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Background: Methotrexate (MTX) is the first line treatment for rheumatoid arthritis 
(RA), but failure of satisfying treatment response occurs in a significant proportion 
of patients. Here we present a longitudinal multi-omics study aimed at detecting 
molecular and cellular processes in peripheral blood associated with a successful 
methotrexate treatment of rheumatoid arthritis.

Methods: Eighty newly diagnosed patients with RA underwent clinical assessment 
and donated blood before initiation of MTX, and 3 months into treatment. Flow 
cytometry was used to describe cell types and presence of activation markers 
in peripheral blood, the expression of 51 proteins was measured in serum or 
plasma, and RNA sequencing was performed in peripheral blood mononuclear 
cells (PBMC). Response to treatment after 3 months was determined using the 
EULAR response criteria. We  assessed the changes in biological phenotypes 
during treatment, and whether these changes differed between responders and 
non-responders with regression analysis. By using measurements from baseline, 
we also tried to find biomarkers of future MTX response or, alternatively, to predict 
MTX response.

Results: Among the MTX responders, (Good or Moderate according to EULAR 
treatment response classification, n = 60, 75%), we observed changes in 29 partly 
overlapping cell types proportions, levels of 13 proteins and expression of 38 genes 
during treatment. These changes were in most cases suppressions that were 
stronger among responders compared to non-responders. Within responders 
to treatment, we observed a suppression of FOXP3 gene expression, reduction 
of immunoglobulin gene expression and suppression of genes involved in cell 
proliferation. The proportion of many HLA-DR expressing T-cell populations were 
suppressed in all patients irrespective of clinical response, and the proportion 
of many IL21R+ T-cells were reduced exclusively in non-responders. Using only 
the baseline measurements we could not detect any biomarkers or prediction 
models that could predict response to MTX.

OPEN ACCESS

EDITED BY

Xiaolin Sun,  
Peking University People’s Hospital,  
China

REVIEWED BY

Jianping Guo,  
Peking University People’s Hospital,  
China
Guo-Min Deng,  
Huazhong University of Science and 
Technology, China

*CORRESPONDENCE

Boel Brynedal  
 boel.brynedal@ki.se  

Leonid Padyukov  
 leonid.padyukov@ki.se

SPECIALTY SECTION

This article was submitted to  
Rheumatology,  
a section of the journal  
Frontiers in Medicine

RECEIVED 17 January 2023
ACCEPTED 22 February 2023
PUBLISHED 27 March 2023

CITATION

Brynedal B, Yoosuf N, Ulfarsdottir TB, Ziemek D, 
Maciejewski M, Folkersen L, Westerlind H, 
Müller M, Sahlström P, Jelinsky SA, Hensvold A, 
Padyukov L, Pomiano NV, Catrina A, 
Klareskog L and Berg L (2023) Molecular 
signature of methotrexate response among 
rheumatoid arthritis patients.
Front. Med. 10:1146353.
doi: 10.3389/fmed.2023.1146353

COPYRIGHT

© 2023 Brynedal, Yoosuf, Ulfarsdottir, Ziemek, 
Maciejewski, Folkersen, Westerlind, Müller, 
Sahlström, Jelinsky, Hensvold, Padyukov, 
Pomiano, Catrina, Klareskog and Berg. This is 
an open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic practice. 
No use, distribution or reproduction is 
permitted which does not comply with these 
terms.

TYPE Original Research
PUBLISHED 27 March 2023
DOI 10.3389/fmed.2023.1146353

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2023.1146353%EF%BB%BF&domain=pdf&date_stamp=2023-03-27
https://www.frontiersin.org/articles/10.3389/fmed.2023.1146353/full
https://www.frontiersin.org/articles/10.3389/fmed.2023.1146353/full
https://www.frontiersin.org/articles/10.3389/fmed.2023.1146353/full
mailto:boel.brynedal@ki.se
mailto:leonid.padyukov@ki.se
https://doi.org/10.3389/fmed.2023.1146353
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2023.1146353


Brynedal et al. 10.3389/fmed.2023.1146353

Frontiers in Medicine 02 frontiersin.org

Conclusion: We conclude that a deep molecular and cellular phenotyping 
of peripheral blood cells in RA patients treated with methotrexate can reveal 
previously not recognized differences between responders and non-responders 
during 3 months of treatment with MTX. This may contribute to the understanding 
of MTX mode of action and explain non-responsiveness to MTX therapy.

KEYWORDS

rheumatoid anhritis, treatment response, methotrexate, gene expression, flow 
cytometry, plasma proteins, transcriptomics

Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory disease 
caused by genetic and environmental factors, resulting in symmetric 
inflammation and destruction of the joints (1). First-line treatment for 
RA is methotrexate (MTX). Treatment with MTX leads to suppression 
of immune cells, for example decreased cytokine production by T-cells 
(2). Tasaki et al. has shown that successful drug treatments (MTX, 
infliximab or tocilizumab in different individuals) alter the molecular 
profile closer to that of healthy controls at the transcriptome, serum 
proteome, and immunophenotype level (3). In their paper the effect 
of MTX was smaller than the effect of other treatments, but the 
specific effects of MTX were not elucidated and the number of patients 
on MTX was small (ten responders and 11 non-responders). It is still 
unknown which effects of MTX that specifically ameliorates RA 
symptoms. Between 20 and 40% of RA patients do not respond to 
MTX, and it is known that response to first-line treatment predicts 
long-term outcomes in RA patients (4). It would therefore be valuable 
to understand how the biological effect of MTX differs between 
responders and non-responders. Such knowledge may provide 
insights into which mechanisms that can be regulated in order to 
avoid disease progression.

To investigate the effect of treatment, a good classification of 
treatment response is needed as well as relevant biological 
measurements. Patients with RA are routinely examined for their 
level of inflammation, number of inflamed joints and overall 
assessment of health. From these measurements the disease activity 
score DAS28 is calculated (5). In this prospective project, 
we evaluated the EULAR response criterion after 3 month of MTX 
in DMARD monotherapy (6). We  investigated a wide range of 
potential biomarkers measured in peripheral blood before treatment 
initiation and after 3 months of MTX treatment. Gene expression 
was measured by RNA sequencing; absolute cell counts, cell 
proportions and phenotypes was measured by flow cytometry; 
protein levels were measured in serum or plasma. These 
measurements reflect biological processes within the individual, and 

we hypothesized that a subset of such measurements may be suitable 
as biomarkers for the responsiveness to treatment. We  also had 
information regarding several factors known to impact treatment 
response, such as smoking status, age, sex, and steroid treatment, in 
the newly diagnosed RA patients before staring MTX treatment.

Our primary aim was to investigate the biological effect of MTX 
among RA patients, and whether these effects differed between 
responders and non-responders. Secondarily, we also investigated if 
we could predict MTX response based on cellular, molecular and 
clinical features at baseline.

Materials and methods

COMBINE cohort

We utilized the COMBINE cohort, which includes 246 
individuals, whereof 92 are treatment naïve early RA patients who 
started MTX treatment at Karolinska University Hospital with a 
maximum symptom duration of approximately 14 months before 
inclusion to the study. Demographics and clinical phenotypes at 
baseline are shown in Table 1. Patients donated peripheral blood at 

Abbreviations: ACPA, Anti-citrullinated protein antibodies; MTX, Methotrexate; 

RA, Rheumatoid arthritis; PCA, Principal components analysis; PBMC, Peripheral 

blood mononuclear cells; EULAR, The European Alliance of Associations for 

Rheumatology; HLA-DR, Human leukocyte antigen – DR isotype; CRP, C-reactive 

protein; DAS28, Disease activity score 28 joints; CCP2, Second generation anti-

cyclic citrullinated peptide; RNA, Ribonucleic acid; UPPMAX, Uppsala 

Multidisciplinary Center for Advanced Computational Science; LOO, Leave one 

out; AUC, Are under curve; ROC, Receiver operator characteristic.

TABLE 1 Demographics at inclusion of the 80 patients with newly 
diagnosed RA during 2011–2013 who consented to participation and 
contributed blood at both time points.

RA (n = 80)

Female (%) 60 (75.0)

Age, median years (range) 62 (22–88)

HLA-DR shared epitope positive (%) 54 (67.5)

Self-reported Swedish ethnicity (%) 66 (82.5)

Current smoker (%) 27 (34.6)

Symptom duration in days, median (range) 168 (46–428)

Erosions/osteopenia (%) 20 (25)

ACPA positive (%) 49 (61.3)

DAS28, median (range) 5.0 (0.84–7.6)

Patient global health assessment, median (range) 47 (1–100)

Health professional global health assessment, median 

(range)

45 (2–84)

Physical function (HAQ), median (range) 1.06 (0–2.5)

CRP, median (range) 6 (0.5–146)

Prednisolone treatment (%) 44 (55.0)
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the appointment prior to MTX initiation. All patients returned for 
a follow up visit after approximately 3 months (full range 
67–126 days, median 93 days) where they again underwent a clinical 
examination and donated peripheral blood (stored in −80°C). Out 
of the 92 patients who started MTX therapy 12 dropped out during 
the follow-up period, leaving a total of 80 patients for which we have 
biological measurements and clinical follow up data (Table 1). The 
majority of patients in our cohort were prescribed Prednisolone 
treatment (Table  1), a glucocorticoid with immune suppressive 
effects. Prednisolone was prescribed either before initiating MTX 
treatment (N:19) or along with MTX prescription (N:25).

Patients were asked about their ethnicity as well as past and 
current smoking behavior. We detected anti-citrullinated protein 
autoantibodies (ACPA) using the multiplex anti-CCP2 assay 
(Eurodiagnostica) at Karolinska University Hospital. The presence 
of joint erosions or bone decalcifications was detected using X-ray 
and assessed by radiologists at Karolinska University Hospital.

Response outcome

The primary outcome was determined using the EULAR 
response criteria (7). We dichotomized response, so that those who 
achieved Good or Moderate EULAR response at 3 months of 
treatment were considered “responders” and the rest being 
“non-responders.”

Flow cytometry

The Clinical Chemistry laboratory of Karolinska University 
hospital measured the concentration of leukocytes, neutrophils, 
eosinophils, basophils and monocytes per liter of peripheral blood 
using XE Sysmex flow cytometry-based analysis.

Additionally, several immune cell phenotypes were measured by 
flow cytometry at the Rheumatology Laboratory at the Center for 
Molecular Medicine, Karolinska Institutet (for an overview of the 
gating strategy see Supplementary Figure S1). Peripheral blood 
mononuclear cells (PBMC) were isolated and whole blood lysed 
using Serotec Erythrolyse buffer (Bio-Rad AbD Serotec Ltd). Cells 
were stained freshly using the following antibodies (clones): 
CD45RA (B56), TcRgd (B1), HLA-DR (L43), CD4 (OKT4), CD138 
(ID4 or DL-101), CD19 (HIB19), NKp44 (P44-8), CD16 (3G8), 
CD69 (FN50), CD28 (CD28.2), CD45 (HI30), IL21R (2G1-K12), 
TREM-1 (TREM-26) all from Biolegend, CD3 (UCHT1) and 
NGG2A (Z199.1) from Beckman Coulter, IgD (IA6-2), CD14 (Mphi 
9), CD27 (M-T271), CD56 (BI59) from Beckton Dickinson, NKG2D 
(1D11) from eBioscience. Only the HLA-DR staining was controlled 
using an isotype control antibody from Biolegend, while the staining 
of NKG2A, NKG2D, IL21R and TREM-1 were controlled by absence 
of added antibody (FMO, fluorescence minus one). The stainings 
were performed using different antibody panels. One panel focusing 
on T-cell stainings of PBMC, another on B-cell stainings, a third on 
NK cells and monocytes, and a fourth staining performed on whole 
lysed blood where granulocytes were identified by size and 
granularity (forward and side scattering properties). All 
measurements were performed on Gallios flow cytometer (Beckman 

Coulter) and data analyzed using FlowJo (TreeStar Inc., Ashland, 
OR, United States). In the statistical analyses we utilized a total of 
427 flow cytometry variables.

Protein measurements

We collected information of plasma protein concentrations 
using different multiplex platforms as described previously (8). 
Protein levels below detection level were re-coded as 0.001. Within 
the cohort the distributions of plasma protein concentrations were 
highly skewed with long tails, and a log transformation was therefore 
applied prior to association analysis. Only when at least 8 different 
protein levels above detection threshold within each test was 
available the proteins were considered for further analyses, resulting 
in 51 analyzed proteins, including 16 proteins measured using 
multiple methods.

RNA sequencing

RNA was purified from PBMCs and sequenced as previously 
described (8). After removing samples with insufficient quality, 
we obtained 60 high quality RNA seq samples from the baseline 
visit, and 60 RNA samples from the follow up visit. From 52 
patients we obtained a high-quality RNA seq data set from both 
baseline and follow up. For 30 of the samples in the MTX cohort 
the initial sequencing produced very few reads and was therefore 
repeated. The read files from the two sequencing rounds were 
merged. We  employed Trimgalore (v. 0.4.1) to remove adapter 
sequence and low-quality bases from reads (−-paired --phred33 
--length 25), and reads were aligned to the human genome using 
STAR (v. 2.5.3a) and summarized across genes using the gencode 
(v.27) annotation. The alignments were performed on resources 
provided by the SNIC informatics network through Uppsala 
Multidisciplinary Center for Advanced Computational Science 
(UPPMAX).

Statistical analysis

We performed both longitudinal and cross-sectional analyses for 
each biological measurement. The aim of the longitudinal analyses 
was to identify changes between baseline and the 3 months visit for 
responders and non-responders separately, and to analyze whether 
there were any differences in changes between these two groups. The 
measurements at baseline were also used to investigate whether any 
features seen at baseline could predict response after 3 months. All 
analyses were performed in R (v.3.5.1), and gene expression analyses 
using DESeq2 (v. 1.20.0).

When analyzing the change in protein and flow cytometry 
measures during treatment we used a mixed linear model (lme from 
nlme v. 3.1–137) and assessed the different contrasts using emmeans 
(lsmeans v. 2.30–0). We modelled each measurement as dependent 
on time point (baseline or follow-up), response, an interaction 
between time point and response, prednisolone, and a random effect 
of each individual.
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When modelling gene expression changes during treatment 
we wanted to model changes both within (treatment effect) and 
between (responders vs. non-responders) samples obtained at 
baseline and at 3 months, respectively. We  used the approach 
outlined in edgeR user guide regarding comparisons both between 
and within subjects (9). Further, gene expression is known to vary 
greatly between and within individuals, and a major part of this 
variation is due to differences in proportion of different cell 
populations in peripheral blood. In our gene expression analyses 
we therefore aimed to describe changes that are not due to changes 
in major cell type proportions, but due to changes in gene expression 
within cells. Changes in cell composition, on the other hand, are 
better detected using flow cytometry data. We therefore chose to 
adjust our analysis of gene expression levels based on the proportion 
of major immune cell types in PBMCs: B-cells, T-cells, NK-cells, or 
monocytes out of total PBMC. Gene expression was thereby 
modelled as dependent on response, the interaction between 
response and patient ID, the interaction between visit and response, 
prednisolone, the proportion of B, T, NK-cells, and the proportion 
of monocytes.

In all the prospective analyses using baseline data (gene 
expression, protein levels, or cell type proportions) to detect 
biomarkers of response to MTX after 3 months, we adjusted our 
analyses for factors that might be  associated to both response 
status and biomarker levels (i.e., likely confounders). All baseline 
analyses were accordingly adjusted for age, sex, whether the 
individual was of self-reported Swedish ethnicity, had erosions at 
baseline, was a current smoker when treatment was initiated, 
presence of ACPA, and treatment with Prednisolone at the time of 
blood donation. For flow cytometry and measurement of plasma 
protein concentrations, we  analyzed the association between 
response status and cellular or protein phenotypes using 
logistic regression.

A few additional covariates were included in the cross-sectional 
analysis of gene expression data at baseline. We  used principal 
component analysis (PCA) of variance stabilized gene expression 
data (rlog in DESeq2) to look for outlier RNA seq samples. PCA 
revealed no outlier samples, nor any separation between baseline 
visit and follow up visit or responders and non-responders (data not 
shown). PCA analysis revealed a major axis of variation that was 
strongly, but not completely, associated to measured RNA quality 
scores (r2: 0.60). We estimated a surrogate variable (using svaseq v. 
3.28.0) in the baseline sample set to account for this major axis of 
variation, which was included as a covariate in cross-sectional gene 
expression modelling. Since the major cell type proportions of 
PBMCs are likely confounders, they were again included as 
covariates in the DESeq2 analysis.

We experienced that DESeq2 was sensitive to single high-count 
outliers in the cross-sectional analyses, and we therefore implemented 
a leave-one-out (LOO) approach to assess the stability of the detected 
gene expression biomarkers. In each iteration, one sample was 
excluded, and the cross-sectional analyses repeated.

In all gene expression association analyses, we chose to analyze 
genes where at least 20% of the samples has a normalized count of one 
or higher, and we did not shrink the log2 (fold changes). Significance 
was assessed using a Wald test.

Gene set enrichment was investigated using a non-parametric 
test on gene ranks (tmodCERNOtest function in tmod (v. 0.36)), 

using 1329 canonical pathways (8904 genes) from KEGG,1 
BioCarta,2 Signal Transduction KE,3 SigmaAldrich,4 Signalling 
Gateway,5 SuperArray SABiosciences,6 Pathway Interaction 
Database,7 reactome8 and Matrisome Project,9 collected by 
MSigDB. We tested whether gene sets were enriched for having 
smaller probability values, higher fold change and lower fold 
change. To avoid enrichments due to lowly expressed genes with 
inflated fold changes we only report those gene sets that showed 
significant enrichment both in probability values and fold 
change ranking.

For all tests we defined a false discovery rate (FDR) (10) of <10% 
as significant. Each analysis type and biological data type was 
evaluated separately.

Prediction

Prediction models were built based on measurements in treatment 
naïve individuals and based on the difference between post-treatment 
and pre-treatment measurement.

Three methods were used to classify the response data: a linear 
method (regression with L1 and L2 regularization via the glmnet R 
library), a non-linear method (via the randomForest library in R), 
and a kernel-based method (SVM with an RBF kernel, via the 
smvRadial library in R). Each learning task was performed in ten 
repeats, with five-fold cross-validation and with 100 randomly 
sampled steps of hyperparameter estimation. Covariates outlined 
above were included as features in each run, and we built predictive 
models based on gene expression, flow cytometry, protein levels 
and clinical data, separately and in an integrated fashion. 
We removed all zero count genes from the expression data, and 
filtered ncRNAs (miRNA, piRNA, rRNA, siRNA, snoRNA, and 
tRNAs). In addition, pseudogenes that are lowly expressed and 
showed high variance were not used in the model. We  used 
protein-coding genes and long non-coding genes in the expression 
matrix, which resulted in a total of 22,628 genes. The filtered gene 
expression matrix was normalized using transcript-per-
million (TPM).

The performance of resulting models was reported using balanced 
accuracy and receiver operating characteristic (ROC) curves. Balanced 
accuracy and area under the ROC curves (AUCs) are calculated as the 
mean and 95% confidence intervals for each of the repeats in each 
task. For each ML task, we report the results from the repeat displaying 
the median of the mean ROC AUCs.

1 http://www.pathway.jp

2 http://cgap.nci.nih.gov/Pathways/BioCarta_Pathways

3 http://stke.sciencemag.org/about/help/cm

4 http://www.sigmaaldrich.com/life-science.html

5 http://www.signaling-gateway.org

6 http://www.sabiosciences.com/ArrayList.php

7 http://pid.nci.nih.gov

8 http://www.reactome.org

9 http://matrisomeproject.mit.edu
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Results

Effects of MTX treatment

Clinical effects of MTX treatment
Out of the 80 patients, 32 experienced a good EULAR response, 

28 a moderate response and 20 were non-responders according to 
EULAR response criteria. As expected, MTX treatment had a 
significant ameliorating effect across clinical parameters for 
responders, while the effect was lower among the non-responders (see 
Supplementary Table S1).

Changes in cell concentrations and phenotypes 
during MTX treatment

We analyzed cell concentrations and proportions of cellular 
phenotypes among responders and non-responders to MTX. A 
total of 29 flow cytometry measurements were altered during 
treatment in responders, and 15 in non-responders (Figure 1A), of 
which only three were shared in both groups (Table 2). These three 
all mark a similar decrease of the proportion of HLA-DR-
expressing T-cells (HLA-DR+ T-cells, HLA-DR + NKG2D + CD4 
+ gd- T-cells, and HLA-DR+ CD28 + CD4 + gd- T-cells) among 

responders and non-responders. Overall, the changes in cell 
proportions within responders during treatment are dominated by 
a reduction of the proportions of different HLA-DR+ T-cell 
subsets. We note that the proportion of several HLA-DR+ subsets 
of IL21R + CD4- T-cells were strongly suppressed among the 
MTX-responders, while not affected among non-responders 
(marked by green in Figure  1A). Among the non-responders, 
we instead noticed a very strong reduction in the proportion of 
IL21R+ T-cell subsets (Figure 1A).

We furthered investigated whether the effect that MTX had on cell 
concentrations and proportions of cellular phenotypes differed 
significantly between responders and non-responders. Here 
we  observed a significant difference in the changes that occurred 
between responders and non-responders for eleven cell phenotypes. 
These eleven subsets all include changes in the proportions of IL21R+ 
cells, usually CD4+ T-cells. Notably, this change was significant in 
non-responders, while unaltered in responders (Table 2, marked by 
red in Figure 1).

Changes in protein levels during MTX treatment
Treatment with MTX significantly decreased the concentration of 

17 proteins in serum of responders, while no significant changes were 

A

B

C

FIGURE 1

The effect of MTX treatment in non-responders (x-axes) or responders (y-axes) on cell type phenotypes (A), protein expression (B) and gene expression 
(C). Beta coefficients in A and B, and log2 (fold changes) in C, of variables that are significantly regulated (FDR ≤ 10%) during MTX treatment in either 
non-responders, responders, or both. A dotted 45° inclined line indicates the expected parity for individual effects for groups of non-responders and 
responders to MTX. (A) The changes in cell type phenotypes as measured by flow cytometry. Three different groups of cell phenotypes are indicated 
by colors: The proportions of HLA-DR+ out of different IL21R+ CD4- T-cell subsets (green), the proportion of HLA-DR+ out of different T-cell subsets 
(purple), and the proportion of IL21R+ out of several T-cell subsets (red). (B) The changes in protein expression. (C) The change in gene expression, 
where a group of immunoglobulin genes are indicated by green color.
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TABLE 2 The regulation of cell proportions and within patients during MTX follow up.

Change in non-
responders

Change in 
responders

Difference

Flow cytometry measure Beta FDR Beta FDR Beta FDR

% HLA-DR+ cells of IL21R+ CD45RA− CD4-gd- T-cells −1.26 0.88 −8.67 4.2E-03 −7.41 0.37

% HLA-DR+ cells of IL21R+ CD28− CD4-gd- T-cells 0.75 0.94 −7.24 0.023 −7.99 0.35

% HLA-DR+ cells of IL21R+ CD4-gd- T-cells 0.28 0.99 −7.00 0.013 −7.28 0.33

% HLA-DR+ cells of IL21R+ CD28+ CD4-gd- T-cells −0.21 0.99 −6.95 0.020 −6.74 0.42

MFI NKG2A of NKp44+ CD16- NK cells −2.27 0.60 −4.41 0.020 −2.15 0.88

% HLA-DR+ cells of NKG2D+ CD45RA− CD4-gd- T-cells −2.42 0.33 −3.96 3.9E-03 −1.54 0.88

% HLA-DR+ cells of NKG2D+ CD45RA− CD4+ gd- T-cells −3.54 0.12 −3.58 3.9E-03 −0.04 0.99

% HLA-DR+ cells of CD45RA− CD4− gd- T-cells −2.94 0.27 −3.40 0.010 −0.47 0.99

% HLA-DR+ cells of NKG2D+ CD28+ CD4-gd- T-cells −2.02 0.33 −3.18 3.9E-03 −1.16 0.88

% HLA-DR+ cells of CD28+ CD4- gd- T-cells −2.52 0.27 −3.08 7.5E-03 −0.56 0.98

% HLA-DR+ cells of NKG2D+ CD28− CD4-gd- T-cells −2.48 0.20 −2.97 4.5E-03 −0.49 0.98

% HLA-DR+ cells of NKG2D+ CD4-gd- T-cells −2.08 0.27 −2.76 4.5E-03 −0.67 0.95

% HLA-DR+ cells of NKG2D+ CD28+ CD4+ gd- T-cells −3.35 0.034 −2.72 3.9E-03 0.63 0.95

% HLA-DR+ cells of gd+ T-cells −1.38 0.76 −2.67 0.094 −1.28 0.91

% HLA-DR+ cells of NKG2D+ gd- T-cells −2.08 0.26 −2.60 5.7E-03 −0.51 0.97

% HLA-DR+ cells of NKG2D+ gd + T-cells −2.02 0.38 −2.55 0.046 −0.53 0.98

% HLA-DR+ cells of CD28− CD4− gd- T-cells −2.60 0.20 −2.52 0.021 0.09 0.99

% HLA-DR+ cells of CD4− gd- T-cells −2.42 0.20 −2.49 0.013 −0.07 0.99

% HLA-DR+ cells of T-cells −2.70 0.079 −2.37 3.9E-03 0.33 0.98

% HLA-DR+ cells of NKG2D+ CD4 + gd- T-cells −3.42 0.025 −2.20 0.016 1.23 0.85

% HLA-DR+ cells of NKG2D+ CD45RA+ CD4-gd- T-cells −1.59 0.13 −1.49 0.013 0.10 0.99

% HLA-DR+ cells of CD45RA-CD4+ gd- T-cells −1.61 0.13 −1.49 7.5E-03 0.12 0.99

% HLA-DR+ cells of gd- T-cells −1.85 0.13 −1.47 0.020 0.38 0.97

% HLA-DR+ cells of CD45RA + CD4- gd- T-cells −1.72 0.13 −1.38 0.032 0.34 0.97

% HLA-DR+ cells of NKG2D+ CD28- CD4 + gd- T-cells −4.62 0.082 −1.20 0.59 3.42 0.39

% HLA-DR+ cells of CD28 + CD4+ gd- T-cells −1.32 0.12 −1.14 7.5E-03 0.18 0.98

% HLA-DR+ cells of CD4+ gd- T-cells −1.44 0.12 −1.09 0.020 0.35 0.93

% CD16+ of NK cells −0.76 0.49 −1.07 0.068 −0.30 0.97

% IL21R+ cells of DR- CD4+ gd- T-cells −14.56 0.018 0.43 0.97 14.99 0.050

% IL21R+ cells of CD28-CD4+ gd- T-cells −16.00 0.025 1.04 0.90 17.03 0.050

% IL21R+ cells of CD4+ T-cells −14.15 0.018 1.08 0.84 15.23 0.046

% CD16- cells of NK cells 0.75 0.50 1.08 0.062 0.33 0.97

% IL21R+ cells of CD45RA− CD4+ gd- T-cells −14.14 0.018 1.09 0.84 15.22 0.046

% IL21R+ cells of CD4+ gd- T-cells −14.33 0.018 1.14 0.84 15.46 0.046

% IL21R+ cells of CD28+ CD4+ gd- T-cells −14.28 0.018 1.15 0.84 15.43 0.046

% IL21R+ cells of total T-cells −13.57 0.026 1.21 0.84 14.78 0.050

% IL21R+ cells of gd- T-cells −13.75 0.025 1.27 0.84 15.02 0.050

% IL21R+ cells of Lymphocyte −14.42 0.019 1.29 0.84 15.71 0.046

% IL21R+ cells of CD45RA+ CD4+ gd- T-cells −15.13 0.018 1.64 0.81 16.77 0.046

% HLA-DR- cells of CD4− gd- T-cells 2.29 0.23 2.25 0.024 −0.04 0.99

% IL21R+ cells of HLA-DR+ CD4+ gd- T-cells −11.14 0.12 4.43 0.40 15.57 0.050
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observed in non-responders (Table  3). The regulation in the two 
subsets of RA patients is highly correlated (correlation between 
vectors of beta coefficients; r2: 0.83, p: 5.6*10−6, Figure 1B). Our data 
demonstrates that MTX strongly decreases the levels of IL-6, CRP, and 
SAA in plasma.

Gene expression changes during MTX treatment
We detected significant changes of gene expression in PBMCs 

during treatment within the group of responders, where three genes 
were upregulated and 35 suppressed by MTX (Table 4; Figure 1C). 
These changes include the suppression of the master regulator of 
regulatory T-cells, FOXP3, along with several immunoglobulin genes. 
Gene set enrichment analysis indicated a suppression of cell cycle 
among RA patients responding to MTX (Table 5). Of note, these 
changes are beyond the changes in major cell type proportions, which 
we adjusted for in the analysis.

Within non-responders only two genes were significantly altered 
by MTX treatment, none of which are overlapping with those 
significantly regulated among responders. We  observed a strong 
increase in the expression of one of the T-cell receptor beta-chain 
genes, TRBV6-1 and relatively low decrease of expression of one of 
glucose transporter genes, SLC2A1. Gene set enrichment analysis 
indicated the suppression of chemokines, and Calcineurin-regulated 
NFAT-dependent transcription in lymphocytes (Table 6). We found 
no overlap between the gene set enrichments in responders and 
non-responders to MTX treatment. Genes regulated in responders or 
non-responders had slightly correlated log2 (fold changes) (r2: 0.35, 
p: 0.025).

There were no genes that differed significantly in regulation 
among responders compared to non-responders (the two genes that 
were regulated by MTX in non-responders, TRBV6-1 and SLC2A1, 

did however have FDR <20% for having a difference in regulation in 
responders compared to non-responders).

Differences between future 
MTX-responders and non-responders at 
baseline

Demographic and clinical factors at baseline 
associated to MTX response

We evaluated whether the vast set of demographic and clinical 
variables that were measured at baseline were associated to future 
MTX response. None of these variables were significantly associated 
to future treatment response in our cohort.

Cell types, cell phenotypes and protein 
measurements at baseline associated to later 
MTX response

We investigated the association between 427 immune phenotypes 
from flow cytometry and MTX response but did not detect any 
significant differences between future responders and non-responders 
at baseline.

We investigated the association of 51 proteins measured in MTX 
naïve samples (whereof 16 were investigated using multiple assays) 
and MTX response. No association reached an FDR below 10%.

Gene expression levels at baseline associated to 
future MTX response

There were 88 genes for which expression levels at baseline were 
significantly different between patients who would later respond to 
MTX, compared to those who would not (Supplementary Table S2). 

TABLE 3 Protein levels significantly altered during MTX treatment. Some proteins were measured using multiple separate methods.

Change in non-responders Change in responders

Beta FDR Beta FDR

IL-6 −0.56 0.38 −0.99 1.7*10−6

CRP −0.27 0.75 −0.88 7.6*10−4

CRP −0.27 0.75 −0.88 7.6*10−4

SAA −0.46 0.53 −0.78 7.6*10−4

CXCL10 −0.23 0.38 −0.26 7.5*10−3

CXCL9 −0.17 0.70 −0.34 8.6*10−3

CCL23 (MPIF-1) −0.23 0.38 −0.25 8.7*10−3

MMP-9 −0.10 0.82 −0.26 0.012

E-Selectin −0.11 0.55 −0.17 0.012

MCP-2 −0.36 0.36 −0.28 0.012

VEGF 0.08 0.71 −0.16 0.016

VEGF 0.08 0.71 −0.16 0.016

MMP-3 −0.01 0.93 −0.24 0.018

MMP-3 0.04 0.92 −0.29 0.018

MMP-3 −0.01 0.93 −0.23 0.019

ICAM-1 −0.03 0.87 −0.07 0.033

VCAM-1 −0.06 0.54 −0.06 0.068
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However, none of these 88 genes remained significant in every of the 
60 LOO iteration. The maximum number of leave-one-out iterations 
when a gene was significant was 58 (for 8 genes). The number of 

significant genes across the 60 leave-one-out iterations fluctuated 
between zero and 1,066. We therefore concluded that no single gene 
expression level at baseline was consistently associated to future 

TABLE 4 Genes significantly regulated during MTX treatment among those who responded or did not respond.

Regulation among non-responders Regulation among responders

Ensembl ID HGNC log2FC FDR log2FC FDR

ENSG00000211896 IGHG1 −0.51 1.00 −1.55 4.5*10−6

ENSG00000211895 IGHA1 −0.65 1.00 −1.48 6.6*10−5

ENSG00000010319 SEMA3G −0.83 0.74 −0.75 1.4*10−3

ENSG00000178445 GLDC −0.21 1.00 −1.66 1.4*10−3

ENSG00000049768 FOXP3 −0.21 1.00 −0.41 1.7*10−3

ENSG00000211893 IGHG2 −0.54 1.00 −1.10 2.9*10−3

ENSG00000099250 NRP1 0.43 1.00 0.70 4.8*10−3

ENSG00000132465 JCHAIN −0.42 1.00 −1.25 5.9*10−3

ENSG00000117399 CDC20 −0.62 1.00 −1.16 1.1*10−2

ENSG00000157168 NRG1 0.20 1.00 −0.54 1.3*10−2

ENSG00000155962 CLIC2 0.23 1.00 0.43 1.7*10−2

ENSG00000211679 IGLC3 0.12 1.00 −0.99 0.017

ENSG00000088325 TPX2 −0.24 1.00 −0.82 0.021

ENSG00000136235 GPNMB 0.11 1.00 0.66 0.024

ENSG00000148773 MKI67 −0.16 1.00 −0.89 0.024

ENSG00000211662 IGLV3-21 −0.75 1.00 −1.10 0.024

ENSG00000211669 IGLV3-10 −0.46 1.00 −1.25 0.024

ENSG00000211941 IGHV3-11 −0.92 1.00 −1.03 0.024

ENSG00000211663 IGLV3-19 −0.62 1.00 −1.11 0.028

ENSG00000011590 ZBTB32 −0.28 1.00 −0.48 0.028

ENSG00000211592 IGKC −0.21 1.00 −0.99 0.030

ENSG00000115884 SDC1 −0.82 1.00 −1.76 0.036

ENSG00000126787 DLGAP5 −0.33 1.00 −1.04 0.038

ENSG00000211648 IGLV1-47 −0.40 1.00 −1.02 0.047

ENSG00000266088 −0.28 1.00 −0.41 0.060

ENSG00000211673 IGLV3-1 −0.56 1.00 −0.94 0.060

ENSG00000170476 MZB1 −0.14 1.00 −0.65 0.060

ENSG00000163599 CTLA4 −0.10 1.00 −0.33 0.061

ENSG00000211892 IGHG4 0.41 1.00 −1.24 0.062

ENSG00000239951 IGKV3-20 −0.26 1.00 −0.87 0.064

ENSG00000282122 IGHV7-4-1 −0.19 1.00 −1.23 0.064

ENSG00000211677 IGLC2 −0.36 1.00 −0.90 0.076

ENSG00000211934 IGHV1-2 −0.17 1.00 −1.03 0.082

ENSG00000211966 IGHV5-51 −0.42 1.00 −0.91 0.082

ENSG00000211644 IGLV1-51 −0.43 1.00 −0.81 0.082

ENSG00000211653 IGLV1-40 −0.60 1.00 −1.03 0.083

ENSG00000211955 IGHV3-33 −0.14 1.00 −0.88 0.096

ENSG00000211660 IGLV2-23 −0.43 1.00 −0.96 0.10

ENSG00000211706 TRBV6-1 3.58 0.07 −0.44 0.99

ENSG00000117394 SLC2A1 −0.33 0.08 0.04 0.99
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clinical response. Further, given the large fluctuation in analysis results 
depending on the exclusion of single samples in these cross-sectional 
analyses, we  also refrained from performing gene set 
enrichment analysis.

Predicting MTX response
The predictive ability varied across the four data types (clinical, 

flow cytometry, transcriptomics, and protein), time point, and 
employed method. At baseline, a total of three combinations achieved 
ROC AUCs with a confidence interval which did not include the 0.5 
level: the kernel-based prediction model utilizing clinical variables 
(mean AUC: 0.65, 95% CI: 0.56–0.75), the kernel-based and linear 
models of gene expression data (mean AUC: 0.67, 95% CI: 0.54–0.81 
and mean AUC: 0.68, 95% CI: 0.57–0.79, respectively) (Figure 2). As 
expected, the longitudinal changes in clinical variables resulted in a 
very accurate prediction of response. Further, changes in 
measurements of gene expression, protein or flow cytometry 
phenotypes did not achieve successful prediction models. Further, 
although baseline FACS models yielded no successful predictions, the 
longitudinal kernel-based model resulted in more predictive models 
with mean AUC of 0.66, 95% CI: 0.53–0.80; in transcriptomics, the 
linear longitudinal model displayed a positive predictivity with a mean 
ROC AUC of 0.70, with a 95% CI of 0.54–0.87.

Discussion

Here we report insights from a clinically and biologically well-
characterized cohort of newly diagnosed RA patients starting MTX 
treatment and followed during 3 months of treatment. The availability 
of information regarding important demographic, clinical and 
immunological confounders enabled us to conduct a thorough and 
robust analysis, less sensitive to bias. We detect strong effects of MTX 
across clinical measurements, protein expression in peripheral blood, 
gene expression in PBMCs and cell phenotype proportions, mainly a 
suppression across all tissue types. The biological effects in immune 

FIGURE 2

ROC AUC performance of ML models predicting response based on 
clinical, flow cytometry, protein, and RNA-seq data in MTX therapies 
recorded during the baseline patient visit, and a longitudinal 
difference between the three-month follow-up and baseline. The 
points in the plots showcase the mean ROC AUC values of the 
median repeat in each of the ML tasks, along with the corresponding 
95% confidence interval of the standard error of the mean (SEM).

TABLE 6 Gene sets suppressed during MTX treatment among RA patients who did not respond to MTX treatment (EULAR classification “No”).

By fold change By value of p

Gene set Source N AUC FDR AUC FDR

Chemokine receptors bind chemokines Reactome 40 0.71 1.0*10−3 0.61 0.085

NFAT TF pathway PID 41 0.76 3.7*10−3 0.68 2.4*10−3

CD8 TCR downstream pathway PID 52 0.75 3.7*10−3 0.66 6.6*10−4

IL12 pathway PID 62 0.66 0.039 0.63 4.4*10−4

TABLE 5 Gene sets suppressed during MTX treatment among RA patients who had responded to MTX treatment (EULAR classification “Moderate” or 
“Good”).

By fold change By value of p

Gene set Source N1 AUC FDR AUC FDR

PLK1 pathway PID 43 0.62 5.5*10−3 0.68 8.9*10−6

Cyclin A B1 associated events during G2 M transition Reactome 15 0.75 0.012 0.74 0.028

Kinesins Reactome 21 0.71 0.012 0.71 0.028

Cell cycle mitotic Reactome 297 0.57 0.017 0.55 0.035

Foxm1 pathway PID 36 0.65 0.017 0.63 0.040

G1 S specific transcription Reactome 17 0.70 0.017 0.67 0.061

Aurora B Pathway PID 38 0.61 0.045 0.61 0.061

Aurora A Pathway PID 29 0.62 0.072 0.62 0.028
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cell proportions and gene expression differed between responders and 
non-responders, indicating that there are indeed different biological 
processes occurring in those who respond clinically compared to 
those who do not.

At the rheumatology clinics the rheumatologist evaluates the 
treatment response of each patient according to their specific disease 
phenotype and progression, and one treatment response definition 
might not fit all patients. This can also be seen in the literature where 
different investigators use a diverse set of treatment outcomes. 
We chose to analyze EULAR treatment response that takes both the 
resulting DAS28 and the change induced by treatment into account, 
which is often employed in clinical trials. In this study we chose to 
analyze whether patients had any convincing effect of treatment, 
where a moderate and good EULAR treatment response were merged. 
We focused on the statistically most powerful analyses: the effect of 
treatment within individuals. In this analysis, we were particularly 
interested in whether different mechanisms are active in the patients 
that respond to MTX, compared to those who do not respond. 
Secondly, we also attempted to detect biomarkers that can predict 
whether a patient will respond to MTX treatment by using 
measurements from the baseline visit only.

In our flow cytometry data of PBMC we observed significant 
changes in many immune cell proportions during MTX treatment. 
MTX strongly diminished the proportion of HLA-DR+ T-cells in 
relation to other T cells in responders and non-responders, but more 
notably so within responders. As HLA-DR expression is considered a 
sign of activated T-cells, this indicates that across all patients MTX 
was able to specifically suppress the activation of T-cells, alternatively 
affect their abundance in peripheral blood. Additionally, the 
proportion of T-cells expressing IL21R were suppressed exclusively in 
non-responders. IL21 is a pleiotropic cytokine with context-dependent 
mainly pro-inflammatory effects on T cell differentiation (11), and 
thus a potential treatment target in RA (12). The receptor for IL21 is 
expressed upon cellular activation on T cells as well as on many other 
leukocytes. We analyzed IL21R expression on T cells as well as on NK 
cells, B cells and monocytes, and found suppressed proportions of 
only T cells expressing IL21R. The decreased proportion of IL-21-
expressing T-cells in non-responding patients could indicate an 
altered tissue distribution of these cells, or a reduced overall expression 
of IL21R in T cells specifically.

The effect of MTX on protein levels in serum was similar across 
responders and non-responders. However, the coefficients of change 
were always larger for responders, indicating that the detected 
regulation tended to be  stronger among responders. As expected 
we saw a drop in CRP levels. Blockage of IL-6 has been shown to 
be clinically beneficial in RA (reviewed in (13)), and here we observed 
a significant decrease in IL-6 among patients who responded to 
treatment. We did not observe a significant regulation of IL-6 gene 
expression, which might be due to limitations in power or a decreasing 
of IL-6 gene expression by cells other than PBMC. In addition, VEGF 
was significantly decreased by MTX within responders, whereas levels 
in non-responders increased slightly (not significant). Here the 
difference in regulation among responders and non-responders was 
nominally significant (p: 0.011). VEGF has previously been suggested 
to be positively correlated with disease severity (DAS28) and CRP 
levels (14). In our material there was a positive correlation between 
CRP and VEGF among treatment naïve patients (r2: 0.44, p: 2.4*10−5), 
but no correlation was seen after MTX treatment (r2: 0.01, p: 0.92). 

CCL23 has been suggested as a severity marker for RA (15), and 
we  observed that it decreased significantly during treatment in 
responders. We  saw a significant correlation between CCL23 and 
DAS28 in MTX-naïve patients (r2: 0.27, p: 0.0086), but this correlation 
disappeared in MTX-treated patients (r2: 0.02, p: 0.85). We also found 
a suppression of CXCL10 and E-selectin, in line with data in a previous 
reports (16, 17). Additionally, we  detected the suppression of 
pro-inflammatory proteins Serum Amyloid A and CXCL9, and the 
metalloproteinase MMP-9 in responders.

MTX treatment had a large effect on gene expression levels, with 
some similarities between responders and non-responder, i.e., no 
single genes had a significantly differential regulation in responders as 
compared to non-responders. Among the patients that responded to 
MTX there was a clear suppression of the expression of cell cycle 
genes, indicating that MTX decreased the proliferation of the PBMC 
alternatively that MTX caused sequestration of proliferating cells in 
tissues. Also, the expression of several immunoglobulin genes were 
significantly suppressed by MTX among the responders. In our flow 
cytometry panel we measured the proportion of IgD-CD138+ CD27+ 
of all B cells, a staining that is considered to identify antibody-
secreting plasma cells. The proportion of plasma cells measured this 
way was indeed suppressed by MTX, but had a FDR > 10% (beta: 
−033, p: 0.015). These findings could be  a result of an altered 
distribution of immunoglobulin-expressing cells in the body induced 
by MTX, or a direct effect of MTX on antibody-production and B cell 
maturation processes. The gene expression level for the master 
regulator of regulatory T-cells, FOXP3, was also suppressed by 
treatment in those who responded to MTX. This was surprising given 
several earlier reports indicating that successful MTX treatment 
increases the proportion of regulatory T-cells in the peripheral blood 
of individuals with RA (18). Notably, transcripts of FOXP3 is 
expressed not only by regulatory T-cells, but also transiently by 
activated T-cells (19) and other cell lineages (20).

Among non-responders the effect of MTX on gene expression 
was generally weaker than in responders. The two genes that were 
significantly regulated among non-responders only, TRBV6-1 
(log2FC:3.58) and SLC2A1 (log2FC: −0.33), were the genes with 
the strongest evidence for differential regulation by MTX 
treatment in responders compared to non-responders 
(FDR < 20%). Comparing the log2 (fold changes) in responders 
and non-responders showed only weak correlation (r2: 0.35, p: 
0.025). Notably, gene set enrichment analysis indicated the 
suppression of inflammatory gene sets such as chemokines and 
chemokine receptors, IL12, NFAT and the pathway downstream 
the TCR of CD8+ T-cells also within clinical non-responders, 
gene sets which were not enriched in responders. Non-responders 
also experienced a decrease in the proportion of IL21R+ T-cell 
subsets during treatment, and an increased expression of the 
T-cell receptor gene TRBV6-1.

Prednisolone has a large effect on immune cells (21). In 
exploratory analysis, we accordingly observed that the effect of MTX 
and prednisolone jointly was larger than the effect of MTX alone on 
gene expression (results not shown). This exemplifies why adjusting 
for prednisolone in our analyses was essential.

We did not detect any biomarkers or prediction models with 
sufficient predictive value to aid in MTX therapy at baseline. Although 
the transcriptome models displayed positive predictivity, the ROC 
AUCs were relatively low which indicates that these results are fit as 
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supplementary evidence, rather than serve as a basis of treatment 
choice. The set of proteins we investigated was, however, rather limited 
(n:51). We assayed a broad range of immune phenotypes, but the 
focus was to look at all major cell types and not the more functional 
ones. Previous reports have indicated that non-responders of MTX 
had a higher concentration of monocytes, and a proportion of 
CD14brightCD16−, CD14brightCD16+ and CD14dimCD16+ 
monocyte subsets before treatment initiation (22). Here neither of 
those signals was replicated, although we do detect a trend for higher 
proportion of CD14brightCD16+ among non-responders (OR: 0.86, 
p: 0.096). The level of IL1beta produced by PBMC has previously been 
suggested as a biomarker of response to MTX (23) but we detect no 
such pattern in serum, and when looking at gene expression by PBMC 
the level was slightly lower in future responders but far from 
significant [log2 (fold change): −0.34, p: 0.22]. Our results indicate 
that no major immune cell phenotypes in peripheral blood was able 
to predict who will later respond to MTX. Plant et  al. (24) has 
previously demonstrated similar predictive ability of whole blood gene 
expression at baseline as we observe here. They additionally show that 
the difference in gene expression at baseline and 4 weeks into 
treatment is valuable to predict long-term MTX response. We are 
unable to interrogate this in our sample set as patients did not donate 
blood until their follow up clinical appointment at 3 months. Overall, 
we demonstrate some prediction models that are significantly better 
than random, yet not strong enough to warrant clinical 
implementation. This might be due to the heterogeneity, and limited 
size, of the included sample set.

In this study we  are focusing on measurements done in 
peripheral blood due to the accessibility and low discomfort for 
the donors. This might however limit our possibility of detecting 
biomarkers or understanding the mechanisms associated to a 
good response to MTX. The important processes might in fact 
happen elsewhere in the body, as in the synovial or lymphoid 
tissue. Another limitation of this project is that gene expression 
alterations in specific cell types might be diluted and missed when 
total RNA is sequenced. We only investigated a subset of all cell 
type proportions and proteins, so important biomarkers might 
have been missed.

Conclusion

In summary, we  herein show that MTX treatment leads to 
significantly different biological effects among those who respond 
clinically to treatment and those who do not. Within those who 
responded to MTX we observed a suppression of the proportions of 
HLA-DR+ T-cell subsets, a suppression of cell cycle genes, and a 
downregulation of IL-6. In non-responders we instead observed the 
suppression of IL21R+ T-cell subsets. These findings might represent 
biological processes that are involved in the clinical response, or lack 
of response, to MTX among RA patients.
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