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Background: Toll-like receptor (TLR) agonists have been investigated due to their 
potential dual effects as latency reverting agents and immune modulatory compounds 
in people living with HIV (PLWH). Here, we investigated whether co-stimulation of 
TLR7/8 agonists with RIG-I-like receptor (RLR) agonists enhances antiviral immunity.

Methods: Peripheral blood mononuclear cells (PBMCs) and monocyte-derived 
dendritic cells (DCs) were incubated with TLR and RLR-agonists for 24 h and 
innate and adaptive immune responses were determined (maturation markers, 
cytokines in supernatant, ISG expression).

Results: Both TLR7 and TLR8 agonists induced pro-inflammatory cytokines in 
DCs as well as PBMCs. TLR8 agonists were more potent in inducing cytokine 
responses and had a stronger effect on DC-induced immunity. Notably, while all 
compounds induced IL-12p70, co-stimulation with TLR8 agonists and RLR agonist 
polyI: C induced significantly higher levels of IL-12p70  in PBMCs. Moreover, 
crosstalk between TLR8 and RLR agonists induced a strong type I Interferon (IFN) 
response as different antiviral IFN-stimulated genes were upregulated by the 
combination compared to the agonists alone.

Conclusion: Our data strongly suggest that TLR crosstalk with RLRs leads to 
strong antiviral immunity as shown by induction of IL-12 and type I IFN responses 
in contrast to TLRs alone. Thus, co-stimulation of TLRs and RLRs might be  a 
powerful strategy to induce reactivation of latent reservoir as well as antiviral 
immunity that eliminates the reactivated cells.
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Introduction

The worldwide pandemic of HIV still poses significant challenges to public health. While 
antiretroviral therapy (ART) has significantly improved the survival chances and quality of life 
for those undergoing HIV infection, it has so far failed to achieve cure (1, 2). Cure can 
be achieved in various ways with a specific focus on eliminating the HIV reservoir, a cellular 
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reservoir that contains latently infected cells, which become virus 
producers upon removal of antiretroviral therapy (3–5). So far the 
only successful documented HIV cure have been achieved by bone 
marrow transplantation with donor CCR5 delta32 cells (1). A 
proposed strategy for cure involves a combined approach where the 
HIV reservoir is eliminated by either reactivation and subsequent 
elimination by different approaches including HIV-1-specific 
immunity (6). HIV-1-specific immunity in PLWH is insufficient to 
control in most cases viral replication and it is becoming clear that 
therapies that enhance HIV-1-specific immunity are important to 
curb viral replication and eliminate reactivated reservoirs in HIV cure 
therapies. Moreover, there are several cases of people living with HIV 
(PLWH) that control their virus without antiretroviral therapy most 
likely via a very efficient and specific HIV-1-targeted immune 
responses (7, 8). The immune control displayed by this group is highly 
interesting and although underlying immune responses remain 
unclear, these studies underscore the importance of immunity in 
controlling HIV-1.

Current studies have shown that latency reversal agents (LRAs) 
are able to induce HIV RNA transcription and virion production in 
vivo but even in combination with immunotherapeutics fail to 
decrease HIV reservoir (9–13). This could be due to poor antigen 
activity of LRAs or insufficient immune activation or efficacy of the 
immunotherapeutics (12). Toll-like receptor (TLR) agonists are being 
studied most widely as adjuvants to enhance anti-HIV-1 immunity 
but with limited success (6, 9, 14–16).

TLRs are pattern recognition receptors (PRRs) expressed by 
immune cells in particular antigen presenting cells. These PRRs are 
type-I transmembrane proteins and recognize pathogen-associated 
molecular patterns (PAMPs). TLRs are expressed on the cellular 
surface or in endosomal vesicles where they recognize cell-wall 
components such as lipoproteins, proteins and lipids, or nucleic acids, 
respectively. TLR activation leads to the induction of transcription 
factors, in particular NFκB and different Interferon Regulatory Factors 
(IRFs), that combined induce specific immune responses (17). The 
adjuvant capacity of TLR7 and TLR8 agonists has been studied in HIV 
cure (9, 14–16). TLR7 and TLR8 are both located endosomally and 
are able to detect single stranded RNA (ssRNA) including HIV-1 
ssRNA (18, 19).

Several agonists of TLR7 and TLR8 are currently under 
investigation for in vivo induction of immune responses (9, 14, 20–
23). TLR7 agonists have been previously investigated for their potency 
in contributing to HIV cure. Vesatolimod (GS-9620), a selective TLR7 
agonist, was able to induce antiviral responses in PLWH undergoing 
ART, as measured by IP-10, IL-1RA and ITAC levels in serum (9). 
Furthermore, in non-human primates it was observed that the TLR7 
agonist could delay viral rebound after cessation of ART, thus 
providing a possible first step to eventual cure (24). TLR8 agonists 
have been less investigated so far (14, 15). These studies show that 
TLR7 and 8 agonists might have the potential to induce antiviral 
immunity but their signaling is limited to specific immune activation 
programs that might not be sufficient to induce effective immunity to 
HIV-1 during reactivation. There are other PRR families such as the 
family of cytosolic RIG-I like receptors (RLR) RIG-I and MDA5 that 
sense double stranded RNA structures, replication intermediates for 
RNA viruses (25). RIG-I/MDA5 triggering during virus replication 
leads to MAVS dependent activation of NFkB and IRF3 and 
subsequent cytokine and type I IFN responses (25, 26).

Notably, recent studies suggest that crosstalk between signaling by 
TLRs and other PRRs including C-type lectin receptors and RLRs 
modulate and enhance adaptive immunity (27–34). However, it 
remains unclear whether TLR7/8 induced immunity can be enhanced 
by co-stimulation of the RLR signaling axis. Therefore, we investigated 
TLR7/8-induced immune responses induced by DCs and PBMCs and 
how crosstalk with RLR signaling affects the adaptive immune 
responses. We investigated different TLR7 and TLR8 agonists and 
TLR8 stimulation was more effective than TLR7  in induction of 
pro-inflammatory cytokines. Notably, co-stimulation of TLR8 with 
RIG-I/MDA5 agonists enhanced induction of pro-inflammatory 
cytokines as well as type I IFN responses. These data suggest that 
co-stimulation of TLR8 with RLR agonists enhance antiviral immunity 
and could therefore be used in HIV cure strategies.

Methods

Ethics statement

This study was performed according to the University Medical 
Center Amsterdam, location AMC, Medical Ethics committee 
guidelines and according to the Declaration of Helsinki.

Cell culture

PBMCs were obtained from buffy-coats of healthy donors 
(Sanquin). PBMCs were isolated by a Lymphoprep (Axis-shield) 
gradient. PBMCs were cultured in RPMI medium enriched with 10% 
FCS (Biological Industries), 10 IU/mL penicillin (Thermo Fisher), 
10 mg/mL streptomycin (Thermo Fisher), 2 mM L-glutamine (Lonza) 
and 10 IU/mL IL-2 (Invivogen).

DCs were generated from PBMCs isolated from buffy-coats of 
healthy donors. Monocytes were isolated by a Percoll (Amersham 
biosciences) gradient step. Immature monocyte-derived DCs were 
cultured for 6–7 days from monocytes in the presence of RPMI 
medium enriched with 10% FCS (Biological Industries), 10 IU/mL 
penicillin (Thermo Fisher), 10 mg/mL streptomycin (Thermo Fisher), 
2 mM L-glutamine (Lonza), IL-4 (500 U/mL, bioscource) and 
GM-CSF (800 U/mL, invivogen). DCs were defined by high expression 
of CD209 and CD11c, and low expression of CD14.

PBMCs and DCs were played on round-bottom culture plates 
(150.000 PBMCs per condition, 100.000 DCs per condition). Cells 
were stimulated for 24 h in the presence of TLR agonists R837 
(selective TLR7), R848 (TLR7 & TLR8) and TL8-052 (selective TLR8) 
as well as TLR-agonists of clinical interest: two selective TLR7 agonists; 
Vesatolimod (GS-9620), Gardiquimod. TLR7 and TLR8 agonist 
Telratolimod (3 M-052) and two selective TLR8 agonists; 
Selgantolimod (GS-9866, selective TLR8 agonist) and Motolimod 
(VTX-2337) (9, 14, 20–23). Stimulations for ELISA were performed 
for three biological donors, each biological donor supplied material 
for three technical triplicates. Technical triplicates were included for 
analysis but grouped together when comparing effects between donors.

Cells for RT-PCR were plated in round-bottom culture plates 
(100.000 DCs) per condition. Three biological donors were included 
and seeded in mono. Donors supplied cells for both Elisa and 
RT-PCR experiments.
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Stimuli

R837 (selective TLR7 agonist), R848 (TLR7 & TLR8 agonist) and 
TL8-052 (selective TLR8 agonist) were acquired from Invivogen and 
stored at −20°C. TLR-agonist R837 was used at a concentration of 
5 μg/mL. R848 at 10 μg/mL and TL8-052 at 5 μg/mL.

Vesatolimod, Gardiquimod, Telratolimod, Selgantolimod and 
Motolimod were acquired from a commercial distributor 
(MedChemExpress) and stored as per the manufacturer’s 
instructions. Concentrations were used in increasing concentration 
to establish working concentrations as follows: TLR-agonist 
GS-9620/Vesatolimod, 0.1 μM, 1 μM, 3 μM, 10 μM, 20 μM, 30 μM, 
60 μM (selective TLR7 agonist), Gardiquimod, 0.1 μM, 1 μM, 3 μM, 
10 μM, 20 μM, 30 μM (selective TLR7 agonist), 3 M-052/
Telratolimod, 0.1 μM, 1 μM, 3 μM, 10 μM, 20 μM, 30 μM (TLR7 & 
TLR8 agonist), GS-9688/Selgantolimod, 0.1 μM, 1 μM, 3 μM, 
10 μM, 20 μM, 30 μM (selective TLR8 agonist), MTX-1337/
Motolimod, 0.1 μM, 1 μM, 3 μM, 10 μM, 20 μM, 30 μM (selective 
TLR8 agonist).

PolyIC-lyovec (LMW) was acquired from Invivogen and dissolved 
in LAL-water as per the manufacturer’s instructions and used at a 
concentration of 2 μg/mL. Salmonella Lipopolysaccharide (LPS) was 
used as positive controls at a concentration of 10 ng/mL.

Flow cytometry

DCs were stimulated for 24 h and stained with PE-conjugated 
anti-CD80 (1:12.5, 557,227, BD pharmingen), allophycocyanin-
conjugated CD83 (1:25, 551,073, BD Pharmingen), FITC-conjugated 
anti-CD86 (1,25, 555,657, BD Pharmingen). The gating strategy used 
and histograms of a representative donor are displayed in 
Supplementary Figure S1. Flow cytometry was performed on the 
FACS Canto II (BD Biosciences) and analysed via FlowJo software 
(v10.8.2).

Elisa

Supernatant of DC or PBMCs were harvested at select timepoints 
after stimulation. Subsequently secretion of IL-6, IL-10 and IL-12p70 
proteins were measured by ELISA as described by the manufacturer 
(eBiosciences). OD450nm values were measured using BioTek 
synergy HT.

Quantitative real-time PCR

mRNA was acquired following lysis of cellular material at set time 
points, it was transcribed to cDNA using a reverse transcriptase kit 
(Promega). Quantitative real-time PCR was performed on an ABI 
7500 Fast real-time PCR detection system from Applied Biosystems 
using SYBR green (Thermo fisher).

Expressions of genes of interests were normalized to a household 
gene (GAPDH). The formula used was Nt = 2Ct(GAPDH) − Ct(target). 
Expression was subsequently normalized to expression of the 
TLR-stimulus at T = 8 h.

Statistical analysis

Statistical analysis of obtained data was performed using 
Graphpad Prism 9 (Graphpad Software Inc).

Two-way ANOVA tests were performed to compare unpaired 
grouped data between donors (IL-6, IL-10, IL-12p70 Elisa). One-way 
ANOVA tests were performed for unpaired observations between 
donors (RT-PCR). A two-tailed student’s t-test was used for paired 
observations and descriptive statistics were used to calculate time-
courses. Statistical significance was set at *p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001.

Results

TLR8 but not TRL7 stimulation induced 
dendritic cell maturation and cytokines

We set out to assess the potency of three known TLR agonists to 
activate DCs. We stimulated human-monocyte derived DCs with R837 
(selective TLR7 agonist), R848 (TLR7 & TLR8 agonist) and TL8-052 
(selective TLR8 agonist) for 24 h and maturation was determined by 
measuring expression of co-stimulatory molecules by flow cytometry. 
Stimulation of DCs with TLR7-agonist R837 did not induce expression 
of CD80 and CD83 as compared to unstimulated DCs (Figures 1A–C; 
Supplementary Figure S1). CD86 was increased to a low extent upon 
stimulation with R837 (Figure 1C). In contrast to stimulation with 
TLR7 agonists R837, stimulation with TLR7/8 and TLR8 agonists R848 
and TL8-052 induced DC maturation as observed by strong 
upregulation of CD80, CD83 and CD86, compared to the medium 
control (p < 0.0001) and to a similar extent as the positive control LPS 
that triggers TLR4 (Figures  1A–C; Supplementary Figure S1). 
Subsequently, we investigated cytokine production by DCs upon 24 h 
stimulation with different agonists (Figures 1D–F). Stimulation with 
R837 (TLR7) did not induce IL-6, IL-10 or IL-12p70 (Figures 1D–F) as 
compared to the medium control. In contrast, R848 (TLR7&8) and 
TL8-052 (TLR8) induced expression of IL-6, IL-10, and IL-12p70 to a 
similar extent as the positive control LPS, compared to the medium 
control (p  < 0.0001) (Figures  1D–F). These data suggest that TLR8 
agonists are more potent than TLR7 agonists in inducing DC-mediated 
immune responses.

TLR7 and TLR8 agonists induced immune activation in peripheral 
blood immune cells.

Next, we investigated the immune responses induced by TLR7 and 
TLR8 agonists in peripheral blood mononuclear cells (PBMCs). PBMCs 
were stimulated with TLR agonists R837 (TLR7), R848 (TLR7&8) and 
TL8-052 (TLR8) for 24 h and cytokines were measured in supernatant 
by ELISA. Stimulation with R837 (TLR7) induced low levels of IL-6 and 
IL-10 but no IL-12p70 in PBMCs (Figures 2A–C). As observed with 
DCs, stimulation of PBMCs with R848 (TLR7&8) and TL8-052 (TLR8) 
induced IL-6 similar as observed for the LPS control. R837 and R848 
induced a significant but minor increase in IL-10 production. Moreover, 
high levels of IL-12p70 were observed following stimulation with R848 
(TLR7/8) and TL8-052 (TLR8) (Figure 2C).

Subsequently, PBMCs were stimulated with five TLR-agonists 
undergoing clinical evaluation (9, 14, 20–23) and cytokines were 
measured. Neither of the stimuli induced an IL-10 responses (data 
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FIGURE 1

TLR-8 but not TRL7 stimulation induced maturation and cytokine production in DCs. (A–C) DCs were stimulated for 24 h with different TLR agonists 
and expression of CD80, CD83 and CD86 was measured by flow cytometry. (D–F) Supernatant of DCs were harvested after 24 h stimulation. Secretion 
of IL-6, IL-10 and IL-12p70 proteins were measured by ELISA as described by the manufacturer (eBiosciences). OD450nm values were measured using 
BioTek synergy HT. Statistical analysis of obtained data was performed using Graphpad Prism 9 (Graphpad Software Inc). One-way ANOVA tests were 
performed for unpaired observations between donors (CD-80, CD-83, CD-86 expression). Two-way ANOVA tests were perfomed to compare 
unpaired grouped data between donors (IL-6, IL-10, IL-12p70 Elisa). Statistical significance was set at ns p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001, 
****p < 0.0001.
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FIGURE 2

TLR-7 and TLR-8 agonists induced immune activation in PBMCs. (A–C) PBMCs were stimulated for 24 h in the presence of different TLR agonists. 
Supernatant was harvested after 24 h stimulation, secretion of IL-6, IL-10 and IL-12p70 proteins were measured by ELISA as described by the 
manufacturer (eBiosciences). OD450nm values were measured using BioTek synergy HT. (D,E) PBMCs stimulated for 24 h in the presence various TLR-
agonist in varying concentrations. Supernatant was harvested after 24 h stimulation. Secretion of IL-6 and IL-12p70 proteins were measured by ELISA as 
described by the manufacturer (eBiosciences). OD450nm values were measured using BioTek synergy HT. Obtained values were normalized to values 
obtained from LPS stimulation to allow for better comparison between donors. Two-way ANOVA tests were perfomed to compare unpaired grouped 
data between donors (IL-6, IL-10, IL-12p70 Elisa). Statistical analysis of obtained data was performed using Graphpad Prism 9 (Graphpad Software Inc). 
Statistical significance was set at ns p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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not shown). Stimulation with TLR7-agonists Vesatolimod and 
Gardiquimod induced IL-6 and IL-12p70 secretion in a dose 
dependent manner (Figures 2D,E). TLR 7/8 agonist Telratolimod 
similarly induced a dose dependent increase in IL-6 and IL-12p70 
(Figures  2D,E). TLR8 agonists Selgantolimod and Motolimod, 
induced high levels of cytokines at low concentrations. IL-6 
production followed a dose dependent concentration curve for 
Selgantolimod and reached a plateau for Motolimod at 1 μM, with 
reaching a plateau at higher concentrations. IL-12p70 production 
peaked at low concentrations for both Selgantolimod and 
Motolimod. These data suggest that both TLR7 and TLR8 agonists 
induce proinflammatory cytokines in PBMCs and potency 
depends on the agonist even though TLR8 agonists seem 
more potent.

RLR crosstalk with TLR7/8 and TLR8 
induced IL-12p70 but restricted IL-6 
expression in PBMCs

To elucidate effects of co-stimulation between TLR7/8 
(Telratolimod) or TLR8 agonists (Selgantolimod and Motolimod) and 
the RLR agonist Poly (I:C) (LMW)/Lyovec on cytokine production in 
PBMCs we co-stimulated PBMCs in the presence of TLR and RLR 
agonists at various concentrations. The RLR-agonist Poly (I:C) 
(LMW)/Lyovec alone did not had no effect on IL-6 production 
(Figures  3A–C; Supplementary Figures S4A–C). No effect was 
observed on IL-12p70 secretion either (Figures  3D–F; 
Supplementary Figures S4D–F). To elucidate compound specific 
effects of Poly (I:C) (LMW)/Lyovec experiments were replicated with 
Poly (I:C) (HMW)/Lyovec, which showed similar results to the LMW 
variant (data not shown).

Stimulation using Telratolimod (TLR 7&8) showed a dose 
dependent increase of IL-6 production, but, notably, co-stimulating 
with Poly(I:C) (LMW)/Lyovec decreased IL-6 production (Figure 3A; 
Supplementary Figure S4A). This decrease was also observed at 
multiple concentrations for both Selgantolimod (TLR8) and 
Motolimod (TLR8) (Figures 3B,C; Supplementary Figures S4B,C).

In contrast to the effects observed on IL-6 production, 
co-stimulation with Poly(I:C) (LMW)/Lyovec increased IL-12p70 
production. An interesting drop in stimulatory activity was observed 
for both Motolimod at 0.1 μM, likely caused by large donor variation 
at lower concentrations (Supplementary Figure S4C).

For both Telratolimod (TLR7&8) and Motolimod (TLR8) an 
increase in IL-12p70 secretion was observed at multiple concentrations 
on a wide range (Figures 3D,F; Supplementary Figures S4D,F). For 
Selgantolimod (TLR8) this increase was observed at every 
concentration tested (Figure  3E; Supplementary Figure S4E). An 
interesting drop in stimulatory activity was observed for both 
Telratolimod and Motolimod at 0.05 μM, likely caused by large donor 
variation at lower concentrations (Supplementary Figure S4).

Co-stimulation of TLR8 and RLR induced 
type I IFN responses

IFN-stimulated gene IL-27 has been shown to be important in the 
activation of CD8 T cell responses as well as in the induction of 

follicular T helper cells (27, 35–37). Moreover, other ISGs have been 
suggested to be important in antiviral immunity such as ISG-15, MxA, 
IP10 and A3G (38–42). Here we investigated whether co-stimulation 
with RLR agonist Poly(I:C)/Lyovec affects the immune responses 
induced by TLR7/8 and TLR8 agonists. DCs were stimulated with 
Telratolimod (TLR7/8) and TLR8 agonists Selgantolimod and 
Motolimod alone or in combination with RLR-agonist Poly(I:C) 
(LMW)/Lyovec and specific IFN-stimulated genes were measured. 
Although stimulation with either RLR, TLR8 or TLR7/8 agonists 
alone induced low levels of mRNA levels of ISG IL-27A, 
co-stimulations of TLR8 agonists with Poly(I:C) (LMW)/Lyovec 
enhanced expression of IL-27A in time (Figure  4A). We  did not 
observe a significant increase when combining TLR7/8 Telratolimod 
with Poly(I:C) (LMW)/Lyovec. Notably, crosstalk between Poly(I:C) 
(LMW)/Lyovec and TLR8 agonists Selgantolimod and Motolimod 
enhanced IL-27 protein secretion compared to either stimulus alone 
(Figure 5A). Crosstalk of TLR8 agonist with Poly(I:C) (LMW)/Lyovec 
resulted in a two-fold increase of IL-27 compared compared to 
Poly(I:C) (LMW)/Lyovec alone. We did not observe any enhancement 
with TLR7 agonists compared Poly(I:C) (LMW)/Lyovec alone (data 
not shown).

Moreover, crosstalk between the TLR8 agonists and Poly(I:C) 
(LMW)/Lyovec increased protein secretion IFN-β with a two to nine 
fold increase compared to the medium control (Figure 5B).

Moreover, ISG15 mRNA expression was enhanced when 
Selgantolimod and Motolimod were combined with RLR agonist 
Poly(I:C) (LMW)/Lyovec compared to stimulation with the agonists 
alone, with a 1,5–2 fold increase in gene expression being observed 8 h 
after stimulation (Figure 4B).

Both Selgantolimod and Motolimod (TLR8) were able to induce 
MxA, with upregulation in gene-expression observed following 
stimulation compared to the medium control. Following 
co-stimulation expression increased further, resulting in a 1,5 fold 
increase. This increase proved significant for the combination of 
Motolimod and Poly(I:C) (LMW)/Lyovec. Telratolimod alone did not 
induce MxA, compared to the medium control, and Poly(I:C) (LMW)/
Lyovec alone induced low levels. Co-stimulation of Telratolimod with 
Poly(I:C) (LMW)/Lyovec induced high levels of MxA, however, due 
to variation between donors no significance could be  obtained 
(Figure 4C).

IP10, A3G, OAS1, Trim22 and Trim5α were also investigated, 
however, with the exception of mild synergy following co-stimulation 
with Selgantolimod (TLR8) and Poly(I:C) (LMW)/Lyovec for IP10 
and A3G, no relevant increases in ISG expression was found compared 
to the medium control. Furthermore, with the exception of IP10 for 
Vesatolimod, no synergy was observed between TLR7 and RLR 
agonists (Supplementary Figures S2A–E, S3A–D).

Discussion

Induction of effective anti-HIV-1 immune responses are thought 
to be vital in developing an HIV cure. TLR7 agonists have been 
investigated for their potency in contributing to HIV cure. 
Vesatolimod (GS-9620), a selective TLR7 agonist, was able to induce 
antiviral responses in PLWH undergoing ART (9). Furthermore, in 
non-human primates viral rebound was delayed after treatment with 
TLR7 agonist and cessation of ART (24). Thus, there is a need for 
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FIGURE 3

Co-stimulation of TLR-8 and RLR restricts IL-6 and induces IL-12 secretion in PBMCs. (A–F) PBMCs were stimulated for 24 h in the presence of RLR 
agonist and different TLR agonists at various concentrations. Supernatant was harvested after 24 h stimulation. IL-6 and IL-12p70 proteins were 
measured by ELISA as described by the manufacturer (eBiosciences). Datapoints shown are averaged data from three individual donors. OD450nm 
values were measured using BioTek synergy HT. Two-way ANOVA tests were perfomed to compare unpaired grouped data between donors (IL-6, 
IL-10, IL-12p70 Elisa). Statistical analysis of obtained data was performed using Graphpad Prism 9 (Graphpad Software Inc). Statistical significance was 
set at ns p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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FIGURE 4

Co-stimulation of TLR-8 and RLR induced potent antiviral cytokines in DCs. DCs were stimulated with RLR and different TLR-agonists. mRNA was 
extracted to investigate genes of interest. Quantitative real-time PCR was performed on ABI-7500 Fast real-time PCR detection system (Applied 
Biosystems) using SYBR green (Thermo Fisher). (A–C) Expression of genes of interest; IL-27A, ISG-15. MxA, were normalized to a household gene 
(GAPDH). The formula used was Nt = 2Ct(GAPDH) − Ct(target). Expression was subsequently normalized to expression of the TLR-stimulus at T = 8 h. 
Statistical analysis of obtained data was performed using Graphpad Prism 9 (Graphpad Software Inc). One-way ANOVA tests were performed for 
unpaired observations between donors (CD-80, CD-83, CD-86 expression). Statistical significance was set at ns p > 0.05, *p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001.
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efficient inducers of antiviral immunity in HIV-cure strategies. 
Stimulation via TLR and RLRs are important parts of immune 
sensing and activation. While the individual pathways have been 
extensively studied little is known of crosstalk between various 
systems. We  therefore investigated several immunomodulatory 
agents for their potency alone or in combination to activate and 
induce antiviral immune responses. All TLR-agonists we tested had 
the potency to activate both DCs and PBMCs. Our data suggest that 
TLR8 triggering in DCs and PBMCs is more potent than TLR7 and, 
importantly, that crosstalk with RLR strongly modulates immune 
responses leading to enhanced pro-inflammatory cytokine IL-12p70 
and type I  IFN responses. The differences observed following 
triggering of TLR8 versus TLR7 might be due to low expression of 
TLR7  in DCs and PBMCs, and that TLR8 induces NFκB more 
efficiently than TLR7 (43, 44). Thus, targeting both TLR and RLR 

pathways could be effective to induce potent antiviral immunity in 
HIV cure strategies.

We observed a dose-dependent response for all TLR-agonists, 
with TLR8 agonists reaching a plateau at lower concentrations 
concerning IL-6 production and IL-12 responses. Interestingly, TLR7 
agonists Vesatolimod and Gardiquimod were more potent than R837, 
suggesting that agonist structures are also important in efficient 
triggering of TLR7, which could provide insights in the failures 
observed when using TLR7 agonists as a LRA (12). Utilizing a stronger 
immune inductor, such as TLR8 agonists, could provide better results.

The pro-inflammatory cytokine IL-12p70 is important for 
induction of adaptive immunity to viruses by inducing T helper type 
1 differentiation, as well as activation of NK cells and cytotoxic T cells 
that are required for effective antiviral responses (45). Although some 
TLR8 agonists induced IL-12p70 alone, co-stimulation of both TLR7/

FIGURE 5

Co-stimulation of TLR-8 and RLR induce IL-27 and IFN-β secretion in DCs. (A) DCs were stimulated for 24 h in the presence of RLR agonist and 
different TLR agonists at various concentrations. Supernatant was harvested after 24 h stimulation. IL-27 proteins were measured by ELISA as described 
by the manufacturer (U-CyTech biosciences). (B) DCs were stimulated for 6 h in the presence of RLR agonist and different TLR agonists at various 
concentrations. Supernatant was harvested after 6 h stimulation. IFN-β proteins were measured by ELISA as described by the manufacturer (R&D 
systems). Technical triplicate values from a representative donor have been added into a Figure of a representative donor. OD450nm values were 
measured using BioTek synergy HT. Two-way and one-way ANOVA tests were perfomed to compare unpaired grouped data between donors. 
Statistical analysis of obtained data was performed using Graphpad Prism 9 (Graphpad Software Inc). Statistical significance was set at ns p > 0.05, 
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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TLR8 and TLR8 agonists with PolyI:C/Lyovec enhanced IL-12p70 
expression in DCs and PBMCs at multiple concentrations.

Type I  IFN responses are important in inducing innate antiviral 
immunity such as restriction factors APOBEC3G or TRIM5a (46–49). 
Moreover, type I IFN responses are crucial in the induction of antiviral 
immune response such as induction of Th1 and follicular Th and cytotoxic 
T cell responses (48, 50–53). Interestingly, although TLR agonists alone 
were able to induce type I IFN responses, we observed that co-stimulation 
of TLR8 and RLR enhanced type I IFN responses. Co-stimulation with a 
Poly(I:C) (LMW)/Lyovec induced higher levels of ISGs IL-27A mRNA as 
well as ISG-15 mRNA, with a similar effect observed when observing 
secreted IL-27 and IFN-β. This effect was observed for both TLR8 agonists, 
Selgantolimod and Motolimod and, while not statistically significant, a 
similar trend was observed for Telratolimod, a TLR7&8 agonist.

These data suggest that TLR8 signaling is modified by RLR signaling 
probably at the level of IFNR signaling. Previously we have shown that 
IFNR signaling induced by IFN-β intersects with RLR signaling at the 
level of IKKε phosphorylation, leading to ISGF3 formation and 
induction of IL-27A mRNA transcription (27). TLR8 agonists alone also 
indued IL-27A expression, which could be crosstalk between IFNR and 
TLR8 signaling as TLR8 also induced low levels of IFN-β in DCs. 
Strikingly, when looking at fully formed IL-27, TLR8 agonists 
performed comparably to the medium controls, suggesting abrogation 
of IL-27 formation following previous transcription. RLR signaling lead 
to the formation of IL-27 as also described by Sprokholt et  al. 
Subsequently, added TLR8 signaling providing a potent increase in 
cytokine secretion, for both IFN-β and IL-27.

These data suggest that co-stimulation of TLR8 with RLR pathway 
might enhance antiviral immunity via induction of type I IFN responses 
as well as IL-12p70. However, T helper cell differentiation as well as CD8 
T cell activation studies are required to further understand the 
importance of crosstalk between these pathways, especially since TL8 
and RLR activation decreased IL-6 expression.

IL-12 is observed in successful ART regimens with persistent CD8+ 
T-cell activation (54). This suggests a restriction of IL-6, with induction 
of IL-12 may be beneficial when forming competent immune responses. 
These observed effects may provide next steps in reactivation and 
elimination of the HIV-1 reservoir and will be the topic of future research.

To summarize, our findings underscore the importance of 
crosstalk between various antiviral sensing systems in creating durable 
and robust immune responses.
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