding proteins, GATA1 and GATA2 play 
an essential role in developing and maintaining the hematopoietic 
system (65). Jin Chu et al. reported that GATA1 acts as a transcription 
repressor for gamma-secretase activating protein (gsap) gene 
expression (66). Interestingly previous studies suggested that GATA1 
is a transcription repressor for synapse-related genes. In neurological 

FIGURE 3

Venn diagram of shared differentially expressed genes, where each 
ellipse represents AD-PBMC, AD-Tissue, COVID-19-PBMC, and 
COVID-19-Tissue with Nine (HST6, POLR3G, SLC6A20, ITGA2B, 
HOMER3, GMPR, AGBL1, CRABP2, OLFML2B) genes common 
among the four groups.

TABLE 3 Common genes identified among AD-PBMC, AD-Tissues, 
COVID-19-PBMC, and COVID-19-Tissues.

S. No Datasets Common Genes

1. AD-PBMC, AD-Tissue, COVID-19-

PBMC, COVID-19-Tissue

9

2. AD-PBMC, COVID-19-PBMC, 

COVID-19-Tissue

132

3. AD-Tissue, COVID-19-PBMC, 

COVID-19-Tissue

22

4 AD-PBMC, AD-Tissue, COVID-19-

PBMC

327
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A B

FIGURE 4

Network of protein–protein interaction and detected hub genes (from genes common among AD-PBMC, AD-Tissue, COVID-19-PBMC, and COVID-
19-Tissue, module 1). (A) The up-regulated and down-regulated genes in red and green colors and hub genes in aqua. (B) Venn diagram representing 
the genes commonly shared among the topological features of MCC, Betweenness, Closeness, and Degree.

A B

FIGURE 5

(A) Network constructed to represent the common genes shared by ontology terms of Alzheimer’s disease and COVID-19 gene ontology terms 
(module 2). Purple diamonds represent the hub genes of this network. (B) Venn diagram showing the genes commonly shared among the topological 
features of MCC, Betweenness, Closeness, and Degree.
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TABLE 4 The top 20 genes from module 1 of (common genes of Alzheimer’s disease and COVID-19 tissues and blood) protein–protein interaction 
network analyzed using four different topological analysis methods such as MCC, Closeness, Betweenness, and Degree through CytoHubba plugin.

S. No Betweenness Closeness Degree MCC

1. ACTB ACTB ACTB PSMA1

2. CDC42 CDC42 CDC42 PSMD2

3. RUNX2 HSPA8 RUNX2 PSMC1

4. HSPA8 RUNX2 GFAP PSME3

5. GFAP CAV1 HSPA8 PSMB3

6. ITGA2B GFAP CAV1 ACTB

7. CAV1 MAPK8 GNB1 RUNX2

8. SNRNP70 PTGS2 PSMD2 POSTN

9. RBX1 VAMP2 MAPK8 ELN

10. GNB1 PRKCZ ITGA2B SPARC

11. VAMP2 PIK3CG PSMA1 ACAN

12. PIK3CG ITGA2B PTGS2 SPRED1

13. MAPK8 WNT4 ACAN TP73

14. FKBP1A RBX1 PSME3 TIMP3

15. MYL6B ACAN RBX1 OAZ1

16. PSMD2 PGR TRPV1 MAPK6

17. SLC12A1 PSMD2 PSMB3 GFAP

18. ABCC8 GNB1 PSMC1 CDC42

19. OAZ1 TRPV1 KCNA1 HSPA8

20. HMBS MAP2K3 VAMP2 SDC4

TABLE 5 The identified top 20 genes from module 2 (common gene ontology terms between Alzheimer’s disease and COVID-19) of protein–protein 
interaction network analyzed using four topological analysis methods such as MCC, Closeness, Betweenness, and Degree through CytoHubba plugin.

S. No Betweenness Closeness Degree MCC

1. SRC STAT3 STAT3 NDUFA6

2. CFTR DLG4 CDH1 UQCRH

3. CAV1 CAV1 BDNF ATP5MF

4. ACTB ACTB MMP9 NDUFB7

5. EGF ERBB2 EGFR NDUFV2

6. BDNF BDNF ALB ATP5PO

7. ALB ALB AKT1 NDUFC2

8. ITGB1 ITGB1 ITGB1 NDUFB6

9. TP53 TP53 TP53 P13073

10. INS INS INS UQCRC1

11. CDC42 CDC42 CD4 ATP5PD

12. CYCS EGF DLG4 COX5A

13. AKT1 AKT1 ACTB NDUFB9

14. CDH1 CDH1 CDC42 ATP5ME

15. FN1 FN1 FN1 UQCR10

16. SNCA SRC SRC ATP5PF

17. EGFR ESR1 ERBB2 NDUFA12

18. GAPDH GAPDH GAPDH NDUFA8

19. DLG4 EGFR EGF NDUFV1

20. CD4 CD4 CAV1 ATP5MG
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conditions such as AD, NGB may have therapeutic and disease-
preventing properties that can be explored experimentally (67).

4.8. Identification of drug-gene interaction

We investigated the drug interactions of hub genes using the 
DGIdb. A total of 26 hub genes were explored through the drug-gene 
interactions network. The network result shows that a total of 106 were 
interacting with the hub genes (Figure 8; Supplementary Table S8). 
Some of the drugs were already approved by the food and drug 
administration (FDA) which makes this drug more possible to treat 
AD and COVID-19 comorbidity. There are potential therapeutics for 
COVID-19 comorbidities associated with the dysregulation of 
the proteins.

4.9. Gene set enrichment analysis of hub 
genes

Functional enrichment analysis results showed that hub genes are 
involved in several biological functions. We  identified hub genes 
related gene ontology using cluster profiler package in r, and 
we plotted the significantly enriched terms based on adjusted p value 
<0.05, as illustrated in Figure  9. There are several pathways were 
enriched in KEGG analysis including the PI3K-AKT, Neurotrophin, 
Rap1, Ras, and JAK–STAT signaling pathways, and the top  20 
signaling pathways are depicted in Figure 10 (Supplementary Table S9). 

The gene set enrichment results clearly show that the hub genes are 
majorly involved in the signaling pathways which might be closely 
linked to COVID-19 and AD.

5. Discussion

High-throughput sequencing technologies, bioinformatics, and 
systems biology analysis methods could identify and reveals the 
changes in the expression level of genes and also assists to identify the 
potential biomarkers for several diseases importantly 
neurodegenerative diseases. In this study, the focus is on 
understanding how AD and COVID-19 disease are related through 
pathogenetic processes and molecular crosstalks. We followed systems 
biology approaches including DEGs identification, PPI network 
construction, hub genes identification, gene set enrichment analysis, 
and pathway analysis. Also, we explored and identified the regulatory 
network and drug-genes interaction of the hub genes. To investigate 
the relationship between AD and COVID-19 we performed gene set 
enrichment analysis using AD and COVID-19 DEGs discretely. The 
datasets were further classified into four different groups such as 
AD-PBMC, AD-Tissue, COVID-19-PBMC, and COVID-19-Tissue. 
We collected the common DEGs from among the four groups for 
constructing a Protein–Protein interaction network (module 1). 
While only 9 DEGs (HST6, POLR3G, SLC6A20, ITGA2B, HOMER3, 
GMPR, AGBL1, CRABP2, and OLFML2B) were commonly expressed 
between these groups. In addition, we  performed Gene Set 
Enrichment Analysis for the DEGs of Alzheimer’s disease and 

A B

FIGURE 6

Hub Genes-miRNAs Network (A) miRNAs interacting with more than three hub genes, aqua color squares representing the hub genes and the maroon 
color diamonds representing the miRNAs. (B) Predicted hub miRNAs using four topological features of CytoHubba including Betweenness, Closeness, 
Degree, and Stress.
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SARS-CoV-2 DEGs, then we retrieved the genes with common gene 
ontology terms for constructing a PPI network (module 2).

The HST6, ITGA2B, HOMER3, and CRABP2 genes have not been 
reported in AD or COVID-19 related articles. In the extracellular 
matrix, Olfactomedin Like 2B (OLFML2B) is the olfactomedin 
domain protein photomedin-2, with an important role in neural crest 
development and neurogenesis, cell–cell adhesion, and cell cycle 
regulation. The OLFML2B gene may contribute to the treatment of 
bladder cancer in the future based on individual prognostic markers 
(68). Hongde Liu proposed that GMPR’s (Guanosine Monophosphate 
Reductase) GMPR1 is associated with Tau phosphorylation in AD via 
the AMPK (AMP-activated protein kinase) and adenosine receptor 
pathways (69). A therapeutic strategy of inhibiting GMPR1 with 
lumacaftor has been proposed to treat AD based on the elevated 
expression of GMPR in this disease. Wei Dong et al. explored the 
common initiative molecular pathways in AD and ischemic stroke and 
they found that AGBL1 is a common risk gene (70). SLC6A20 appears 
to be  a novel regulator of glycine and proline levels in the brain 
according to the research of Mihyun Bae. Further, pharmacologically 
inhibiting SLC6A20 may contribute to the treatment of brain disorders 

via an increase in glycine levels in the brain and N-Methyl-D-
Aspartate receptors (NMDAR) activity (71). Some important 
biological processes, including spliceosome genes, were dysregulated 
by POLR3B genes. A number of transcription factors, including 
FOXC2 and GATA1, play a role in neuronal dysfunction and 
intellectual disability, which are affected by impaired protein synthesis 
and splicing (72).

miRNAs as biomarkers: miRNA subsets have shown clinical 
relevance as biomarkers according to a growing number of reports. 
There are emerging miRNA therapeutics that are used to determine 
the presence of pathology, as well as the progression, genetic links, and 
stage of the disease. miRNAs have been translated into clinical 
medicine faster than ever because of the bioinformatic approach to 
identifying miRNA-binding sites and their related biological pathways 
in target genes, as well as the expanding availability of in vitro and in 
vivo preclinical research models (73). The miRNA helps to understand 
the development and progression of COVID-19 and AD comorbidity. 
In the miRNAs network BDNF, MAPK8, ITGB1, FN1, EGFR, and 
RUNX2 hub genes are associated with most of the miRNAs. The 
co-expression network revealed that hsa-miR-6,867-5P regulates 

FIGURE 7

Hub Genes-Transcription Factors network (red color diamond designates the hub genes and the green color circulars designate the Transcription 
Factors). The edges between the two genes indicates the interaction between TFs and hub genes.
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EGFR, DLG4, GFAP, BDNF and hsa-miR-548C-3p regulates EGFR, 
MAPK8, ITGB1, CAV1 and hsa-miR-5692a regulates ITGB1, FN1, 
MAPK8, EGF, RUNX2. Research suggested that hsa-miR6867-5P and 
6,867-5P were associated with platelet apoptosis and adhesion in an 
autoimmune disease like immune thrombocytopenia (74). Recent 
studies exhibited that hypothalamic miRNAs including miR-548C-3p 
are potential contributors to different neurodegenerative diseases, also 

this author identified 29 novel hypothalamic MicroRNAs as a 
propitious therapeutic regimen for SARS-CoV-2 by regulating ACE2 
and TMPRSS2 expression (75). Cosin et al. studied a multiple linear 
regression model for predicting amyloid beta levels in Cerebrospinal 
fluid, for this they used four validated miRNAs for AD including 
miR-545-5p, miR-142-3p, miR-34a-5p, and miR-15b-5p. The results 
revealed that miR-34a-5p is the best-predicting miRNA for amyloid 

FIGURE 8

Drug-Hub Gene Network (aqua color indicating the hub genes and red color indicating the drugs).

FIGURE 9

Top 20 gene ontology terms of hub genes (The x-axis label represents the gene ratio and the y-axis label represents gene ontology terms).
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beta levels in cerebrospinal fluid (Cosín-Tomás et  al., 2017). The 
miR-545-3p, and miR-34a-5p could be potential biomarkers for the 
early detection of AD (Cosín-Tomás et al., 2017).

To illustrate the mechanisms of hub genes we  performed 
enrichment analysis including GO and pathway analysis. We found 
various cell signaling pathways are enriched including RAP1, MAPK, 
PI3K-AKT, RAS, and HIF-1 signaling pathways, etc. The signaling 
pathway of RAP1 was found to be  a crucial regulator of cellular 
functions such as the formation and control of cell adhesion and 
junction and, also plays a major role during cell invasion and 
metastasis in different cancers (76). MAPK pathway responds to 
numerous extracellular stimulations including inflammatory 
cytokines, stress, and viral infection. Furthermore, COVID-19 
infection activated MAPK and the downstream signaling possibly 
leading to cell death. Intense work is in progress to develop a 
compound to target MAPK pathways to treat neurodegenerative and 
inflammatory diseases (77). Proliferation, apoptosis, and angiogenesis, 
the Renin-angiotensin signaling pathway (RAS) has been shown to 
play a role in tumorigenesis through complex interactions (78). 
Krishna Sriram et al. reported that RAS has a great tendency to cause 
comorbidities and mortality and they proposed a model to predict 
effective drugs to target RAS (79). RAS–ERK signaling induces 
amyloid precursor protein and tau protein hyperphosphorylation 

which are enhanced in AD brains, and inhibition of RAS-MAPK 
activation prevents tau and amyloid precursor protein 
hyperphosphorylation (80). HIF-1α (hypoxia-inducible factor) plays 
a crucial role in inflammatory responses, regulating metabolic 
pathways and regulating the aging process. Dysregulations of the 
pathway HIF-1α lead to several diseases including cardiovascular 
disease, cancer, and AD. HIF-1α is a key activator for COVID-19 and 
inflammatory responses and it could be a therapeutic target for virus-
induced inflammatory diseases and COVID-19 (81). As part of the 
immune response and virus entry into the cell, Phosphatidylinositol 
3-kinase (PI3K)/AKT signaling plays a significant role also this 
pathway is involved in several aspects of neurological disease 
development (82). Patients with COVID-19 have been found to have 
an increased risk of lung tissue fibrosis following activation of the 
PI3K-AKT signaling pathway (83). Cancers and diabetes are 
associated with excessive activation of the PI3K-AKT pathway also 
cardiovascular diseases and neurological conditions such as AD and 
PD might also be affected by the deregulation of the pathway (84). 
Enriched BP of hub genes has primarily participated in the cellular 
response to peptides, animal organ morphogenesis, endomembrane 
system organization, maintenance of protein location, and embryonic 
organ development. The top enriched terms of CC were nucleus, 
cytosol, mitochondrion, nuclear lumen, and nucleoplasm. The top five 

FIGURE 10

Pathway-Hub Gene Network (aqua color indicating the hub genes and the red color indicating the signal pathways).
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terms in MF were mainly enriched transmembrane transporter 
binding, RNA polymerase II-specific DNA-binding transcription 
factor binding, DNA binding transcription factor binding, sequence-
specific DNA binding and transcription factor binding. 
We constructed a drug-gene network for hub genes and investigated 
the relationship between the chemical and the disease. Through this 
drug-gene network, we  found several drugs including 
diacetylmorphine, donepezil, dronabinol, levodopa, haloperi, 
deferoxamine, raltitrexed, diazepam, and warfarin. These drugs are 
already reported for treating AD and Parkinson’s disease (85–89). 
Recent studies reported repurposing of CNS drugs are potential to 
treat SARS-CoV-2-infected individuals (90). We  have found an 
interaction between DEGs-miRNAs-TFs which are plays key roles in 
the pathogenesis of neurological disorders.

It is necessary to acknowledge that the study has some limitations 
because it only relies on bioinformatics and network biology. One of 
the limitations of the study is the potential confounding effects 
associated with the variations in transcriptome profiles from different 
tissues (brain vs. blood). Also selecting overlapping DEGs from 
separate analyses of tissues and blood samples may not completely 
eliminate the confounding effect of sample variation. Additionally, the 
large number of DEGs identified in the study may have caused a 
potential for false positive results. While we attempted to address these 
issues by performing additional analyses including hub genes and 
pathway analysis.

6. Conclusion

The present study aims to understand the molecular crosstalk 
between COVID-19 and Alzheimer’s Disease, including discovering 
the gene expression signatures, TFs, Drug-gene interaction, miRNAs 
associations, and dysregulated molecular pathways. As a result of 
integrated analyses of microarrays and transcriptomics of PBMC cells 
and tissue cells, we were able to identify AD and COVID-19 DEGs. 
Through PPI network analysis twenty-three (AKT1, ALB, BDNF, 
CAV1, CD4, CDC42, CDH1, DLG4, EGF, EGFR, FN1, GAPDH, INS, 
ITGB1, ACTB, SRC, TP53, RUNX2, HSPA8, PSMD2, GFAP, VAMP2, 
MAPK8, GNB1, RBX1, ITGA2B) hub genes were identified. 
Transcription factor network analyses revealed that several TFs play a 
crucial role in post-transcriptional and transcriptional regulators of 
the differentially expressed genes. The identified shared pathways 
between AD and COVID-19 provide there are several similar 

underlying mechanisms play in both diseases. Our findings could lead 
to identifying a potential biomarker to predict the highest risk of 
neurological complications with COVID-19. Also, the identified 
transcription factor might be a potential therapeutic drug target for 
both diseases.

Data availability statement

The datasets presented in this study can be  found in online 
repositories. The names of the repository/repositories and accession 
number(s) can be found in the article/Supplementary material.

Author contributions

TP analyzed the data and wrote the manuscript. SS conceptualized 
and designed the work, revised, and edited the manuscript. All authors 
contributed to the article and approved the submitted version.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or claim 
that may be made by its manufacturer, is not guaranteed or endorsed 
by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fmed.2023.1151046/
full#supplementary-material

References
 1. Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat 

Rev Microbiol. (2020) 19:141–54. doi: 10.1038/s41579-020-00459-7 

 2. Holmes EC, Goldstein SA, Rasmussen AL, Robertson DL, Crits-Christoph A, 
Wertheim JO, et al. The origins of SARS-CoV-2: a critical review. Cells. (2021) 
184:4848–56. doi: 10.1016/j.cell.2021.08.017

 3. Li MY, Li L, Zhang Y, Wang XS. Expression of the SARS-CoV-2 cell receptor gene 
ACE2 in a wide variety of human tissues. Infect Dis Poverty. (2020) 9:45. doi: 10.1186/
s40249-020-00662-x

 4. Ferini-Strambi L, Salsone M. COVID-19 and neurological disorders: are 
neurodegenerative or neuroimmunological diseases more vulnerable? J Neurol. (2021) 
268:409–19. doi: 10.1007/s00415-020-10070-8

 5. Wouk J, Rechenchoski DZ, Rodrigues BCD, Ribelato EV, Faccin-Galhardi LC. Viral 
infections and their relationship to neurological disorders. Arch Virol. (2021) 
166:733–53. doi: 10.1007/s00705-021-04959-6

 6. Lukiw WJ, Pogue A, Hill JM. SARS-CoV-2 infectivity and neurological targets in 
the brain. Cell Mol Neurobiol. (2022) 42:217–24. doi: 10.1007/s10571-020-00947-7

 7. Ahmed SSSJ, Paramasivam P, Kamath M, Sharma A, Rome S, Murugesan R. Genetic 
exchange of lung-derived exosome to brain causing neuronal changes on COVID-19 
infection. Mol Neurobiol. (2021) 58:5356–68. doi: 10.1007/s12035-021-02485-9

 8. Prasad K, Yousef AlOmar S, Awad Alqahtani SM, Zubbair Malik M, Kumar V. Brain 
disease network analysis to elucidate the neurological manifestations of COVID-19. Mol 
Neurobiol. (2021) 58:1875–93. doi: 10.1007/s12035-020-02266-w

 9. Douaud G, Lee S, Alfaro-Almagro F, Arthofer C, Wang C, McCarthy P, et al. SARS-
CoV-2 is associated with changes in brain structure in UK biobank. Nature. (2022) 
604:697–707. doi: 10.1038/s41586-022-04569-5

 10. Tavares-Júnior JWL, de Souza ACC, Borges JWP, Oliveira DN, Siqueira-Neto JI, 
Sobreira-Neto MA, et al. COVID-19 associated cognitive impairment: a systematic 
review. Cortex. (2022) 152:77–97. doi: 10.1016/j.cortex.2022.04.006

https://doi.org/10.3389/fmed.2023.1151046
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fmed.2023.1151046/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmed.2023.1151046/full#supplementary-material
https://doi.org/10.1038/s41579-020-00459-7 
https://doi.org/10.1016/j.cell.2021.08.017
https://doi.org/10.1186/s40249-020-00662-x
https://doi.org/10.1186/s40249-020-00662-x
https://doi.org/10.1007/s00415-020-10070-8
https://doi.org/10.1007/s00705-021-04959-6
https://doi.org/10.1007/s10571-020-00947-7
https://doi.org/10.1007/s12035-021-02485-9
https://doi.org/10.1007/s12035-020-02266-w
https://doi.org/10.1038/s41586-022-04569-5
https://doi.org/10.1016/j.cortex.2022.04.006


Premkumar and Sajitha Lulu 10.3389/fmed.2023.1151046

Frontiers in Medicine 15 frontiersin.org

 11. Alshebri MS, Alshouimi RA, Alhumidi HA, Alshaya AI. Neurological 
complications of SARS-CoV, MERS-CoV, and COVID-19. SN Compr Clin Med. (2020) 
2:2037–47. doi: 10.1007/s42399-020-00589-2

 12. Ellul MA, Benjamin L, Singh B, Lant S, Michael BD, Easton A, et al. Neurological 
associations of COVID-19. Lancet Neurol. (2020) 19:767–83. doi: 10.1016/
S1474-4422(20)30221-0

 13. Gordon MN, Heneka MT, le Page LM, Limberger C, Morgan D, Tenner AJ, et al. 
Impact of COVID-19 on the onset and progression of Alzheimer’s disease and related 
dementias: a roadmap for future research. Alzheimer’s Dementia. (2022) 18:1038–46. doi: 
10.1002/alz.12488

 14. Rhodus EK, Aisen P, Grill JD, Rentz DM, Petersen RC, Sperling RA, et al. 
Alzheimer’s disease clinical trial research adaptation following COVID-19 pandemic 
onset: National sample of Alzheimer’s clinical trial consortium sites. J Prev Alzheimers 
Dis. (2022) 9:665–71. doi: 10.14283/jpad.2022.79

 15. Snider BJ, Holtzman DM. Effects of COVID-19 on preclinical and clinical research 
in neurology: examples from research on neurodegeneration and Alzheimer’s disease. 
Neuron. (2021) 109:3199–202. doi: 10.1016/j.neuron.2021.08.026

 16. Ciaccio M, Lo Sasso B, Scazzone C, Gambino CM, Ciaccio AM, Bivona G, et al. 
COVID-19 and Alzheimer’s disease. Brain Sci. (2021) 11:1–10. doi: 10.3390/
brainsci11030305

 17. Liu L, Ni SY, Yan W, Lu QD, Zhao YM, Xu YY, et al. Mental and neurological 
disorders and risk of COVID-19 susceptibility, illness severity and mortality: a 
systematic review, meta-analysis and call for action. E Clin Med. (2021) 1:101111. doi: 
10.1016/j.eclinm.2021.101111

 18. Zhang XX, Tian Y, Wang ZT, Ma YH, Tan L, Yu JT. The epidemiology of 
Alzheimer’s disease modifiable risk factors and prevention. J Prevent Alzheimer’s Dis. 
(2021) 3:1–9. doi: 10.14283/jpad.2021.15

 19. Khalifa N, Ben TD, Marinangeli C, Depuydt M, Courtoy PJ, Christophe RJ, et al. 
Structural features of the KPI domain control APP dimerization, trafficking, and 
processing. FASEB J. (2012) 26:855–67. doi: 10.1096/fj.11-190207

 20. Asionowski MAJ, Aass CHH, Ahrenholz FALKF. Constitutive and regulated 
secretase cleavage of Alzheimer’ s amyloid precursor protein by a disintegrin 
metalloprotease. Proc Natl Acad Sci U S A. (1999) 96:3922–7. doi: 10.1073/pnas.96.7.3922

 21. Premkumar T, Sajitha LS. Molecular mechanisms of emerging therapeutic targets 
in Alzheimer’s disease: a systematic review. Neurochem J. (2022) 16:443–55. doi: 10.1134/
S1819712422040183

 22. Lichtenthaler SF. Alpha-secretase in Alzheimer’s disease: molecular identity, 
regulation and therapeutic potential. J Neurochem. (2011) 116:10–21. doi: 
10.1111/j.1471-4159.2010.07081.x

 23. Vassar R. BACE1: the β-secreiase enzyme in Alzheimer’s disease. J Mol Neurosci. 
(2004) 23:105–14. doi: 10.1385/JMN:23:1-2:105

 24. Krishnaswamy S, Verdile G, Groth D, Kanyenda L. The structure and function of 
Alzheimer’ s gamma secretase enzyme complex. Crit Rev Clin Lab Sci. (2009) 
46:282–301. doi: 10.3109/10408360903335821

 25. Kolarova M, García-Sierra F, Bartos A, Ricny J, Ripova D. Structure and pathology 
of tau protein in Alzheimer disease. Int J Alzheimers Dis. (2012) 2012:1–13. doi: 
10.1155/2012/731526

 26. Mandelkow EM, Mandelkow E. Biochemistry and cell biology of tau protein in 
neurofibrillary degeneration. Cold Spring Harb Perspect Biol. (2012) 4:1–25. doi: 
10.1101/cshperspect.a006247

 27. Pizzarelli R, Pediconi N, di Angelantonio S. Molecular imaging of tau protein: new 
insights and future directions. Front Mol Neurosci. (2020) 13:1–6. doi: 10.3389/
fnmol.2020.586169

 28. Sait A, Angeli C, Doig AJ, Day PJR. Viral involvement in Alzheimer’s disease. ACS 
Chem Neurosci. (2021) 12:1049–60. doi: 10.1021/acschemneuro.0c00719

 29. Vigasova D, Nemergut M, Liskova B, Damborsky J. Multi-pathogen infections and 
Alzheimer’s disease. Microbial Cell Fact. (2021) 20:25. doi: 10.1186/s12934-021-01520-7

 30. Hardan L, Filtchev D, Kassem R, Bourgi R, Lukomska-Szymanska M, Tarhini H, 
et al. Covid-19 and alzheimer’s disease: A literature review. Medicine. (2021) 57:159. doi: 
10.3390/medicina57111159

 31. Jha PK, Vijay A, Halu A, Uchida S, Aikawa M. Gene expression profiling reveals 
the shared and distinct transcriptional signatures in human lung epithelial cells infected 
with SARS-CoV-2, MERS-CoV, or SARS-CoV: potential implications in cardiovascular 
complications of COVID-19. Front Cardiovasc Med. (2021) 7:7. doi: 10.3389/
fcvm.2020.623012

 32. Jha PK, Vijay A, Sahu A, Ashraf MZ. Comprehensive gene expression meta-
analysis and integrated bioinformatic approaches reveal shared signatures between 
thrombosis and myeloproliferative disorders. Sci Rep. (2016) 6:1–13. doi: 10.1038/
srep37099

 33. Rahman MH, Peng S, Hu X, Chen C, Uddin S, Quinn JMW, et al. Bioinformatics 
methodologies to identify interactions between type 2 diabetes and neurological 
comorbidities. IEEE Access. (2019) 7:183948–70. doi: 10.1109/ACCESS.2019.2960037

 34. del Prete E, Facchiano A, Liò P. Bioinformatics methodologies for coeliac disease 
and its comorbidities. Brief Bioinform. (2018) 21:355–67. doi: 10.1093/bib/bby109

 35. Diaz-Beltran L, Cano C, Wall DP, Esteban FJ. Systems biology as a comparative 
approach to understand complex gene expression in neurological diseases. Behav Sci, 3. 
(2013). 253–273.

 36. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. 
NCBI GEO: archive for functional genomics data sets - update. Nucleic Acids Res. (2013) 
41:D991–5. doi: 10.1093/nar/gks1193

 37. Sean D, Meltzer PS. GEOquery: a bridge between the gene expression omnibus 
(GEO) and BioConductor. Bioinformatics. (2007) 23:1846–7. doi: 10.1093/
bioinformatics/btm254

 38. Sean D, Meltzer PS. GEOquery: a bridge between the gene expression omnibus 
(GEO) and BioConductor. Bioinformatics. (2007) 23:1846–7. doi: 10.1093/
bioinformatics/btm254

 39. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers 
differential expression analyses for RNA-sequencing and microarray studies. Nucleic 
Acids Res. (2015) 43:e47. doi: 10.1093/nar/gkv007

 40. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and 
powerful approach to multiple testing. J Royal Stat Soc B. (1995) 57:289–300. doi: 
10.1111/j.2517-6161.1995.tb02031.x

 41. Wang M, Wang L, Wu S, Zhou D, Wang X. Identification of key genes and 
prognostic value analysis in hepatocellular carcinoma by integrated bioinformatics 
analysis. Int J Genomics. (2019) 2019:3518378. doi: 10.1155/2019/3518378

 42. Dalman MR, Deeter A, Nimishakavi G, Duan ZH. Fold change and p-value cutoffs 
significantly alter microarray interpretations. BMC Bioinformatics. (2012) 13:1–4. doi: 
10.1186/1471-2105-13-S2-S11

 43. Anders S, Huber W. Differential expression analysis for sequence count data. 
Genome Biol. (2010) 11:1–12. doi: 10.1186/gb-2010-11-10-r106

 44. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for 
RNA-seq data with DESeq2. Genome Biol. (2014) 15:1–21. doi: 10.1186/s13059-014-0550-8

 45. Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L. Differential 
analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol. (2012) 
31:46–53. doi: 10.1038/nbt.2450

 46. Risso D, Ngai J, Speed TP, Dudoit S. Normalization of RNA-seq data using factor analysis 
of control genes or samples. Nat Biotechnol. (2014) 24, 32:896–902. doi: 10.1038/nbt.2931

 47. Ghahramani N, Shodja J, Rafat SA, Panahi B, Hasanpur K. Integrative systems 
biology analysis elucidates mastitis disease underlying functional modules in dairy 
cattle. Front Genet. (2021) 12:12. doi: 10.3389/fgene.2021.712306

 48. Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, et al. DAVID: a web 
server for functional enrichment analysis and functional annotation of gene lists (2021 
update). Nucleic Acids Res. (2022) 50:W216–21. doi: 10.1093/nar/gkac194

 49. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, et al. 
STRING v9.1: protein-protein interaction networks, with increased coverage and 
integration. Nucleic Acids Res. (2013) 41:D808–15. doi: 10.1093/nar/gks1094

 50. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub 
objects and sub-networks from complex interactome. BMC Syst Biol. (2014) 8:S11. doi: 
10.1186/1752-0509-8-S4-S11

 51. Yu D, Lim J, Wang X, Liang F, Xiao G. Enhanced construction of gene regulatory 
networks using hub gene information. BMC Bioinformat. (2017) 18:1576. doi: 10.1186/
s12859-017-1576-1

 52. Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, et al. The human 
transcription factors. Cell. (2018) 172:650–65. doi: 10.1016/j.cell.2018.01.029

 53. Janky R, Verfaillie A, Imrichová H, van de Sande B, Standaert L, Christiaens V, 
et al. iRegulon: from a gene list to a gene regulatory network using large motif and track 
collections. PLoS Comput Biol. (2014) 10:e1003731. doi: 10.1371/journal.pcbi.1003731

 54. Abbas SZ, Qadir MI, Muhammad SA. Systems-level differential gene expression 
analysis reveals new genetic variants of oral cancer. Sci Rep. (2020) 10:14667. doi: 
10.1038/s41598-020-71346-7

 55. Ishrat R, Ahmed MM, Tazyeen S, Alam A, Farooqui A, Ali R, et al. In Silico 
integrative approach revealed key MicroRNAs and associated target genes in Cardiorenal 
syndrome. Bioinform Biol Insights. (2021) 15:7396. doi: 10.1177/11779322211027396

 56. Qiu X, Lin J, Liang B, Chen Y, Liu G, Zheng J. Identification of hub genes and 
MicroRNAs associated with idiopathic pulmonary arterial hypertension by integrated 
bioinformatics analyses. Front Genet. (2021) 12:544. doi: 10.3389/fgene.2021.636934

 57. Freshour SL, Kiwala S, Cotto KC, Coffman AC, McMichael JF, Song JJ, et al. 
Integration of the drug–gene interaction database (DGIdb 4.0) with open crowdsource 
efforts. Nucleic Acids Res. (2021) 49:D1144–51. doi: 10.1093/nar/gkaa1084

 58. Yu G, Wang LG, Han Y, He QY. ClusterProfiler: an R package for comparing 
biological themes among gene clusters. OMICS. (2012) 16:284–7. doi: 10.1089/
omi.2011.0118

 59. Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic 
Acids Res. (2000) 28:27–30. doi: 10.1093/nar/28.1.27

 60. Golkar-Narenji A, Antosik P, Nolin S, Rucinski M, Jopek K, Zok A, et al. Gene 
ontology groups and signaling pathways regulating the process of avian satellite cell 
differentiation. Genes (Basel). (2022) 13:242. doi: 10.3390/genes13020242

https://doi.org/10.3389/fmed.2023.1151046
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://doi.org/10.1007/s42399-020-00589-2
https://doi.org/10.1016/S1474-4422(20)30221-0
https://doi.org/10.1016/S1474-4422(20)30221-0
https://doi.org/10.1002/alz.12488
https://doi.org/10.14283/jpad.2022.79
https://doi.org/10.1016/j.neuron.2021.08.026
https://doi.org/10.3390/brainsci11030305
https://doi.org/10.3390/brainsci11030305
https://doi.org/10.1016/j.eclinm.2021.101111
https://doi.org/10.14283/jpad.2021.15
https://doi.org/10.1096/fj.11-190207
https://doi.org/10.1073/pnas.96.7.3922
https://doi.org/10.1134/S1819712422040183
https://doi.org/10.1134/S1819712422040183
https://doi.org/10.1111/j.1471-4159.2010.07081.x
https://doi.org/10.1385/JMN:23:1-2:105
https://doi.org/10.3109/10408360903335821
https://doi.org/10.1155/2012/731526
https://doi.org/10.1101/cshperspect.a006247
https://doi.org/10.3389/fnmol.2020.586169
https://doi.org/10.3389/fnmol.2020.586169
https://doi.org/10.1021/acschemneuro.0c00719
https://doi.org/10.1186/s12934-021-01520-7
https://doi.org/10.3390/medicina57111159
https://doi.org/10.3389/fcvm.2020.623012
https://doi.org/10.3389/fcvm.2020.623012
https://doi.org/10.1038/srep37099
https://doi.org/10.1038/srep37099
https://doi.org/10.1109/ACCESS.2019.2960037
https://doi.org/10.1093/bib/bby109
https://doi.org/10.1093/nar/gks1193
https://doi.org/10.1093/bioinformatics/btm254
https://doi.org/10.1093/bioinformatics/btm254
https://doi.org/10.1093/bioinformatics/btm254
https://doi.org/10.1093/bioinformatics/btm254
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1155/2019/3518378
https://doi.org/10.1186/1471-2105-13-S2-S11
https://doi.org/10.1186/gb-2010-11-10-r106
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1038/nbt.2450
https://doi.org/10.1038/nbt.2931
https://doi.org/10.3389/fgene.2021.712306
https://doi.org/10.1093/nar/gkac194
https://doi.org/10.1093/nar/gks1094
https://doi.org/10.1186/1752-0509-8-S4-S11
https://doi.org/10.1186/s12859-017-1576-1
https://doi.org/10.1186/s12859-017-1576-1
https://doi.org/10.1016/j.cell.2018.01.029
https://doi.org/10.1371/journal.pcbi.1003731
https://doi.org/10.1038/s41598-020-71346-7
https://doi.org/10.1177/11779322211027396
https://doi.org/10.3389/fgene.2021.636934
https://doi.org/10.1093/nar/gkaa1084
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.3390/genes13020242


Premkumar and Sajitha Lulu 10.3389/fmed.2023.1151046

Frontiers in Medicine 16 frontiersin.org

 61. Alam MS, Sultana A, Reza MS, Amanullah M, Kabir SR, Mollah MNH. Integrated 
bioinformatics and statistical approaches to explore molecular biomarkers for breast 
cancer diagnosis, prognosis and therapies. PLoS One. (2022) 17:e0268967. doi: 10.1371/
journal.pone.0268967

 62. Vandesompele J, de Preter K, Ilip P, Poppe B, van Roy N, de Paepe A, et al. 
Accurate normalization of real-time quantitative RT-PCR data by geometric averaging 
of multiple internal control genes. Genome Biol. (2002) 3:34. doi: 10.1186/gb-2002-3-7-
research0034

 63. Talwar P, Silla Y, Grover S, Gupta M, Agarwal R, Kushwaha S, et al. Genomic 
convergence and network analysis approach to identify candidate genes in Alzheimer’s 
disease. BMC Genomics. (2014) 15:199. doi: 10.1186/1471-2164-15-199

 64. Marinić M, Mika K, Chigurupati S, Lynch VJ. Evolutionary transcriptomics 
implicates hand2 in the origins of implantation and regulation of gestation length. elife. 
(2021) 10:1–52. doi: 10.7554/eLife.61257

 65. Gao J, Chen YH, Peterson LAC. GATA family transcriptional factors: Emerging 
suspects in hematologic disorders. Exp Hematol Oncol. (2015) 4:24. doi: 10.1186/
s40164-015-0024-z

 66. Chu J, Wisniewski T, Praticò D. GATA1-mediated transcriptional regulation of the 
γ-secretase activating protein increases Aβ formation in down syndrome. Ann Neurol. 
(2016) 79:138–43. doi: 10.1002/ana.24540

 67. Tam KT, Chan PK, Zhang W, Law PP, Tian Z, Chan GCF, et al. Identification of a 
novel distal regulatory element of the human Neuroglobin gene by the chromosome 
conformation capture approach. Nucleic Acids Res. (2017) 45:115–26. doi: 10.1093/nar/
gkw820

 68. Lin J, Xu X, Li T, Yao J, Yu M, Zhu Y, et al. OLFML2B is a robust prognostic 
biomarker in bladder cancer through genome-wide screening: a study based on seven 
cohorts. Front Oncol. (2021) 15. doi: 10.3389/fonc.2021.650678

 69. Liu H, Luo K, Luo D. Guanosine monophosphate reductase 1 is a potential 
therapeutic target for Alzheimer’s disease. Sci Rep. (2018) 8:21256. doi: 10.1038/
s41598-018-21256-6

 70. Dong W, Huang Y. Is cerebral vascular pathology a bystander of Alzheimer’s 
disease? Evidence from a genetic perspective. Alzheimers Dement. (2021) 1:e050716. doi: 
10.1002/alz.050716

 71. Bae M, Roh JD, Kim Y, Kim SS, Han HM, Yang E, et al. SLC6A20 transporter: a 
novel regulator of brain glycine homeostasis and NMDAR function. EMBO Mol Med. 
(2021) 13:e12632. doi: 10.15252/emmm.202012632

 72. Saghi M, InanlooRahatloo K, Alavi A, Kahrizi K, Najmabadi H. Intellectual 
disability associated with craniofacial dysmorphism due to POLR3B mutation and 
defect in spliceosomal machinery. BMC Med Genet. (2022) 15:89. doi: 10.1186/
s12920-022-01237-5

 73. Hanna J, Hossain GS, Kocerha J. The potential for microRNA therapeutics and 
clinical research. Front Genet. (2019) 10:478. doi: 10.3389/fgene.2019.00478

 74. Deng G, Yu S, He Y, Sun T, Liang W, Yu L, et al. MicroRNA profiling of platelets 
from immune thrombocytopeniaand target gene prediction. Mol Med Rep. (2017) 
16:2835–43. doi: 10.3892/mmr.2017.6901

 75. Mukhopadhyay D, Mussa BM. Identification of novel hypothalamic micrornas as 
promising therapeutics for sars-cov-2 by regulating ace2 and tmprss2 expression: an in 
silico analysis. Brain Sci. (2020) 10:1–11. doi: 10.3390/brainsci10100666

 76. Zhang YL, Wang RC, Cheng K, Ring BZ, Su L. Roles of Rap1 signaling in tumor 
cell migration and invasion. Cancer Biol Med Cancer Biol Med. (2017) 14:90–9. doi: 
10.20892/j.issn.2095-3941.2016.0086

 77. Mohanta TK, Sharma N, Arina P, Defilippi P. Molecular insights into the MAPK 
Cascade during viral infection: Potential crosstalk between HCQ and HCQ analogues. 
BioMed Res Int. (2020) 2020:8827752. doi: 10.1155/2020/8827752

 78. Iftikhar A, Islam M, Shepherd S, Jones S, Ellis I. Is RAS the link between 
COVID-19 and increased stress in head and neck cancer patients? Front Cell Dev Biol. 
(2021) 9:999. doi: 10.3389/fcell.2021.714999

 79. Sriram K, Loomba R, Insel PA. Targeting the renin-angiotensin signaling pathway 
in COVID-19: unanswered questions, opportunities, and challenges. Proc Natl Acad Sci 
U S A. (2020) 117:29274–82. doi: 10.1073/pnas.2009875117

 80. Kirouac L, Rajic AJ, Cribbs DH, Padmanabhan J. Activation of Ras-ERK signaling 
and GSK-3 by amyloid precursor protein and amyloid beta facilitates neurodegeneration 
in Alzheimer’s disease. eNeuro. (2017) 4:ENEURO.0149–16.2017. doi: 10.1523/
ENEURO.0149-16.2017

 81. Tian M, Liu W, Li X, Zhao P, Shereen MA, Zhu C, et al. HIF-1α promotes SARS-
CoV-2 infection and aggravates inflammatory responses to COVID-19. Signal Transduct 
Target Ther. (2021) 6:308. doi: 10.1038/s41392-021-00726-w

 82. Rahman MH, Rana HK, Peng S, Kibria MG, Islam MZ, Mahmud SMH, et al. 
Bioinformatics and system biology approaches to identify pathophysiological impact of 
COVID-19 to the progression and severity of neurological diseases. Comput Biol Med. 
(2021) 1:138.

 83. Khezri MR. PI3K/AKT signaling pathway: A possible target for adjuvant therapy 
in COVID-19. Human Cell. (2021) 34:700–1. doi: 10.1007/s13577-021-00484-5

 84. Long HZ, Cheng Y, Zhou ZW, Luo HY, Wen DD, Gao LC. PI3K/AKT signal 
pathway: A target of natural products in the prevention and treatment of Alzheimer’s 
disease and Parkinson’s disease. Front Pharmacol. (2021) 12. doi: 10.3389/
fphar.2021.648636

 85. Ornstein TJ, Iddon JL, Baldacchino AM, Sahakian BJ, London M, Everitt BJ, et al. 
Profiles of cognitive dysfunction in chronic amphetamine and heroin abusers. 
Neuropsychopharmacology. (2000) 23:113–26. doi: 10.1016/S0893-133X(00)00097-X

 86. Knowles J. Clinical impact review donepezil in Alzheimer’s disease: An evidence-
based review of its impact on clinical and economic outcomes. Core Evid. (2006) 
1:195–219.

 87. Aso E, Andrés-Benito P, Ferrer I. Delineating the efficacy of a cannabis-based 
medicine at advanced stages of dementia in a murine model. J Alzheimers Dis. (2016) 
54:903–12. doi: 10.3233/JAD-160533

 88. Tipples K, Kolluri RB, Raouf S. Encephalopathy secondary to capecitabine 
chemotherapy: a case report and discussion. J Oncol Pharm Pract. (2009) 15:237–9. doi: 
10.1177/1078155209102511

 89. Venti A, Giordano T, Eder P, Bush AI, Lahiri DK, Greig NH, et al. The integrated 
role of desferrioxamine and phenserine targeted to an iron-responsive element in the 
APP-mRNA 5′-untranslated region. Ann N Y Acad Sci. (2004) 1035:34–48. doi: 10.1196/
annals.1332.003

 90. Hashimoto K. Repurposing of CNS drugs to treat COVID-19 infection: targeting 
the sigma-1 receptor. Europ Arch Psychiatry Clin Neurosci. (2021) 271:249–58. doi: 
10.1007/s00406-020-01231-x

https://doi.org/10.3389/fmed.2023.1151046
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://doi.org/10.1371/journal.pone.0268967
https://doi.org/10.1371/journal.pone.0268967
https://doi.org/10.1186/gb-2002-3-7-research0034
https://doi.org/10.1186/gb-2002-3-7-research0034
https://doi.org/10.1186/1471-2164-15-199
https://doi.org/10.7554/eLife.61257
https://doi.org/10.1186/s40164-015-0024-z
https://doi.org/10.1186/s40164-015-0024-z
https://doi.org/10.1002/ana.24540
https://doi.org/10.1093/nar/gkw820
https://doi.org/10.1093/nar/gkw820
https://doi.org/10.3389/fonc.2021.650678
https://doi.org/10.1038/s41598-018-21256-6
https://doi.org/10.1038/s41598-018-21256-6
https://doi.org/10.1002/alz.050716
https://doi.org/10.15252/emmm.202012632
https://doi.org/10.1186/s12920-022-01237-5
https://doi.org/10.1186/s12920-022-01237-5
https://doi.org/10.3389/fgene.2019.00478
https://doi.org/10.3892/mmr.2017.6901
https://doi.org/10.3390/brainsci10100666
https://doi.org/10.20892/j.issn.2095-3941.2016.0086
https://doi.org/10.1155/2020/8827752
https://doi.org/10.3389/fcell.2021.714999
https://doi.org/10.1073/pnas.2009875117
https://doi.org/10.1523/ENEURO.0149-16.2017
https://doi.org/10.1523/ENEURO.0149-16.2017
https://doi.org/10.1038/s41392-021-00726-w
https://doi.org/10.1007/s13577-021-00484-5
https://doi.org/10.3389/fphar.2021.648636
https://doi.org/10.3389/fphar.2021.648636
https://doi.org/10.1016/S0893-133X(00)00097-X
https://doi.org/10.3233/JAD-160533
https://doi.org/10.1177/1078155209102511
https://doi.org/10.1196/annals.1332.003
https://doi.org/10.1196/annals.1332.003
https://doi.org/10.1007/s00406-020-01231-x

	Molecular crosstalk between COVID-19 and Alzheimer’s disease using microarray and RNA-seq datasets: A system biology approach
	1. Introduction
	2. Materials and methods
	2.1. Data collection
	2.2. Preprocessing and identification of differentially expressed genes
	2.3. Identification of common gene ontology terms and identification of overlapped genes among COVID-19 and Alzheimer’s disease
	2.4. Protein–protein interaction analysis and hub genes prediction
	2.5. Analysis of transcription factor and microRNAs of hub genes
	2.6. Drug-gene interaction analysis of hub genes
	2.7. Gene ontology and pathway analysis of hub genes

	3. Statistical analysis
	3.1. DEGs
	3.2. Gene set enrichment analysis
	3.3. Gene ontology and pathway analysis
	3.4. Protein interaction network constructions

	4. Results
	4.1. Analysis of microarray and transcriptome datasets
	4.2. Identification of common genes
	4.3. Identification of common gene ontology terms among COVID-19 and Alzheimer’s disease datasets
	4.4. Protein interaction network construction and analysis
	4.5. Hub genes identification
	4.6. MicroRNAs network of hub genes
	4.7. Transcription factor network of hub genes
	4.8. Identification of drug-gene interaction
	4.9. Gene set enrichment analysis of hub genes

	5. Discussion
	6. Conclusion
	Data availability statement
	Author contributions
	Conflict of interest
	Publisher’s note
	Supplementary material

	References

