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In the clinic, it is di�cult to distinguish the malignancy and aggressiveness of solid
pulmonary nodules (PNs). Incorrect assessments may lead to delayed diagnosis
and an increased risk of complications. We developed and validated a deep
learning-based model for the prediction of malignancy as well as local or distant
metastasis in solid PNs based on CT images of primary lesions during initial
diagnosis. In this study, we reviewed the data frommultiple patients with solid PNs
at our institution from 1 January 2019 to 30 April 2022. The patients were divided
into three groups: benign, Ia-stage lung cancer, and T1-stage lung cancer with
metastasis. Each cohort was further split into training and testing groups. The deep
learning system predicted themalignancy andmetastasis status of solid PNs based
on CT images, and then we compared the malignancy prediction results among
four di�erent levels of clinicians. Experiments confirmed that human–computer
collaboration can further enhance diagnostic accuracy. We made a held-out
testing set of 134 cases, with 689 cases in total. Our convolutional neural network
model reached an area under the ROC (AUC) of 80.37% for malignancy prediction
and an AUC of 86.44% for metastasis prediction. In observer studies involving four
clinicians, the proposed deep learning method outperformed a junior respiratory
clinician and a 5-year respiratory clinician by considerable margins; it was on
par with a senior respiratory clinician and was only slightly inferior to a senior
radiologist. Our human–computer collaboration experiment showed that by
simply adding binary human diagnosis into model prediction probabilities, model
AUC scores improved to 81.80–88.70% when combined with three out of four
clinicians. In summary, the deep learning method can accurately diagnose the
malignancy of solid PNs, improve its performance when collaborating with human
experts, predict local or distant metastasis in patients with T1-stage lung cancer,
and facilitate the application of precision medicine.
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1. Introduction

Lung cancer is the leading cause of cancer-related death worldwide (1–3). Pulmonary

nodules (PNs) are an early and potentially curable form of lung cancer (4). In screening for

lung cancer, the average detection rate of PNs has increased to 22.00%−59.70%, of which

<5% are malignant nodules (5–7). Early diagnosis of malignant solid nodules is especially
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important to improve the prognosis of lung cancer due to its

indeterminate aggressive characteristics (8–11). Although several

studies have shown that the rate of malignancy in solid nodules

is lower than that in ground-glass nodules, distinguishing benign

and malignant solid PNs is even more difficult than distinguishing

ground-glass nodules due to their overlapping characteristics with

lung cancer in CT imaging (12–16). It was reported that among

excision PNs, the proportion of benign lesions can be as high as

51.67%, and most of them were solid nodules (17, 18). Meanwhile,

metastasis accounts for a vast majority of lung cancer-related deaths

(19). Early screening for lung cancer has shown an increased

detection rate of early-stage lung cancer, with some small nodules

having been found to have metastases at preliminary diagnosis (10,

11, 20–22). Accurate TNM staging is an important prerequisite for

the treatment of lung cancer. At least 20% of patients who undergo

curative lung surgery relapse with undiagnosed metastatic disease,

indicating that the current approach, which mainly includes

positron-emission tomography (PET-CT), CT, MRI, or invasive

pathologic assessment of cancer staging, has its limitations (23–

25). There is still a clinical need for new, robust, cost-effective, and

convenient, non-invasive imaging parameters to better predict the

malignancy and metastasis status of solid PNs.

In recent years, deep learning has shown vast potential

in medical applications and has also made great progress in

pulmonary nodule diagnosis (26–34). Moreover, some researchers

have predicted lymph node invasion using deep learning, radiomics

models, and other methods (35–40), but predictingmalignancy and

M-stage metastasis for solid PNs remains inadequate. Therefore,

the purpose of this study is to predict the malignancy and local

or distant metastasis of solid PNs with deep learning based on

chest CT images of the primary lesions. The hope is to increase

the potential for the timely and reliable treatment of these highly

aggressive lung nodules.

2. Materials and methods

2.1. Patients

This study was approved by the Ethics Committee of the First

Affiliated Hospital of Chongqing Medical University (2022-K139),

and patient confidentiality was maintained. We retrospectively

reviewed the data from 1,571 consecutive patients with solid PNs

who joined the management database of PNs and lung cancer in

the First Affiliated Hospital of Chongqing Medical University from

1 January 2019 to 30 April 2022. The patients were divided into

three groups: the benign group, the Ia-stage lung cancer group,

and the T1-stage lung cancer metastasis group. The benign group

can be further divided into the pathological benign group and the

follow-up benign group.

The inclusion criteria were as follows: dominant nodules with

a size of ≤30.00mm on preoperative CT images; nodule density of

solid nodules; and availability of pathological report in malignant

nodule patients diagnosed by non-surgical biopsy (CT-guided

transthoracic biopsy and bronchoscopy non-surgical biopsy) or

surgical resection. The T1-stage lung cancer metastasis patients

were confirmed by PET-CT or CT combined with ultrasound

and radionuclide imaging at diagnosis, imaging follow-up within

3 months, and clinicians. Pathological benign refers to getting

the confirmed pathological result while excluding non-diagnostic

results such as inflammation and fibroplasia that lacked follow-

up data. Follow-up benign means that the solid nodules were

completely absorbed, shrunk, or unchanged within 2 years of the

follow-up period. The exclusion criteria were as follows: lack of thin

CT images in DICOM format, metastatic cancer, and recurrence

within 2 years post-operation in the Ia-stage lung cancer group.

Finally, 689 patients were enrolled and divided into the training

group and the testing group randomized for 8:2, which included

the benign group (n = 333), the Ia-stage lung cancer group (n =

196), and the T1-stage lung cancer with metastasis group (n= 160)

(Figure 1).

2.2. Data collection

The clinical characteristics included age, gender, smoking

status, history of cancer, family history of cancer, images of PNs

contained size and location, histological type, lung cancer staging,

distribution of metastases, and confirmed diagnosis method

collected retrospectively (Table 1 and Figure 2).

2.3. CT scanning parameters

All patients underwent chest CT scanning in our Department

of Radiology before receiving a confirmed diagnosis using

the following scanners: SOMATOM Perspective (Siemens

Healthineers, Erlangen, Germany), SOMATOM Definition Flash

(Siemens Healthineers, Erlangen, Germany), or Discovery CT750

HD (GE Healthcare, Milwaukee, WI, USA) with the following

parameters: 120 kVp; 80 mAs; pitch 1.0; and collimation 0.6mm,

respectively. All imaging data were reconstructed using a medium

sharp reconstruction algorithm with a thickness of ≤1mm. CT

scans were obtained from all patients in the supine position at

full inspiration.

2.4. Development of the deep learning
system

Gives a visualization of the proposed deep learning system.

This section is organized into two parts: data preprocessing and

classification network (Figure 3).

2.5. Data preprocessing

Before being fed into the neural network, each data sample is

preprocessed using the following steps:

1. Resample the CT volume Xvol into the spacing of 1mm ∗ 1mm
∗ 1mm using trilinear interpolation and obtain the normalized

volume Xnorm<uscore> vol;

2. Crop a 64mm ∗ 64mm ∗ 64mmpatchXnorm<uscore>patch around

the center of each nodule from the resampled CT volume;
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3. Clip HU values of Xnorm<uscore>patch into [−1,000, 400]

(equivalent to torch.clamp(x_norm_patch, −1,000, 400) or

numpy.clip [x_norm_patch,−1,000, 400)];

4. Apply HU value min–max normalization, normalize HU values

into [0, 1], and obtain the final output of data preprocessing

Xfinal =
Xnorm<uscore>patch−min(Xnorm<uscore>patch)

max(Xnorm<uscore>patch)−min(Xnorm<uscore> patch)
.

The resampling step ensures isotropy along each dimension

of the 3D nodule patch, which facilitates training of the 3D

convolutional neural network. HU clipping and normalization

filter out irrelevant noises in the CT patch and stabilize the training

of the deep learning model.

2.6. Classification network

We used a 3D ResNet18 (41, 42) as the classification network

in our experiments. The input of the model is a preprocessed 3D

patch, together with the nodule segmentation obtained from the

segmentation system developed by Dianei Technology, Shanghai

in a previous study (27). The model outputs the classification

probabilities of the three following probabilities: nodules with

metastasis, phase 1A nodules, and benign nodules.

We train the deep learning model for 100 epochs using the

AdamW (43) optimizer with a batch size of 64. The learning

rate is adjusted following a cosine learning rate decay schedule

(44) from 10−3 to 10−6. Hyperparameters are selected according

to the network performances of 3-fold cross-validation on the

training and validation datasets. The split of cross-validation is

done randomly and stratified using the nodule classification labels.

To alleviate overfitting caused by the limited dataset size and to

improve the generalization performance of the model various data

augmentation techniques were adopted during training. A full list

of data augmentation is as follows:

1. Random Gaussian noise;

2. Random crop near the center;

3. Random flipping and transposing;

4. Mixup (45).

With a single forward pass and an input 3D patch of 64mm
∗ 64mm ∗ 64mm from the CT scan, the trained network can

predict the three-class probability together with the nodule mask.

The nodule is classified as the category with highest probability.

2.7. Testing the performance of deep
learning in the diagnosis of solid PNs

To test the effectiveness of our proposed method in

predicting malignancy and metastasis of solid PNs, we

evaluated its performances using three-class accuracy and

AUC scores on predictions of nodule malignancy (benign vs.

malignant+metastasis) and metastasis (benign+malignant vs.

metastasis). Furthermore, we performed subgroup analysis in the

following settings:

1. Total: In this setting, we evaluated our model on the

entire dataset;

2. Follow-up benign: In this setting, we performed evaluations

on all malignant nodules and progress-free benign nodules

during follow-up visits. This setting is considered easier since

the diagnosis evidence is more obvious, where we expect

higher performances;

3. Pathological benign: In this setting, we included only benign

nodules confirmed by pathological results and also all malignant

nodules. Compared with the follow-up benign setting, this

setting can be regarded as a differential diagnosis, which

is more challenging for both deep learning models and

human experts.

2.8. Observer studies

To compare the performance of the deep learning system

with that of humans, an observer study of four clinicians

was conducted. The specialization and years of experience

of these clinicians are given in Table 2. All 134 cases in

the test dataset were included in the observer studies. We

evaluated the performances of both the deep learning model

and clinicians using the F1 score to balance both precision and

sensitivity. Meanwhile, we analyzed the inter-rater consistency

among human experts in diagnosing solid nodules using Cohen’s

kappa scores.

2.9. Diagnosis accuracy of
human–computer collaboration

In the observer studies, we conducted experiments to

investigate whether human–computer collaboration can

further enhance diagnostic accuracy. In the task of malignancy

diagnosis, we combined human expert opinions with deep

learning model predictions by a simple strategy, adding binary

clinician diagnoses into model prediction probabilities with

different weights:

pHC = wH1H + pC

Where pHC is the human–computer collaboration

probability, wH ∈ [0, 1] is the weight of human diagnosis,

1H is the binary malignancy prediction from clinicians, and

pC ∈ [0, 1] is the malignancy probability given by the deep

learning model.

2.10. Statistical analysis

SPSS 25.0 software was used for statistics, and the sorted

data were imported into SPSS for weighted data analysis. The

independent sample t-test in the software analysis list was

used for the P-value analysis of age and diameter data, and

Pearson’s χ2 test in the software analysis list was used for the P-

value analysis of other data. A P-value of <0.5 was defined as

statistically significant.
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FIGURE 1

Data criteria and specification.

3. Results

3.1. Clinical and pathological
characteristics

A total of 333 benign nodule patients, 196 Ia-stage lung cancer

patients, and 160 T1-stage lung cancer metastasis patients were

enrolled. The average age was 54.82 ± 12.13 years, 65.26 ± 9.78

years, and 64.59± 9.48 years, respectively. The diameter of nodules

was 12.53 ± 6.36mm, 16.64 ± 5.62mm, and 19.83 ± 5.84mm in

the benign nodules group, Ia stage group, and T1-stage metastasis

groups, respectively (Appendix 1). The three groups were further

divided into a training and testing group, randomized for 8:2.

There was no significant difference in the clinical data between the

training set and the testing set, as shown in Table 1 (p > 0.05).

The metastases sites of T1-stage lung cancer in the training group

and testing group were mainly distributed in the lymph nodes

(79.3%,75.9%), lung (26.7%, 17.2%), bone (23.7%, 31%), pleura

(8.4%, 6.9%), adrenal gland (3.8%, 0%), and brain (6.9%, 17.2%)

(Figure 2).

3.2. Performance of deep learning in the
diagnosis of solid PNs

Since our dataset includes both benign nodules

confirmed by pathological results and those diagnosed

as benign via non-progression during follow-up visits,

we evaluated our deep learning model accordingly.

Specifically, we reported model performances on the following

three settings:

1. Total: In this setting, we evaluated our model on the

entire dataset.
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TABLE 1 Baseline characteristics of the training and testing cohorts.

Category The training set The testing set P-value P-value P-value

Benign Ia-stage T1 with
metastasis

Benign Ia-stage T1 with
metastasis

Benign Ia stage T1 with
metastasis

Total (n) 267.00 157.00 131.00 66.00 39.00 29.00

Male 121.00 88.00 79.00 27.00 18.00 19.00 0.47 0.27 0.60

Female 146.00 69.00 52.00 39.00 21.00 10.00

Average age

(years)

55.60 65.20 64.20 52.10 66.50 66.30 0.03 0.87 0.24

Smoking history

(n, %)

94.00,

34.8%

70.00,

44.5%

69.00, 52.6% 21.00,

31.3%

15.00,

38.4%

13.00, 44.8% 0.22 0.49 0.44

History of cancer

(n, %)

6.00, 22.4% 7.00, 4.4% 7.00, 5.3% 1.00, 1.5% 2.00, 5.1% 0.00 0.78 0.86 0.20

Family history of

cancer (n, %)

52.00,

19.4%

12.00, 7.7% 17.00, 12.9% 12.00,

18.0%

4.00, 10.2% 1.00, 3.4% 0.75 0.59 0.14

Dominant nodules

Size (mm± SD) 12.34 16.56 19.79 13.04 16.94 20.10 0.42 0.00∗ 0.82

location (n, %) 0.08 0.11 0.42

RUL 72.00,

27.0%

51.00,

32.4%

40.00, 30.4% 24.00,

35.8%

15.00,

38.4%

11.00, 37.9%

RML 31.00,

11.8%

12.00, 7.6% 9.00, 6.8% 4.00, 5.9% 7.00, 17.9% 0.00

RLL 56.00,

20.7%

28.00,

17.8%

23.00, 17.5% 18.00,

26.8%

2.00, 5.1% 3.00, 10.3%

LUL 48.00,

17.7%

33.00,

21.0%

42.00, 32.0% 14.00,

20.8%

6.00, 15.3% 9.00, 31.0%

LLL 59.00,

22.5%

33.00,

21.0%

17.00, 13.0% 7.00, 10.4% 9.00, 23.0% 6.00, 20.6%

Malignant

pathological

results (n, %)

0.497 0.733

Adenocarcinoma 127.00,

80.8%

99.00, 75.5% 34.00,

87.1%

24.00, 82.7%

Squamous

carcinoma

22.00,

14.0%

10.00, 7.6% 3.00, 7.6% 2.00, 6.8%

Non-small cell

carcinoma

3.00, 1.9% 9.00, 6.8% 0.00 2.00, 6.8%

Small cell

carcinoma

1.00, 0.6% 7.00, 5.3% 0.00 0.00

Other 4.00, 2.4% 6.00, 4.3% 2.00, 5.1% 1.00, 3.4%

PET-CT (n, %) 19.00, 7.0% 47.00,

29.9%

46.00, 35.1% 3.00, 4.5% 18.00, 46.15 13.00, 44.8% 0.45 0.05 0.37

MaxSUV value 17.20 22.40 24.10 7.40 11.20 13.10 0.94 0.22 0.81

Clinical stages (n,

%)

0.19

Ia stage 155.00,

98.7%

39.00, 100%

IIb stage 20.00, 15.5% 1.00, 3.4%

III stage 47.00, 35.7% 13.00, 44.8%

IV stage 54.00, 48.0% 15.00, 51.7%

Diagnosis method

(n, %)

0.0001∗

Pathological

confirmed

159.00,

55.9%

157.00,

100%

131.00, 100% 39.00, 100% 29.00, 100%

Follow-up

confirmed

111.00,

44.1%

0.00 0.00 23.00,

34.3%

0.00 0.00

The ∗ symbol indicates the value of P < 0.05.
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FIGURE 2

Pathological type and distribution of metastases in solid lung cancer nodules. (A) Pathological type of Ia-stage lung cancer patients in the training
group. (B) Pathological type of T1-stage lung cancer patients with metastasis in the training group. (C) Pathological type of Ia-stage lung cancer
patients in the testing group. (D) Pathological type of T1-stage lung cancer patients with metastasis in the testing group. (E) Distribution of
metastases in T1-stage lung cancer patients with metastasis.
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FIGURE 3

Overview of the deep learning system adopted in the diagnosis of pulmonary solid nodules.

2. Follow-up benign: In this setting, we performed

evaluations on all malignant nodules and progress-

free benign nodules during follow-up visits. This

setting is considered easier since the diagnostic

evidence is more obvious, and we expect

higher performance.

3. Pathological benign: In this setting, we included

only benign nodules confirmed by pathological

results and all malignant nodules. Compared with

the follow-up benign setting, this setting is more

challenging for both deep learning models and

human experts.

Overall, our deep learning model achieved a three-class

accuracy of 64.93% and AUC scores of 80.37% and 86.44% in

malignancy and metastasis prediction, respectively. For the follow-

up benign subset, our model reached an even higher three-class

accuracy of 72.53%, a malignancy prediction AUC of 93.48%, and a

metastasis prediction AUC of 87.93%. In terms of the pathological

benign group, which is considered difficult to diagnose, our model

achieved a decent three-class accuracy of 59.46% and scored 73.36%

and 83.18% on the malignancy and metastasis prediction AUCs,

respectively (Table 3).

3.3. Benchmarking deep learning against
clinicians for malignancy prediction
performance

The deep learning method outperformed the junior respiratory

clinician (Clinician A) and the respiratory clinician with 5

years of experience (Clinician B) in the overall evaluation and

both subgroups. Our proposed model was on par with the

senior respiratory clinician (Clinician C), with slightly inferior

performance on the entire dataset (77.11% vs. 78.08%) and better

performances in both subgroups (93.43% vs. 89.76% in the follow-

up group and 79.50% vs. 79.17% in the pathological group).

Nevertheless, our proposed model fell short when compared

with the senior radiologist (Clinician D), but not by a large

margin. Such performances show that the deep learning model

is promising when it comes to facilitating decisions similar

to human clinicians in the complex task of solid nodule

diagnosis (Table 4 and Figure 4). In contrast, human clinicians

behave inconsistently, with a highest Cohen’s kappa score of

0.4306 (Table 5). The low inter-rater consistency shows that our

proposed deep learning model has better diagnostic stability in

such scenarios.
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TABLE 2 Specializations and years of experience of clinicians in observer

studies.

Specialization Years of experience

Clinician A Respiratory medicine 2

Clinician B Respiratory medicine 5

Clinician C Respiratory medicine 10

Clinician D Radiology 10

TABLE 3 Model performances in the diagnosis of solid pulmonary

nodules.

Accuracy AUC

Malignancy Metastasis

Total 64.93% 80.37% 86.44%

Follow-up benign

(n= 103)

72.53% 93.48% 87.93%

Pathological benign

(n= 164)

59.46% 73.36% 83.18%

The AUC of “malignancy” denotes the model performance when classifying benign vs.

malignant+metastasis, while that of metastasis denotes benign+malignant vs. metastasis.

TABLE 4 F1 scores of deep learning model and clinicians on the

prediction of nodule malignancy.

Years Total Follow-
up

benign

Pathological
benign

Clinician A 2 59.84% 67.86% 62.81%

Clinician B 5 73.20% 86.15% 76.19%

Clinician C 10 78.08% 89.76% 79.17%

Clinician D 10 81.01% 94.81% 82.58%

3D ResNet NA 77.11% 93.43% 79.50%

NA stands for “not applicable”.

3.4. Human–computer collaboration

The results of combining human and computer diagnoses with

different wH ∈ [0, 1] with steps of 0.01, where wH controls

the weight of the human experts in collaboration. We found

that Clinicians B, C, and D improved the AUC score of the

deep learning model regardless of the value of wH . Clinician

D increased the model AUC from 80.37% to 88.73% at most.

Empirically, we observed that wH = 0.22 improved the average

AUC score the most. Under this hyperparameter setting, the

model AUC is increased to 82.60%, 84.83%, 85.54%, and 88.00%

when combined with Clinicians A, B, C, and D, respectively.

Our human–computer collaboration experiments show that the

proposed model becomes more accurate when working with

humans, demonstrating its great potential in clinical practice

(Figure 5).

4. Discussion

The best clinical management of PNs requires the evaluation

of the probability of malignancy, which determines the most

FIGURE 4

ROC curves of the proposed model compared with the
performances of clinicians. (A) Malignancy prediction performances
compared with total benign nodules data. (B) Malignancy prediction
performances compared with the follow-up benign nodules data.
(C) Malignancy prediction performances compared with the
pathological benign nodules data.

cost-effective diagnostic and therapeutic strategies. Previous studies

on the diagnosis of solid PNs mainly focused on using radiomics

models or nomograms or included only pathologically benign

nodules (14, 15, 29) and did not take advantage of the deep

learning technique. Heuvelmans et al. trained and validated

a lung cancer prediction convolutional neural network on an
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TABLE 5 Inter-rater consistency of four clinicians in observer studies,

measured by Cohen’s kappa.

Clinician
A

Clinician
B

Clinician
C

Clinician
D

Clinician A - 0.0745 0.0192 0.2401

Clinician B - - 0.3286 0.2601

Clinician C - - - 0.4306

Clinician D - - - -

independent dataset of small-to-intermediate nodules sized 5–

15mm and demonstrated its excellent performance in identifying

benign nodules (46). In their research, benign nodules were

determined by screenings and follow-ups until 7 years after

baseline in the National Lung Screening Trial as well as solid

nodules (46). Moreover, larger benign solid PNs are usually

characterized by overlapping imaging features and are easily

misdiagnosed and overtreated. Our study provided evidence that

deep learning methods based on CT images of the primary

lesions can be used to predict the malignancy of solid PNs

(size ≤30mm) and performed better than two junior or middle-

level clinicians, only slightly inferior to the senior radiologist.

In the follow-up benign subset, our model reached an even

higher three-class accuracy of 72.53% and a malignancy prediction

AUC of 93.48%. In terms of the pathological benign group,

which is considered difficult to diagnose, our model achieved

a decent three-class accuracy of 59.46% and scored 73.36%

on the malignancy prediction AUC. Our human–computer

collaboration experiments show that the proposed model becomes

more accurate when working with humans, demonstrating its

great potential when used in clinical practice. Therefore, the

proposed deep learning method can accurately diagnose solid

PNs, even if they are indeterminate solid lung nodules, and has

demonstrated improved performance upon working in tandem

with human experts.

At present, it is difficult to detect and predict the metastasis

of T1-stage lung cancer until it has already developed to a

certain stage (25), but it is critical to match patients with

appropriate individualized therapy strategies and predicting

prognoses. Numerous studies have reported using radiomics

features, deep learning, or other methods to predict lymph node

metastasis, but not the M staging of lung cancer. Beck et al.

reported that the deep cubical nodule transfer learning (CUBIT)

algorithm, using transfer learning and a 3D convolutional neural

network (CNN) based on CT scan images, can accurately predict

LVI or nodal involvement in primary non-small cell lung cancer

(NSCLC) (36). Nie et al. reported that a radiomics nomogram

incorporating the Rad-score and clinical and PET/CT parameters

shows favorable predictive efficacy for lymph vascular invasion

status in lung adenocarcinoma (47). Zhang et al. established

a PET/CT nomogram based on the metabolic information

(SUVmax) and structural information (radiomics features) of

lymph nodes for preoperative quantitative estimation of lymph

node metastasis (48). Tau et al. used convolutional neural networks

to predict the nodal and distant metastatic potential of newly

diagnosed NSCLC on FDG PET images (49), but the authors

did not specifically identify solid PNs. Tian et al. reported

that the radiomics features of pretherapy CT images may be

used as predictors of distant metastasis, but there were only 43

cases of solid lung cancer nodules, and only three patients had

metastases in their study (25). In this research, we collected a

cohort of 689 patients with solid PNs and trained a 3D CNN

to predict the local or distant metastasis of nodules. On a

held-out testing set of 134 cases, the deep learning approach

achieved an AUC score of 86.44% for metastasis prediction.

The method employed in this study can be used to predict

or diagnose the metastasis of T1-stage lung cancer nodules

based on CT imaging. When we are able to better evaluate the

characteristics of these nodules, clinicians will have a greater

chance of identifying highly aggressive lung cancer at its earliest

stages, making treatment planning and patient stratification viable

for everyone.

5. Conclusion

Although this proposed model shows great promise and

is able to compete with senior clinicians in the solid nodule

diagnosis task, there are limitations worth mentioning. First, not

all patients in the metastasis group had pathological results for

the metastatic sites. Because most of them were local or late-stage

lung cancer patients, metastasis was mainly confirmed by non-

invasive systemic screening, clinician experience, or follow-up in

ethics. Second, this was a single-center retrospective study with

a relatively small sample size. However, because of the difficulty

of medical data collection, it is the largest sample size reported

in T1-stage solid lung cancer patients with metastases, according

to the literature. Multicenter studies with larger datasets can be

validated in the future. In addition, only one single CT scan is

included for each patient in our experiments, while in practice

clinicians usually take multiple follow-up CT scans into account.

The next step is to design a prospective study in which follow-up

CT sequences can be added to make the best use of information

from multiple time points and to improve diagnostic accuracy (50,

51). Additionally, our human–computer collaboration experiment

settings are not close enough to real-world clinical settings. This

is due to the labor intensiveness of having all four clinicians

carry out the diagnosis once again. In our future research, we

will experiment with human experts diagnosing with computer

assistance in real-world scenarios. However, we argue that our

human–computer collaboration method has its own benefit since

it draws a frontier of possible collaboration results, demonstrating

that human–computer collaboration is a bonus under various

levels of human trust. Our approach is also robust against human

variance, which is high, as shown in our inter-rater consistency

analysis. Finally, the current method focuses on modeling only

the CT modality, whereas ideally, clinicians use a variety of

information, such as smoking history and multiomics information

(52, 53) to better estimate the metastasis and malignancy of solid

PNs. Aggregating such information in our modeling may further

boost its diagnostic performance.

In summary, this study provided evidence that the proposed

deep learning method extracted from CT images of primary

lesions can accurately diagnose the malignancy of solid PNs
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FIGURE 5

Diagnosis accuracy of human–computer collaboration.

and its performance improves when collaborating with human

experts. To the best of our knowledge, this is the first study

to use deep learning with pretherapy CT images of primary

tumors to judge N and M staging in T1 solid lung cancer

nodules, which could help to provide optimal care for these

patients. The prediction of metastasis in T1-stage lung cancer

using CT images has become simple yet accurate through deep

learning methods.
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Appendix

APPENDIX 1 Characteristics of age and nodules size in the benign nodules group, the Ia-stage lung cancer group, and the T1-stage lung cancer with

metastasis groups.

Category Benign Ia-stage T1 with metastasis Total

Average age (years) 54.82± 12.13 65.26± 9.78 64.59± 9.48 60.06± 12.03

Max 83 88 85 88

Min 21 32 39 21

Dominant nodules size (mm± SD) 12.53± 6.36 16.64± 5.62 19.83± 5.84 15.39±6.72
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