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Iron status and anemia control are 
related to peritoneal membrane 
properties in peritoneally dialyzed 
patients
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Masovian, Poland

Background: Characteristics of peritoneal membrane is unique and individually 
different in peritoneal dialysis patients. Relationship between specific nature 
of peritoneal transport, anemia and inflammation has not yet been extensively 
studied. We attempted to outline the complex interplay of several biomarkers of 
iron status and their association with peritoneal transport, degree of inflammation 
and residual renal function.

Methods: A total of 58 patients treated with peritoneal dialysis either CAPD 
or APD for at least 3  months were enrolled in this study. Full blood count, 
traditional markers of iron status (transferrin saturation-TSAT and ferritin), serum 
erythroferrone-ERFE, soluble transferrin receptor (sTfR), hepcidin, zonulin, growth 
differentiation factor  −15 (GDF15), IL-16, hsCRP and hypoxia-inducible factor—α 
(HIF-1-α; in serum and dialysate) were measured using commercially available 
tests. We also performed Peritoneal Equilibrium Test and assessed GFR level.

Results: Hb levels above 10  g/dL was found in 74% of patients. Hb levels positively 
correlated with residual renal function and nutritional status. Adequate iron status 
was diagnosed in 69% of subjects, only in 9% of patients, criteria for absolute 
iron deficiency were met. Serum ERFE correlated inversely with hepcidin levels 
but was not associated with erythropoietin stimulating agent dose. Peritoneal 
transport had strong correlation with dialysate sTfR (p  <  0.05), dialysate hepcidin 
(p  <  0.05), dialysate GDF15 (p  <  0.01) and dialysate zonulin (p  <  0.001) levels, as well 
as serum IL6 (p  =  0.03), serum hs-CRP (p  =  0.04) and dialysate hs-CRP (p  =  0.04).

Conclusion: Residual kidney function contributes considerably to better 
control of anemia. Various degree of inflammation is inherent to PD patients. 
Additionally, fast-average peritoneal transport is associated with greater degree 
of inflammation and higher concentration of markers of iron status, GDF15 and 
zonulin in dialysate. This finding may indicate more effective clearance of higher-
range middle molecules in fast-average transporters. The role of ERFE as a marker 
of erythropoiesis in PD patients requires further investigation.
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Introduction

Anemia affects the majority of patients with end-stage renal 
disease (ESRD). Several mechanisms have been suggested to 
contribute to anemia of chronic kidney disease (CKD) with relative 
erythropoietin deficiency, iron deficiency and maldistribution, 
shortened erythrocyte lifespan, nutritional deficiencies and chronic 
inflammation (1, 2).

Up to date, the management of anemia and iron metabolism 
disturbances and outcomes in predialysis CKD and hemodialysis 
patients have been extensively studied. There are few studies that have 
examined characteristics of anemia and iron status in peritoneal 
dialysis (PD) patients. In recently published large international study 
it has been shown that more than half of PD patients have a various 
degree of anemia, and, regardless of iron supplementation, a certain 
percentage of them has disequilibrium of iron status (3, 4). Abnormal 
iron status is associated with increased risk of all-cause and 
cardiovascular mortality (5, 6). Furthermore, it is a factor in terms of 
both risk and prognosis for PD-related infectious complications (7, 8).

Population of PD patients tends to differ from HD patients in 
several regards, which may impact iron homeostasis and anemia. They 
tend to have better preserved residual kidney function and less iron 
loss as a result of dialysis technique. At the same time chronic, 
subclinical or overt inflammation at both systemic and intraperitoneal 
levels commonly affects PD patients. The underlying mechanisms of 
inflammation in peritoneal dialysis patients are complex and result 
from direct stimulation of cytokine generation by uremic milieu and 
impaired renal clearance of inflammatory cytokines, as well as 
cumulative peritoneal membrane injury and dysfunction stemming 
from exposure to non-biocompatible dialysis fluids, episodes of 
PD-associated peritonitis, biofilm formation within catheter lumen 
and endotoxemia by translocation of macromolecules from the 
intestine (9–11). Furthermore. intravenous iron administration causes 
oxidative stress and inflammation and may affect intraperitoneal 
homeostasis (12, 13). Available data suggest that systemic and local 
intraperitoneal inflammation reflect distinct processes and sequelae, 
and in particular the significance and impact of intraperitoneal 
inflammation on iron homeostasis requires further elucidation.

PD is a continuous technique with effective diffusive and 
convective transport of small- to middle-molecular solutes. However, 
data regarding the efficacy of removal of molecules involved in iron 
homeostasis are scarce. It has been demonstrated that, compared to 
HD patients, PD patients have significantly lower serum hepcidin 
levels, and dialysate hepcidin concentrations are higher that of HD 
ultrafiltrate (14). It suggests that hepcidin may be effectively removed 
via peritoneal membrane, however peritoneal hepcidin clearance was 
evaluated only in one small study (15). It should be emphasized that 
individual properties of peritoneal membrane may also influence 
efficacy of removal of hepcidin and other solutes.

To the best of our knowledge, the influence of peritoneal 
membrane transport on iron metabolism in peritoneal patients has 
not been investigated so far.

Objectives

The aim of the study was to assess iron status and anemia control in 
end-stage renal disease patients on peritoneal dialysis depending on the 
properties of the peritoneal membrane and residual renal function.

Materials and methods

The patients in our PD program who fulfilled inclusion criteria 
entered the study. Inclusion criteria were: age ≥ 18 years, treatment 
with PD (CAPD or APD) ≥ 3 months and written informed consent 
for participation. Exclusion criteria were: acute inflammation 
within previous 4 weeks, active malignancy, blood transfusion in 
the last 4 weeks, use of intravenous iron in the last 4 weeks, liver 
failure and evident/occult bleeding as shown in flow chart on 
Figure 1.

The study protocol was approved by the Ethics Committee of 
Medical University of Warsaw, and carried out in accordance with 
the Declaration of Helsinki.

Data collection

Demographics and clinical data including age, gender, primary 
kidney disease, comorbidity burden assessed by Charlson 
Comorbidity Index (CCI), and dialysis vintage were collected.

Anemia treatment—oral iron and Erythropoietin Stimulating 
Agent (ESA) doses were collected. All patients received CERA 
(Continuous Erythropoetin Receptor Activator—methoxy 
polyethylene glycol-epoetin beta).

Hemoglobin concentration (Hb), serum ferritin (SF), serum 
iron, total iron-biding capacity (TIBC) were obtained using 
standard laboratory methods (automated system) in certified local 
central laboratory. Transferrin saturation with iron (TSAT) was 
calculated as the ratio of serum iron and TIBC and expressed 
as percentage.

According to the definition of absolute and functional iron 
deficiency patient were categorized into four group based on the 
levels of TSAT and SF: reference iron status (RIS) defined as TSAT 
20%–30% and SF 100–500 ng/mL, absolute iron deficiency (AID)—
TSAT < 20% and SF < 100 ng/mL, functional iron deficiency 
(FID)—SAT < 20% and SF > 100 ng/mL, and high iron status 
(HIS)—TSAT > 30% and SF > 500 ng/mL.

Commercially available tests were used to measure high 
sensitivity C-reactive protein—hsCRP (R&D Systems, Inc. 
Minneapolis, United States), interleukin 6—IL-6 (R&D Systems, 
Inc. Minneapolis, United States), soluble transferrin receptor—sTfR 
(R&D Systems, Inc. Minneapolis, USA), hepcidin-25 (Peninsula 
Laboratories International Inc., United States), erythroferrone—
ERFE (SunRed, Shanghai, China), growth differentiation factor 
15—GDF15 (R&D Systems, Inc. Minneapolis, United  States), 
zonulin (Immundiagnostik AG, Bernsheim, Germany). The assays 
were performed in serum and in dialysate.

Standard Peritoneal Equlibration Test (PET), residual renal 
function (expressed as glomerular filtration rate—GFR) and dialysis 
adequacy (expressed as Kt/V) were calculated using Patient OnLine 
software version (Fresenius Medical Care, Bad Homburg, 
Germany). Serum creatinine, urea, protein and glucose, dialysate 
creatinine, urea, protein and glucose, and urine creatinine, urea and 
protein for calculations were obtained using standard laboratory 
methods (automated system) in certified local central laboratory. 
Patients were divided into three peritoneal membrane transport 
groups based on D/P creatinine: slow, ≤0.52; average, 0.53–0.77; 
fast, ≥0.78. For further analysis, based on the mean ± SD of 
peritoneal membrane transport in the entire study group, two 
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transport subgroups were distinguished—“fast-average” (D/
Pcreatinine ≥ 0.65), and “slow-average” (D/Pcreatinine < 0.65).

Statistical analysis

Data are presented as mean and standard deviation, median 
(lower and upper quartile) or frequencies and percentages for 
categorical variables. Differences between study groups were tested 
using the Mann–Whitney U-test, Kruskal-Wallis test, and 
differences in the relative frequencies were tested using the  
Pearson chi-square test. A value of p < 0.05 was considered 
statistically significant.

Analyses of the correlation of each parameter were performed 
using Person or Spearman correlation coefficients. p < 0.05 was 
considered statistically significant.

All calculations were performed using STATISTICA software 
package (version 13), StatSoft Poland.

Results

A total 58 patients met predefined inclusion criteria and were 
enrolled to the present study.

Demographic and clinical characteristics of the studied group are 
presented in Table 1.

Anemia control

Mean Hb in the studied group was 10.91 ± 1.27 g/dL. The 
majority of patients (54%) had Hb 10–11.6 g/dL, while 24% had 
Hb < 10 g/dL, and 22% > 11.6 g/dL. The characteristics of the 
patients in each of the quartiles of Hb are presented in Table 2.

Patients with mean Hb > 11.6 g/dL had significantly better 
preserved residual kidney function, higher serum albumin and lower 
serum ferritin levels. They also tended to have the lowest serum 
hepcidin, ERFE and GDF15 levels, however differences did not reach 
statistical significance.

Almost a quarter of the patients in the study group had a hemoglobin 
concentration < 10 g/dL despite a significantly higher median CERA dose 
and better iron metabolism control expressed by higher SF and 
TSAT. Compared to the others, these patients had significantly lower 
residual renal function and serum albumin levels. They also tended to 
have more systemic and intraperitoneal inflammation, as suggested by 
higher serum and dialysate concentrations of IL6 and hs-CRP.

Hb strongly correlated with residual renal function (r = 0.53, 
p < 0.0001), dialysis adequacy (r = 0.4, p < 0.01) and serum albumin 

Patients referred for PD in 2020-2022 

Identification Patients from our outpatients unit, other units: n = 75

Screening

Patients screened: n = 70 Patients screening failure: n= 6

Eligibility

Patients assessed for eligibility: n = 64

Inclusion criteria:
• age ≥ 18 years
• treatment with PD (CAPD or APD) ≥ 3 months
• written informed concept participation

Exclusion criteria:
• acute inflammation within previous 4 weeks
• active malignancy
• blood transfusion in the last 4 weeks
• use of intravenous iron in the last 4 weeks
• liver failure
• evident/occult bleeding

Exclusion based on inclusion and exclusion criteria: n = 6

Patients included to the study 

Patients included: n = 58 

FIGURE 1

Flow chart on the PD population included in the study.
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(0.36, p < 0.01). Among iron status biomarkers, statistically significant 
correlation was revealed only with serum ferritin (SF; r = −0.47, 
p < 0.001). Details are presented in Table 3.

GFR strongly correlated with Hb (r = 0.53, p < 0.0001) and 
CERA dose (r = −0.75, p < 0.0001), but among iron status 
biomarkers only with serum ferritin (r = 0.32, p < 0.01) and GDF15 
(r = −0.53, p < 0.01).

Iron status

Mean TSAT in the entire group was 33.5 ± 13.1%, and mean 
serum ferritin 345 ± 414.3 ng/mL. The majority of patients (69%) had 
reference iron status (RIS). Absolute iron deficiency (AID) has been 
found only in 9% of patients while high iron status (HIS) 14%. None 
of the patients met the criteria for the diagnosis of a functional iron 
deficiency (FID). The characteristics of patients stratified by iron 
status are presented in Table 4.

Patients in HIS group tended to have worse preserved RRF and 
lower Hb level compared to others despite higher CERA doses. They 
had higher serum and dialysate hepcidin and erythroferrone levels, 
however the differences did not reach statistical significance. In this 
group, there was also a trend toward more intense inflammation, 
especially in relation to higher concentrations of IL6 and hs-CRP in 
the dialysate.

In the entire studied group, ERFE correlated significantly only with 
hepcidin (0.4, p < 0.05), but not other iron status biomarker or 
CERA dose.

Hepcidin correlated significantly with SF (0.67, p < 0.001), TSAT 
(0.4, p < 0.05), sTfR (0.46, p < 0.05), hs-CRP (0.51, p < 0.05) and CERA 
dose (0.6, p < 0.01). Details are presented in Table 5.

Iron status and peritoneal membrane 
transport

The majority of patients (65%) had average peritoneal membrane 
transport (D/Pcreatinine 0.53–0.77), 21% had slow peritoneal 
membrane transport (D/Pcreatinine ≤ 0.52), and 14% had fast 
peritoneal membrane transport (D/Pcreatinine ≥ 0.78). In each of the 
iron status categories the proportion of patients with particular type of 
peritoneal membrane transport was similar (RIS: average PMT 67%, 
slow PMT 18%, fast PMT 15%; HIS average PMT 63%, slow PMT 25%, 
fast PMT 12%; AID average PMT 60%, slow PMT 20%, fast PMT 20%).

For further analysis, based on the mean ± SD of peritoneal 
membrane transport in the entire study group, two transport subgroups 
were distinguished—“fast-average” (D/Pcreatinine ≥ 0.65), and “slow-
average” (D/Pcreatinine < 0.65). The clinical characteristics of the 
subgroups are presented in Table 4, and data on iron biomarkers in 
serum and dialysate assessed by us are presented in Table 6.

“Fast-average” transporters tended to have more severe 
inflammation and higher serum and dialysate levels of sTfR and 
zonulin, however, only serum IL6 and dialysate zonulin reached 
statistical significance.

PMT strongly correlated with CCI (r = 0.34, p < 0.01) and serum 
albumin (r = −0.25, p = 0.04) as well as serum IL6 (0.4, p = 0.03), serum 
hs-CRP (0.39, p = 0.04) and dialysate hs-CRP (0.38, p = 0.04). Strong 
correlation was also revealed between PMT and dialysate sTfR (0.38, 
p < 0.05), dialysate hepcidin (0.46, p < 0.05), dialysate GDF15 (0.5, 
p < 0.01) and dialysate zonulin (0.64, p < 0.001) levels.

Moreover, dialysate hepcidin correlated with serum ferritin (0.38, 
p < 0.05), sTfR (0.51, p < 0.05) and TSAT (0.4, p < 0.05).

Discussion

In the study, we present preliminary data exploring the relationship 
between iron status and peritoneal membrane transport. We assumed 
that intraperitoneal milieu and properties of the peritoneal membrane 
can affect iron homeostasis as a result of local intraperitoneal 
inflammation and, potentially, clearance of molecules involved in iron 
metabolism. To our knowledge this is the first study which evaluates 
iron metabolism biomarkers in dialysis effluent and estimates the 
relationship between PMT category and biomarkers of iron homeostasis.

Most of the study participants had well controlled anemia. 76% had 
Hb > 10 g/dL, and the majority of them (69%) had well-balanced iron 
status. Only 9% patients met the criteria for absolute iron deficiency, 
while none had functional iron deficiency. Our results stand out 
significantly from the literature data according to which iron deficiency 
prevalence exceeds 26% (6, 8, 16). At least in part, this may be due to the 
fact that current analysis excluded patients with conditions that may 
have at least potentially contributed to absolute or functional iron 
deficiency. Fourteen percent of patients in our cohort had high iron 
status, comparable to other reports (6, 8). These patients tended to have 
the lowest Hb level despite the highest median CERA dose, and worse 
preserved RRF. Although the differences were not statistically 

TABLE 1 Demographic and clinical characteristics of the studied group.

Parameter Value

Age (years) 49 ± 17

Male sex (n, %) n = 28 (48%)

Charlson comorbidity index (CCI) 5 ± 3

The cause of kidney disease: (n, %)

 • Diabetic nephropathy n = 5 (8%)

 • Glomerulonephritis n = 29 (50%)

 • Hypertensive/vascular n = 4 (7%)

 • Interstitial nephropathy n = 10 (17%)

 • ADPKD n = 5 (8%)

 • Other/unknown n = 6 (10%)

Dialysis vintage (months) Median 9 (3–186)

Dialysis method

CAPD (n, %) 27 (47%)

APD (n, %) 31(53%)

PMT (D/Pcreatinine) 0.65 ± 0.11

GFR (mL/min) 5.84 ± 4.24

Kt/V 2.59 ± 0.84

CERA users (n, %) 26 (45%)

Oral iron users (n, %) 14 (24%)

CAPD, Continuous Ambulatory Peritoneal Dialysis; APD, Automated Peritoneal Dialysis; PMT, 
peritoneal membrane transport; GFR, glomerular filtration rate; CERA, Continuous Erythropoetin 
Receptor Activator; ADPKD, Autosomal Dominant Polycystic Kidney Disease.
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significant, the characteristics of patients with suboptimal anemia 
control (Hb < 10 g/dL) and HIS, showed that they tended to have worse 
preserved RRF and higher levels of ferritin, hepcidin, hsCRP and IL6. 
The weakness of statistical significance of the observed relationships 
may result from the relative homogeneity and small size of the group. 
Nevertheless, strong correlation between GFR and Hb clearly 
demonstrates the paramount importance of residual renal function in 
patients with ERSD. It has been ascertained that RRF is associated with 
higher serum hemoglobin, decreased circulating inflammatory markers, 
and better clinical outcomes in several regards (17–19).

In the entire group median erythroferrone level was 1.79 ng/
mL. Relatively higher levels were observed in patients with high iron 
status, and ERFE correlated significantly only with hepcidin, but not 
CERA dose. This finding was unexpected, because physiologically 
ERFE is produced in response to increased erythropoiesis and 
increases iron availability via suppression of hepcidin. Nevertheless, 
ERFE concentration and its significance in CKD patients are not well-
characterized, and information on ERFE in CKD is scarce and, in fact, 
limited to CKD non-dialysis-dependent and hemodialysis patients. In 
all prior studies positive correlation between serum ERFE levels and 
serum EPO, as well as ESA dose. Was confirmed, while the relationship 
between ERFE and biomarkers of iron metabolism has not been 
clearly demonstrated (20–22). Honda et  al. revealed statistically 
significant negative correlation between ERFE and hepcidin and 
ferritin levels, and a positive correlation with soluble transferrin 

receptor (20). The inverse relationship between ERFE and biomarkers 
of iron metabolism (serum iron and ferritin) was confirmed in the 
cohort of CKD and HD patients in the Spoto et  al. study (22). 
Meanwhile, in the Honda et al. study, ERFE did not correlate with 
hepcidin or any biomarker of iron metabolism (21). The modulatory 
effect of ERFE on iron homeostasis, as well as a role of ERFE as a 
biomarker of erythropoietic activity in PD patients, and generally in 
CKD population, need evaluation in future studies.

There is some evidence that systemic and intraperitoneal iron 
status may differ in patients on peritoneal dialysis (7). However, 
intraperitoneal iron biology and the impact of individual difference in 
peritoneal membrane properties on iron status in PD patients are 
poorly studied.

In our study PMT strongly correlated with dialysate sTfR (0.38, 
p < 0.05), dialysate hepcidin (0.46, p < 0.05), dialysate GDF15 (0.5, 
p < 0.01) and dialysate zonulin (0.64, p < 0.001) levels, as well as serum 
IL6 (0.4, p = 0.03), serum hs-CRP (0.39, p = 0.04) and dialysate hs-CRP 
(0.38, p = 0.04). It is unclear if the abovementioned findings are 
associated with the properties of the peritoneal membrane and 
elimination of these molecules via convective transport, or due to 
systemic and/or local intraperitoneal inflammation. This observation 
needs to be  elucidated further. So far, only peritoneal hepcidin 
clearance using peritoneal equilibration test was evaluated and 
confirmed in one small study (15). At the same time, fast peritoneal 
transport associated with intraperitoneal inflammation results in high 

TABLE 2 Characteristics of patients according to Hb level.

Hb  <  10  g/dL Hb 10–11.6  g/dL Hb  >  11.6  g/dL P

Age (years) 46 ± 19 49 ± 16 54 ± 19 NS

CCI 4.5 ± 3 4.5 ± 2.2 5.3 ± 2.9 NS

CERA 62.5 (0–110) 30 (0–75) 0 <0.01

GFR (ml/min) 1.5 (0–4.1) 5.6 (2.8–8.8) 9.4 (6.0–11.6) <0.001

Kt/V 2.15 ± 0.7 2.64 ± 0.65 2.93 ± 1.19 NS

PMT (D/Pcreatinine) 0.64 ± 0.12 0.64 ± 0.12 0.66 ± 0.1 NS

Serum albumin (g/dL) 3.53 ± 0.6 3.75 ± 0.45 3.99 ± 0.31 <0.05

Serum ferritin (ng/mL) 368 (290–643) 206 (144–337) 173 (111–208) <0.05

TSAT (%) 36.4 ± 14.5 33.3 ± 12.4 31.0 ± 13.6 NS

Erythroferrone (ng/mL) 1.61 (0.84–3.47) 2.28 (1.47–5.3) 1.34 (0.81–3.17) NS

Serum sTfR (nmol/L) 46.6 ± 14.2 35.8 ± 8.2 41.8 ± 7.7 NS

Dialysate sTfR (nmol/L) 0.1 (0.06–0.13) 0.06 (0.01–0.18) 0.04 (0.03–0.2) NS

Serum Hepcidin (ng/mL) 72.2 (59.2–128.1) 94.5 (40.2–140.7) 33.4 (25.9–75.4) NS

Dialysate Hepcidin (ng/mL) 9.4 (8.8–28.9) 7.9 (5.4–18.5) 10.3 (7.9–38.8) NS

Serum hs-CRP (ng/mL) 4,998 (2,345–11,200) 1,403 (710–2,972) 1,322 (996–2,858) NS

Dialysate hs-CRP (ng/mL) 35.6 (10.3–117.9) 11.9 (3.5–78.8) 14.6 (7.9–27.9) NS

Serum IL6 (pg/mL) 9.14 (8.16–14.84) 5.69 (3.4–11.3) 5.7 (4.1–7.78) NS

Dialysate IL6 (pg/mL) 85.0 (50.6–102. 9) 37.1 (6.4–75.8) 46.4 (25.8–67.1) NS

Serum GDF15 (pg/mL) 3,873 (3,630–4,495) 3,182 (2,237–4,193) 2,982 (2,346–3,602) NS

Dialysate GDF15 (pg/mL) 391 (375.5–454.3) 310.3 (102.8–551.9) 218.8 (201.6–575.0) NS

Serum Zonulin (ng/mL) 73.3 (64.2–77.2) 58.5 (54.2–64.3) 61.1 (59.4–66.6) NS

Dialysate Zonulin (ng/mL) 0.75 (0.65–0.97) 0.54 (0.3–0.66) 0.6 (0.54–1.13) NS

CCI, Charlson Comorbidity Index; GFR, glomerular filtration rate; PMT, peritoneal membrane transport; CERA, Continuous Erythropoetin Receptor Activator; TSAT, transferrin saturation 
with iron; sTfR, soluble transferrin receptor; hs-CRP, high sensitivity C-reactive protein; IL-6, interleukin 6; GDF15, growth differentiation factor 15.
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peritoneal membrane permeability not only for small solutes but also 
for middle-size molecules and proteins (23–25).

In our study, fast-average transporters tended to have higher 
serum and dialysate levels of sTfR, GDF15 and zonulin. Although 
the differences did not reach statistical significance, fast-average 
transporters tended to have higher dialysate hepcidin levels, and 
dialysate hepcidin significantly correlated with serum ferritin 
(0.38, p < 0.05), sTfR (0.51, p < 0.05) and TSAT (0.4, p < 0.05). 

Previous studies confirmed the relationship between serum 
hepcidin and iron status and anemia in patients on PD (14, 26, 
27). The significance of this phenomenon is not clear as only one 
study to date has assessed the concentration of hepcidin in 
peritoneal effluent (14). In this study, it was found that the 
removal of hepcidin through the peritoneal membrane is 
significantly more effective than during hemodialysis or 
hemodiafiltration, but also that RRF is one of the significant 

TABLE 3 Correlations between hemoglobin and studied parameters.

Hemoglobin P

CCI 0.15 NS

CERA −0.47 <0.0001

GFR (mL/min) 0.53 <0.0001

Kt/V 0.4 <0.01

PMT (D/Pcreatinine) −0.02 NS

Serum albumin (g/dL) 0.36 <0.01

Serum ferritin (ng/mL) −0.47 <0.001

TSAT (%) −0,15 NS

Erythroferrone (ng/mL) −0.06 NS

Serum sTfR (nmol/L) −0.09 NS

Dialysate sTfR (nmol/L) −0.16 NS

Serum Hepcidin (ng/mL) −0.2 NS

Dialysate Hepcidin (ng/mL) 0,19 NS

Serum hs-CRP (ng/mL) −0.22 NS

Dialysate hs-CRP (ng/mL) −0.22 NS

Serum IL6 (pg/mL) −0.37 NS

Dialysate IL6 (pg/mL) −0.36 NS

Serum GDF15 (pg/mL) −0.29 NS

Dialysate GDF15 (pg/mL) −0.15 NS

Serum Zonulin (ng/mL) −0.14 NS

Dialysate Zonulin (ng/mL) −0.35 NS

CCI, Charlson Comorbidity Index; GFR, glomerular filtration rate; PMT, peritoneal membrane transport; CERA, Continuous Erythropoetin Receptor Activator; TSAT, transferrin saturation 
with iron; sTfR, soluble transferrin receptor; hs-CRP, high sensitivity C-reactive protein; IL-6, interleukin 6; GDF15, growth differentiation factor 15.

TABLE 4 Clinical characteristics of patients according to peritoneal membrane transport.

Fast-average PMT Slow-average PMT P

Age (years) 53 ± 17 46 ± 17 NS

CCI 5.5 ± 2.7 3.9 ± 2.3 <0.05

CERA () 0 (0–75) 30 (0–30) NS

GFR (mL/min) 5.9 ± 4.6 5.7 ± 3.9 NS

Kt/V 2.62 ± 0.9 2.55 ± 0.71 NS

Serum albumin (g/dL) 3.7 ± 0.4 3.79 ± 0.54 NS

Hemoglobin (g/dL) 11.1 ± 1.33 10.8 ± 1.22 NS

Serum ferritin (ng/mL) 186 (125–360) 281 (144–419) NS

TSAT (%) 32.6 ± 12.8 34.6 ± 13.3 NS

CCI, Charlson Comorbidity Index; GFR, glomerular filtration rate; PMT, peritoneal membrane transport; CERA, Continuous Erythropoetin Receptor Activator; TSAT, transferrin saturation 
with iron.
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predictors of hepcidin in hemodialysis and peritoneal dialysis 
patients. Inverse association between hepcidin level and estimated 
glomerular filtration rate was revealed also in G35–5 CKD 
patients (28). These findings suggest that hepcidin may be not 
only key player in iron homeostasis, but also uremic toxin 
associated with the risk of mortality in PD patients (29).

Soluble transferrin receptor (sTfR) represents the extracellular 
domain part of the TfR, and its concentration is proportional to the 
amount of TfR in the total body. STfR is not an acute-phase reactant 
and is less influenced by inflammation than other iron metabolism 
indices and may be useful for assessing iron deficiency anemia in 
chronic disorders. Another known role of sTfR is that it represents 
the erythropoietic activity of bone marrow (30). In our study 
population sTfR correlated positively with serum hepcidin and 
ferritin and dialysate hsCRP and IL6. Our results are in contrary to 
the study conducted in HD patients (31).

The correlation sTfR with dialysate hsCRP and IL6 may be an 
expression of specific iron state in peritoneal cavity in PD patients. 
In Aldriwesh et  al. study proteomic analysis revealed that 
peritoneal transferrin is iron-saturated, which is in marked 
contrast to transferrin in serum and is a risk of intraperitoneal 
infection (7).

Zonulin, a 47 kDa protein, which regulates intestinal permeability 
via alteration of tight junctions, has not been extensively studied in CKD 
population yielding slightly different results on its function, and in fact 
there is no data on zonulin in PD patients (32, 33). The study performed 
in hemodialysis patients revealed significantly increased zonulin levels, 
as well as inflammatory markers (hsCRP and IL-6) in the study group 
compared with healthy subjects.

A borderline correlation with serum hypersensitive CRP suggests 
that zonulin may play a role in the systemic inflammation in HD 
patients (34). In our study concentration of zonulin in dialysate was 
significantly higher in fast-average transporters, which corresponded 
positively with the degree of inflammation as measured by serum 
hsCRP and IL-6, although with former it did not reach statistical 
relevance. This finding is of interest, since it reinforces results from 
the aforementioned study. Further investigation on the role of 
zonulin in intestinal permeability and induction of inflammation in 
PD patients would be advisable.

These data could suggest that zonulin could be a link between 
inflammation and iron homeostasis disorders. However the studies 
conducted in early stages CKD patients and kidney transplant 
recipients showed no relationship between zonulin and iron state 
parameters (35–37).

TABLE 5 Correlations between iron status biomarkers and studied parameters.

Serum 
ferritin 

(ng/mL)

TSAT 
(%)

Serum sTfR 
(nmol/L)

Serum 
hepcidin 
(ng/mL)

Serum 
GDF15 

(pg/mL)

Serum 
Zonulin 
(pg/mL)

Erythroferrone 
(ng/mL)

CCI −0.21 −0.3 0.34 −0.17 0.18 0.16 −0.2

CERA 0.34 0.02 0.17 0.6** 0.42 0.09 −0.06

GFR (mL/min) −0.32* −0.09 −0.13 −0.13 −0.54** −0.02 0.11

Kt/V −0.2 0.07 0.03 0.15 −0.5** 0.02 0.24

PMT (D/Pcreatinine) 0.01 −0.09 0.48* −0.06 0.14 0.31 −0.18

Serum albumin (g/dL) 0.02 0.08 0.09 0.07 −0.15 0.08 0.06

Serum ferritin (ng/mL) x 0.57** −0.11 0.67*** 0.18 0.034 0.34

TSAT (%) 0.57** x −0.2 0.4 −0.13 −0.2 0.27

Erythroferrone (ng/mL) 0.33 0.23 −0.07 0.4* −0.23 −0.13 X

Serum sTfR (nmol/L) −0.1 −0.19 X 0.46* 0.14 0.32 −0.07

Dialysate sTfR (nmol/L) −0.2 −0.18 0.37 −0.33 0.18 0.14 −0.12

Serum Hepcidin (ng/mL) 0.67*** 0.4* 0.46* X 0.1 −0.12 0.4*

Dialysate Hepcidin (ng/mL) 0.38 0.1 0.09 0.54** 0.51** −0.7 0.08

Serum hs-CRP (ng/mL) 0.02 −0.05 0.13 −0.18 −0.12 −0.07 0.07

Dialysate hs-CRP (ng/mL) −0.03 −0.01 0.28 −0.08 −0.19 −0.1 0.09

Serum IL6 (pg/ml) −0.12 −0.25 0.34 −0.17 0.12 0.11 0.003

Dialysate IL6 (pg/mL) 0.46** −0.34 0.25 0.09 −0.09 0.06 0.14

Serum GDF15 (pg/mL) 0.17 −0,13 0.14 0.1 X 0.21 −0.23

Dialysate GDF15 (pg/ml) 0.03 −0.12 0.22 −0.09 0.53** 0.04 −0.07

Serum Zonulin (ng/mL) −0.03 −0.2 0.32 −0.12 0.21 X −0.13

Dialysate Zonulin (ng/mL) −0.35 −0.07 0.42 −0.11 0.17 0.02 −0.02

*p < 0.05, **p < 0.01, ***p < 0.001. CCI, Charlson Comorbidity Index; GFR, glomerular filtration rate; PMT, peritoneal membrane transport; CERA, Continuous Erythropoetin Receptor 
Activator; TSAT, transferrin saturation with iron; sTfR, soluble transferrin receptor; hs-CRP, high sensitivity C-reactive protein; IL-6, interleukin 6; GDF15, growth differentiation factor 15. 
Bold means statistically significant.
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Growth differentiation factor 15 (GDF15), an anti-inflammatory 
cytokine, secreted by matured erythroblasts is involved in hepcidin 
metabolism and as such is potentially involved in iron metabolism. 
Nevertheless, available data on the role of GDF15 as the marker of iron 
status in CKD patients are scarce and yield slightly inconsistent results 
(38–41).

GDF-15 was not studied in adult PD patients, in pediatric PD 
population it was shown to be elevated in comparison to the healthy 
subjects and hemodialyzed children (42). The authors did not assess 
GDF-15 in relation to the modality of PD or membrane transport in 
PET test.

Our study did not reveal a statistically significant difference 
between 2 groups of peritoneal membrane transporters. In addition, 
for the first time we did assess GDF-15 in serum and dialysate in 
adult PD population.

Limitations

There are some limitations to our study. This is a single center 
study. The sample size was relatively small when compared with 
studies on HD patients, As a result some of our findings did not 
reach statistical significance. However on the other hand, this is a 
relative large and homogenous PD population. Despite that, further 
investigation in larger cohorts from different centers may confirm at 
least some of our results and may yield others.

Conclusion

Anemia in PD patients is less pronounced in those with better 
preserved residual kidney function. This group of patients tends to 
have a various degree of inflammation, with fast-average 
transporters displaying greater degree of inflammation. Higher 
concentration of dialysate sTfR, hepcidin, GDF15 and zonulin in 

this group of patients may indicate more effective clearance of these 
molecules. The role of ERFE in regard to erythropoietic activity in 
PD patients requires further investigation.
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TABLE 6 Biomarkers of iron metabolism and inflammation according to peritoneal membrane transport.

Fast-average PMT Slow-average PMT P

Serum sTfR (nmol/L) 43.4 (36.6–44.8) 31.1 (28.9–42.4) 0.05

Dialysate sTfR (nmol/L) 0.15 (0.06–0.2) 0.04 (0.01–0.11) 0.05

Serum Hepcidin (ng/mL) 72.2 (31.6–101.2) 72.06 (35.2–134.4) NS

Dialysate Hepcidin (ng/mL) 10.72 (8.2–48.3) 5.53 (5.44–10.09) NS

Serum Erythroferrone (ng/mL) 1.48 (1.07–3.53) 2.3 (1.44–4.65) NS

Serum hs-CRP (ng/mL) 2,394 (1,403–4,498) 1,358 (672.3–2,972) 0.05

Dialysate hs-CRP (ng/mL) 31.75 (11.26–98.35) 10.25 (2.24–41.84) 0.05

Serum IL6 (pg/mL) 9.16 (6.88–15.75) 4.22 (2.88–6.31) 0.01

Dialysate IL6 (pg/mL) 46.36 (17.3–83.96) 48.24 (13.95–67.61) NS

Serum GDF15 (pg/mL) 3,602 (2,346–4,214) 2,999 (2,290–4,193) NS

Dialysate GDF15 (pg/mL) 422.65 (187.9–633.4) 201.6 (95.29–543) NS

Serum Zonulin (pg/mL) 64.29 (60.4–69.68) 55.47 (54.17–64.31) 0.05

Dialysate Zonulin (pg/mL) 0.78 (0.59–1.54) 0.54 (0.26–0.66) 0.02

PMT, peritoneal membrane transport; sTfR, soluble transferrin receptor; hs-CRP, high sensitivity C-reactive protein; IL-6, interleukin 6; GDF15, growth differentiation factor 15.
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